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A NOTE ON COVERING L−LOCALLY UNIFORM SPACES

JWNGSAR MOSHAHARY1 AND DIPAK KR. MITRA

ABSTRACT. The purpose of this manuscript is to identify the topological spaces
that generates a unique covering L−locally uniform spaces [1]. For this we
have introduced the notion of strong completeness, compactness and totally
boundedness in covering L−locally uniform spaces. Completeness and com-
pactness are found equivalent in totally bounded covering L−locally uniform
spaces. Further, we have shown that strong completeness satisfies closed hered-
itary property. Towards the end of this paper, we have shown that both the no-
tion strong completeness and compactness satisfies the local uniform property
and lastly compact regular L−topology generates unique covering L−locally
uniform spaces.

1. INTRODUCTION

In topological spaces one cannot study properties such as uniform continu-
ous, completeness and unform convergence, to study these, uniform structures
were developed. Two equivalent structures were developed namely entourage
Uniformity [2] and covering uniform spaces [3]. Efforts were made on to devel-
oped weaker spaces, wherein results in uniformity could possibility developed.
As a result different generalisation of uniformity has been developed. One of
the generalisation was developed by William [4] via localisation of the triangle

1corresponding author
2010 Mathematics Subject Classification. 54A20,54A40, 54E15.
Key words and phrases. L-topology, covering L−locally uniform spaces, compactness, totally

bounded, strongly complete.
7137



7138 J. MOSHAHARY AND D. KR. MITRA

axiom through entourage approach and it was characterised in term of covering
by Vasudevan and Goel in [5] and many spectacular result were obtain.

The theory of uniform spaces on different categories of fuzzy topological
spaces have been carried out by different authors viz, Hutton, Katsarsas, Lowen,
Hu Cheng-Ming et.al. [6–9] in terms of entourage approached. However, the as-
pect of covering uniform space has consider by Soetens et.al [10], Chandrika et.
al. [11, 12] and García et. al. [13]. Further, different generalisation of uniform
spaces have been developed leads to theory and its applications in associated
fields. The generalisation of uniform spaces, namely, L−locally uniform spaces
through the entourage approached is carried out by Mitra and Hazarika [14,15].
In [14], an L− topological space was shown to have compatible L−locally uni-
form spaces if and only if it is regular L−topological and many spectacular re-
sults were also obtain on Compactness, completeness and pseudo-metrisability.

In, [1] we generalised definition of García et al. [13] to introduced covering
L−locally uniform spaces in the category C−TOP. Subsequently, many interest-
ing results were obtain such as weakly uniformly continuous function, pseudo-
metrisable in the context of covering L−locally uniform spaces. In this paper
we, consider the problems of completeness and compactness in the context of
developed notion covering L−locally uniform spaces [1]. In future paper, we
will consider the problems of paracompactness and proximity relation in cover-
ing L−locally uniform spaces.

Throughout this paper (L, ≤,
∧
,
∨

) denotes a fuzzy lattice with order revers-
ing involution ′; 0L and 1L are respectively inf and sup in L. X is an arbitrary
(ordinary) set and LX denotes the collection of all mappings A : X → L. Any
member of LX is an L-fuzzy set. The L-fuzzy sets xα : X → L defined by
xα(y) = 0L if x 6= y and xα(y) = α if x = y are the L-fuzzy points. The
mappings A : X → L and B : X → L defined by A(x) = 1L, ∀x ∈ X and
B(x) = 0L, ∀x ∈ X are denoted by 1 and 0 respectively. For any A, B ∈ LX ,
the union and intersection of A and B are defined as A ∪ B(x) = A(x) ∨ B(x)

and A
⋂
B(x) = A(x)∧B(x) respectively. Further, we say that A ⊆ B if and only

if A(x) ≤ B(x) and xα ∈ A if and only if α < A(x), where xα is an L-fuzzy point;
complement A′ of A is defined as A′(x) = A(x)′. An L-topology F on LX is a
subset of LX closed under finite intersection and arbitrary union. In this case,
the pair (LX , F) is known as L-topological space. The elements of F are called
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open sets and its complements are called closed sets. For any A ∈ LX , the in-
terior and closure of A in L-topological space (LX , F), are respectively denoted
by Ao and A.

2. PRELIMINARIES

This section includes basic definitions and results used in the main sections.

Definition 2.1. [16] For any ordinary mapping f : X → Y , the induced L-
fuzzy mapping f→ : LX → LY and its L-fuzzy reverse mapping f← : LY → LX

respectively are defined as:
f→(A)(y) =

∨
{A(x) | x ∈ X, f(x) = y}, ∀A ∈ LX , ∀ y ∈ Y.

f←(B)(x) = B(f(x)), ∀B ∈ LY , ∀x ∈ X.

Symbol f→ and f← always denote f→ to be the L-fuzzy mapping induced from
an ordinary mapping f and f← is the L-fuzzy reverse mapping of f→. Both the
L-fuzzy mappings f→ and f← are order preserving. Also f→ is bijective iff f is
bijective.

Theorem 2.1. [16] Let LX and LY be L−fuzzy spaces, f : X → Y an ordinary
mapping. then f← is bijective iff f← ◦ f→ = idLX , f→ ◦ f← = idLY .

Definition 2.2. [16] For any xα, A,B ∈ LX , xα is said to be quasi-coincident with
A, denoted as xα � A if xα * A′, i.e.,α � A′(x).
A is called quasi-coincident withB at y ifA(y) � B′(y). A is called quasi-coincident
with B, denoted as Aq̂B, if A quasi-coincident with B at some y ∈ X.

Definition 2.3. [16] Let xα ∈ Pt(LX). Then an L−fuzzy set U is said to be a
quasi-coincident neighbourhood (Q-nbd) at xα in an L−topological space (LX ,F),
if there is G ∈ F such that xα � G ⊆ U .
The family of all Q-nbd at xα in an L−topological space (LX ,F) is denoted by
Q(xα)

Definition 2.4. [16] A subfamily A ⊆ Q(xα) is called a Q-nbd base of xα, if for
every U ∈ Q(xα), there exits V ∈ A such that V ⊆ U .

Theorem 2.2. [16] Let (LX ,F) be an L−topological space. Then for any xα ∈
M(LX), Q(xα) is a down-directed set in LX and 0 /∈ Q(xα).
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Theorem 2.3. [16] Let (LX ,F) be an L-topological space and A ∈ LX . Then an
L-fuzzy point xα ∈ Ā iff each Q−nbd at xα is quasi-coincident with A.

Definition 2.5. [16] Let (LX ,F) be an L−fts, A ∈ LX , A ,B ⊂ LX . A is called
a cover of A, if

⋃
A ⊇ A; particularly, if

⋃
A = 1, then A is called a cover of

L−topological space (LX ,F). B is called subcover of A , if B ⊂ A and B is still a
cover of A.

Definition 2.6. [9, 17] A non-empty sub collection F of LX is said to be a filter
in an L-topological space, if

(F1) 0 /∈ F .
(F2) U1, U2 ∈ F ⇒ U1

⋂
U2 ∈ F .

(F3) U ∈ F and V ∈ LX such that U ⊆ V then V ∈ F .

F is said to be proper in (LX ,F), if F 6= LX .

Definition 2.7. [9,17] A subfamily B of LX is called a filter base in an L−topological
spaces, if

(B1) 0 /∈ B

(B2) for any U, V ∈ B, there exits W ∈ B such that W ⊆ U ∩ V .

Definition 2.8. [9, 17] A non-empty sub collection F ∗ of LX is said to be an
L−fuzzy ultrafilter on LX , if

(U1) For every A ∈ LX , either A ∈ F ∗ or A′ ∈ F ∗.
(U2) A

⋃
B ∈ F ∗ implies that either A ∈ F ∗ or B ∈ F ∗.

An L−fuzzy filter F is L−fuzzy ultrafilter iff every A ∈ LX , either A ∈ F or
A′ ∈ F .

Definition 2.9. [16] Let xα ∈ LX and F be a filter in L−topology, then F is
said to be convergent to xα, denoted by F → xα if for any U ∈ Q(xα) there exits
F ∈ F such that F ⊆ U , i.e., Q(xα) ⊆ F .
An L−fuzzy point xα is called a cluster point of F , dentated by F ∝ xα if every
U ∈ Q(xα) and F ∈ F , U

⋂
F 6= 0 .

Definition 2.10. [1] A non-empty family U of L−covers of LX is said to be a
covering L− locally uniformity on LX , if it satisfies the following axioms:

(lc1) A 4 B,A ∈ U ⇒ B ∈ U .
(lc2) For every A ,B ∈ U ,A

⋂
B ∈ U .
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(lc3) For each A ∈ U and for all xα ∈ LX , there exits B ∈ U such that
st(xα, st(B)) ⊆ st(xα,A ).

Definition 2.11. [1] Let (LX ,U) and (LX ,V) be two covering L−locally uniform
spaces. Then a function f→ : (LX ,U) → (LX ,V) is called weakly uniformly con-
tinuous iff f←(C ) ∈ U , whenever C ∈ V, where f←(C ) = {f←(C) : C ∈ C } .

Definition 2.12. [15] Let f→ : (LX ,U) → (LY ,V) be a function, then f→ is said
to be weakly uniform isomorphism iff f→ is bijective and both f→ and f← are
weakly uniform continuous.

3. COMPLETENESS IN COVERING L−LOCALLY UNIFORM SPACES

In this section, we introduce Cauchy filters and Strongly completeness and
study about hereditary property and isomorphic in the context of covering L−locally
uniform spaces.

Definition 3.1. Let (LX ,U) be a covering L−locally uniform spaces, then a filter
F is called cauchy filter for each A ∈ U , there exits F ∈ F and A ∈ A such that
F ⊆ A .

Definition 3.2. A filter F to be weakly Cauchy if each A ∈ U , there is a filter G

containing F and G ∈ G such that G ⊂ A, for some A ∈ A .

Clearly, Cauchy filters are weakly Cauchy filters.

Definition 3.3. A covering L−locally uniform space (LX ,U) is said to be (strongly)
complete if every (weakly) Cauchy filter in (LX ,U) converges.

Proposition 3.1. Let A and B be L−covers and let A ∈ LX be L−fuzzy subset,
then we have st(A,A

⋂
B) ⊆ st(A,A )

⋂
st(A,B) .

Lemma 3.1. Let (LX ,U) be a covering L−locally uniform spaces, then the collec-
tion {st(xα,A ) : A ∈ U} is the family of all Q-nbd at xα in (LX ,U(F)).

Proof. By regularity for xα ∈ LX and A ∈ U , there exits an L−fuzzy open set G
such that xα ⊆ G ⊆ G ⊆ st(xα,A ). Which implies xα ∈ G and then by Theorem
2.3, xα � G ⊆ st(xα,A ). By Definition 2.3, we have st(xα,A ) is Q−nbd at xα
in (LX ,F(U)). �
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Theorem 3.1. Convergent filter in covering L−locally uniform spaces is weakly
Cauchy filter.

Proof. Let (LX ,U) be a covering L−locally uniform space and F be a filter such
that for some xα ∈ LX ,F → xα in (LX ,F(U)). Let Q(xα) = {st(xα,A ) :

A ∈ U}, then by Lemma 3.1, Q(xα) is Q−nbd in F(U). Since F is convergent
then by Definition 2.9, for any U = st(xα,B) ∈ Q(xα), there exits F ∈ F

such that F ⊆ U . Now let G = {st(U,A ) : A ∈ U}, then G 6= 0 and as
by Proposition 3.1, st(U,A

⋂
B) ⊆ st(U,A )

⋂
st(U,B). Again by Definition

2.10, (A
⋂

B) ∈ U , so st(U,A
⋂

B) ∈ G , implies G is base for a filter. Also
F ⊆ U = st(xα,A ) ⊆ st(U,A ) implies F is weakly Cauchy filter.

�

Definition 3.4. Let (LX ,U) be a covering L−locally uniform spaces and A ∈ LX .
Let for each B ∈ U define UA = {A

⋂
B : B ∈ B ∈ U}. Then UA is a covering

L−locally uniform spaces on A which we call a sub covering L−locally uniform
spaces on A and (A,UA) said to be the subspace. UA is open or closed sub covering
L−uniform spaces according to A ∈ F(U) or A′ ∈ F(U).

Proposition 3.2. Let F be a filter on a subspace of (A,UA), then F is also filter
on (LX ,U).

Proof. Let (LX ,U) be a covering L−locally uniform space and let A ∈ LX be a
L−fuzzy subset, then by Definition 3.4, (A,UA) is a subspace. Suppose F be
filter on (A,UA), then for any F ∈ F ⊂ LA implies F ∈ F ⊂ LX as A ∈ LX , so
F is also filter on LX . �

Lemma 3.2. Let F be a weakly Cauchy filter in a covering L−locally uniform
space (LX ,U) and let A ∈ LX . Then FA = {A

⋂
F : F ∈ F} is weakly Cauchy

filter in (A,UA).

Proof. Let F be a weakly Cauchy in a covering L−locally uniform spaces (LX ,U).
Also let A ∈ LX , then FA = {A

⋂
F : F ∈ F}. Since F is weakly Cauchy filter

there exits another filter G (say) containing F . So, GA = {A
⋂
G : G ∈ G } and

A
⋂
F ⊆ A

⋂
G, as F ⊆ G, implies GA is filter containing FA, therefore FA is

weakly Cauchy filter in (A,UA). �

Theorem 3.2. Every closed subspace in strongly complete covering L−locally uni-
form spaces is strongly complete.
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Proof. Let (LX ,U) be a strongly complete covering L−locally uniform space. Let
A is closed subset of LX , and then by Definition 3.4, (A,UA) be a closed subspace
of (LX ,U). Let F be a weakly Cauchy filter on (A,UA), and then by proposition
3.2, F is weakly Cauchy filter on (LX ,U). Since (LX ,U) is strongly complete,
so F → xα ∈ LX . Since A is closed subset of LX so we must have xα ∈ A. So,
F is converges in (A,UA). Hence (A,UA) is strongly complete. �

Theorem 3.3. Let (LX ,U) and (LY ,V) be covering L−locally uniform spaces and
f→ : (LX ,U) → (LY ,V) be weakly uniform continuous. If F is weakly filter in
(LX ,U), then f→(F ) is weakly cauchy filter in (LY ,V).

Proof. Let F be a weakly Cauchy filter in (LX ,U) and let C ∈ V. Since f→ :

(LX ,U)→ (LY ,V) be weakly uniform continuous, therefore f−1(C ) ∈ U , where
f−1(C ) = {f←(C) : C ∈ C }. As F is a weakly Cauchy filter on (LX ,U), then
by Definition 3.2, there exits a filter G containing F such that G ⊆ f←(A) for
some f←(A) ∈ f−1(C ) ⇒ f→(A) ∈ C .Since f→ is order preserving and hence
f→(G) ⊆ f→(A). Hence f→(G ) is a filter containing f→(F ), with f→(G) ⊆
f→(A). Which implies f→(F ) is weakly Cauchy filter on (LY ,V).

�

Theorem 3.4. Let (LX ,U) and (LY ,V) be two covering L−locally uniform spaces
and f→ : (LX ,U) → (LY ,V) be weakly uniform isomorphism, then (LX ,U) is
strongly complete iff (LY ,V) is strongly complete.

Proof. (⇒) Let (LY ,V) be a strongly complete and let F be a weakly Cauchy fil-
ter on (LX ,U). Then by Theorem 3.3, f→(F ) is weakly Cauchy filter on (LY ,V).
Therefore f→(F ) is converges to xα ∈ LY being (LY ,V) be a strongly complete
i.e., f→(F ) → xα ∈ LY . Also f→ : (LX ,U) → (LY ,V) being weakly uniform
isomorphism, then by Definition 2.12, f← is weakly uniform continuous, so
f←(f→(F )) is weakly Cauchy filter on (LX ,U). Since f→ is an L−fuzzy home-
omorphism being weakly uniform isomorphism and so, f←(f→(F )) → f←(xα)

and being f→ bijective as weakly uniform isomorphism, therefore by Theorem
2.1, f←(f→(F )) = F → f←(xα) ∈ LX and hence (LX ,U) is strongly complete.
(⇐) It follows the other way implication.
Hence the theorem. �
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4. COMPACTNESS AND TOTALLY BOUNDEDNESS

In this section, we establish the equivalence of the compactness, completeness
and uniqueness in the context of covering L−locally uniform spaces.

Definition 4.1. [18] A family A of LX has the finite intersection property if the
intersection of the members of each finite subfamily of A is nonempty.

Definition 4.2. [16] An L−topology (LX ,F) is called compact, if every open cover
of (LX ,F) has a finite subcover.

Theorem 4.1. [17] Let(LX ,F) be an L−topology, then (LX ,F) is compact iff

(1) Every open cover C of closed subset A of LX has a finite subcover.
(2) Every closed collection with finite intersection property has non-empty in-

tersection.

Definition 4.3. Let (LX ,U)be a covering L−locally uniform space then it is said
to be totally bounded if for all A ∈ U there is a finite L−fuzzy set F such that
st(F,A ) = 1.

Lemma 4.1. If f→ is weakly uniform continuous then A ∈ f→(U) iff f←(A ) ∈ U .

Proof. Straight forward. �

Theorem 4.2. Let f→ : (LX ,U1) → (LY ,U2), weakly uniformly continuous. If
(LX ,U1) compact then (LY , f→(U1)) is compact.

Proof. Let C be an open covering of LY . Then f←(C ) = {f←(C) : C ∈ C } is
open covering of LX as f→ is weakly uniformly continuous. By compactness
there exits a finite subcover of f←(C ), i.e.,

⋃n
i=1 f

←(Ci) = 1, n ∈ N where
f←(Ci) ∈ f←(C ). Now, by Lemma 4.1,

⋃n
i=iCi = 1. Hence (LX , f→(U1)) is

compact.
�

Theorem 4.3. Every compact covering L−locally uniform spaces is totally bounded.

Proof. Let (LX ,U) be a compact space. Then for any A ∈ U , the collection

{st(xα,A ) : xα ∈ Pt(LX)}

is an open cover of 1.
Now, since 1 is closed. Therefore, by compactness, there exits finite subcover of

{st(xα,A ) : xα ∈ Pt(LX)}



A NOTE ON COVERING L−LOCALLY UNIFORM SPACES 7145

For some finite L−fuzzy points xαi
, 1 ≤ i ≤ n, n ∈ N such that

⋃n
i=1 st(xαi

,A ) =

1 ⇒ st(
⋃n
i=1 xαi

,A ) = 1 ⇒ st(F,A ) = 1, where
⋃n
i=1 xαi

= F . Since F is finite
and hence (LX ,U) is totally bounded. �

Theorem 4.4. In (LX ,U) be a covering L−locally uniform spaces every ultra-filter
is a weakly Cauchy filter.

Proof. Let F ∗ be ultra-filter on (LX ,U). Then the collection B = {st(xα,A ) :

xα ∈ Pt(LX)} is base for U by totally boundedness there is finite L−fuzzy points
xαi

, 1 ≤ i ≤ n, n ∈ N such that
⋃n
i=1 st(xαi

,A ) = 1. But 1 ∈ F ∗, then by
Definition 2.8, F ∈ F ∗ such that F ⊆ st(xα,A ) for some xα ∈ Pt(LX). Hence
B is filter base containing F ∗, so F ∗ is a weakly Cauchy filter. �

Remark 4.1. Every L−fuzzy filter has the finite intersection property.

Lemma 4.2. Let (LX ,U) be a compact L−locally uniform spaces, then every filter
has a cluster point.

Proof. Let (LX ,U) be compact and F be a filter. Then G = {F : F ∈ F} is
closed filter. Then by Theorem 4.1 and Remark 4.1, G has a finite intersection
property with non-empty intersection, i.e.,

⋂
G 6= 0. This implies there exits

xα ∈ LX such that xα ∈
⋂
F ⇒ xα ∈ F , with F ∈ F . Hence xα is a cluster point

of F . �

Theorem 4.5. Every compact covering L−locally uniform spaces is a strongly com-
plete.

Proof. Let (LX ,U) be a compact covering L−locally uniform spaces. Let F be
a weakly Cauchy filter on (LX ,U), then for each A ∈ U there exits a filter G

containing F with G ∈ G such that G ⊂ A for some A ∈ A . Also for A ∈ A

there exits F ∈ F such that F ⊆ A as F is Cauchy filter. By Theorem 4.2,
G is has a cluster point, i.e., there exits xα ∈ LX such that xα ∈

⋂
G,G ∈ G .

This implies xα ∈ G, then by Theorem 2.3, st(xα,A )q̂G [ Since the family of
Q-nbd at xα is Q(xα) = {st(xα,A ) : A ∈ U} ]. Also st(xα,A )

⋂
G 6= 0, there

exits yβ ∈ LX such that yβ ∈ st(xα,A )
⋂
G ⇒ yβ ∈ st(xα,A ) and yβ ∈ G.

Now also we have, yβ ∈ st(yβ, st(A )) ⇒ G ⊆ st(yβ, st(A )) ⊆ (xα,A ) [as
yβ ∈ st(xα,A )]. Now since F is weakly Cauchy filter for each F ∈ F with
F ⊆ G, F ⊆ G ⊆ st(xα,A ) ∈ Q(xα) . Which implies F converges at xα. Hence
strongly complete.
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�

Theorem 4.6. Let (LX ,U) be a covering L−locally uniform space, then the space
is compact iff

(1) (LX ,U) is totally bounded, and
(2) (LX ,U) is strongly complete.

Proof. (⇒) Let (LX ,U) be a compact covering L−locally uniform spaces then by
Theorem 4.3 (i) (LX ,U) is totally bounded and
Theorem 4.5 (ii) (LX ,U) is strongly complete.
(⇐) Let (LX ,U) be a totally bounded and strongly complete covering L−locally
uniform space. Let A ∈ U be an open cover, then by totally boundedness there
exits finite L− fuzzy set F such that st(F,A ) = 1. For each xαi

∈ F we consider
one Ai for some xα ∈ Ai ∈ A . Then it is clear that

⋃
Ai = 1 implies {Ai}

is a finite subcover of A as F is finite L−fuzzy set. Hence (LX ,U) is compact
covering L−locally uniform space. �

Thus in a totally bounded covering L−locally uniform spaces, compactness
and strong completeness are equivalent.

Definition 4.4. [16] Let (X,F) be an L− topological space.(LX ,F) is regular, if
every U ∈ F, there exits V ⊆ F such that

⋃
V = U and U ⊆ U for every V ∈ V .

Lemma 4.3. Let (X,F) be a regular L− topological space. For each open cover U

such that there exits an open cover V such that V 4 U .

Proof. Straight forward. �

Theorem 4.7. Let (LX ,F) compact regular L−topolgy. Then the L−topology gen-
erates a unique covering L−uniform space.

Proof. Let U and U∗ two covering L−locally uniform spaces on (LX ,F) for the
compact regular L−topological spaces. Let A ∈ U , then there exits finite sub-
cover say {Ai : 1 ≤ i ≤ n} also by Lemma 4.3 there exits a covering B ∈ U
such that cl(B) 4 {Ai : 1 ≤ i ≤ n} i.e, for each i there exits some cl(B) ∈ cl(B)

such that cl(B) ⊆ Ai. Let k be a positive integer such that k ≤ n. For each
xα ∈ cl(B) ⊆ Ak there exits A ∗ ∈ U∗ with st(xα, st(B∗)) ⊆ st(xα,A ∗) for some
B∗ ∈ U∗. Put A ∗

k = {st(xα,A ∗) : xα ∈ cl(B) ⊆ Ak}, since cl(B) is compact
so, A ∗

k has finite sub cover C ∗k . For each A ∗ ∈ U∗ there is a A ∗
k such that
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st(xα,A ) ∈ D∗k for each xα ∈ cl(B) ⊆ Ak. which implies st(xα,C ∗k ) ⊆ Ak for
each xα ∈ cl(B) ⊆ Ak.

Next we choose A ∗ ∈ U∗ such that A ∗ 4 A ∗
k for each k = 1, 2, 3 . . . n. Let

xα ∈ LX , then xα ∈ cl(B) ⊆ Aj for some j ≤ n. Therefore xα ∈ st(xα,A ∗
k ) ⊆ Ak.

Consequently A ∗ 4 {Ai : 1 ≤ i ≤ n}. But then A ∈ U , we conclude that
U ⊂ U∗. Similarly U∗ ⊂ U . Hence the theorem. �
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