ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.9, 7165–7170 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.9.66

SPLITTANCE OF CYCLES ARE ANTI-MAGIC

K. VENKATA REDDY¹, A. MALLIKARJUNA REDDY, AND K. RAJYALAKSHMI

ABSTRACT. An anti-magic labeling of a graph G is a bijective function $f : E(G) \longrightarrow \{1, 2, \ldots, |E|\}$ such that the vertex-sum for distinct vertices are different. Vertex-sum of a vertex is defined as the sum of the labels of the edges that are incident to the vertex. A graph that admits anti-magic labeling is called anti-magic. It was conjectured by Hartsfield and Ringel that every connected graph except the complete graph on two vertices has an anti-magic labeling. In this paper, we prove that the splittance of cycles are anti-magic.

1. INTRODUCTION

In this paper, we consider simple, finite and undirected graphs. For graph theoretic terms, we refer from the book [6]. Suppose G = (V, E) is a graph and $f : E \longrightarrow \{1, 2, \ldots, |E|\}$ is a bijective mapping. An anti-magic labeling of a graph G is a bijective function $f : E(G) \longrightarrow \{1, 2, \ldots, |E|\}$ such that the vertex-sum for distinct vertices are different. Vertex-sum of a vertex is defined as the sum of the labels of the edges that are incident to the vertex. A graph that admits anti-magic labeling is called anti-magic. Anti-magic labeling was introduced by Hartsfield and Ringel [3]. In the literature, many graph classes such as paths, cycles, wheels and complete graphs are proved to be anti-magic. In [3], Hartsfield and Ringel conjectured that every connected graph other than

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C78, 05C05.

Key words and phrases. Antimagic labeling, diameter four trees, Trees.

7166 K. VENKATA REDDY, A. MALLIKARJUNA REDDY, AND K. RAJYALAKSHMI

complete graph on two vertices is anti-magic and every tree other than path on two vertices is anti-magic.

In spite of many articles published related to anti-magic graphs, these conjectures are still unsolved. Alon et. al [1] proved that there is a constant C such that $\delta \geq Clog|V(G)|$ are anti-magic. Liang and Zhu [5] proved that cubic graphs are anti-magic. Kaplan et al. [4] proved that trees without vertices of degree 2 are anti-magic. Liang et al. [7] proved a restricted class of trees with many degree 2 vertices to be anti-magic. For an exhaustive survey on anti-magic graphs, we refer Dynamic survey by Gallian [2].

2. Splittance of a graph

In this section, let us define the basic definitions required to prove our main result. Splitting graph of any graph was introduced by E. Sampathkumar and Walikar [6] in the year 1980. Let G be a graph. Add a new vertex u' for every vertex u of G. Add edges between u' and all the vertices of G that are adjacent to vertex u. The graph obtained in this way is called splitting graph of G and we denote it as S(G). The splitting graph of cycle C_5 is shown in below

FIGURE 1. ANti-magic labeling of C_5 and $S(C_5)$

One can easily observe that if *G* is a(p,q) graph, then S(G) is a (2q, 3q) graph. For any vertex *u* in *G*, $\frac{deg}{S(G)} u = 2 \frac{deg}{G} u$ and $\frac{deg}{S(G)} u' = \frac{deg}{G} u$, where *u'* is the newly added vertex in S(G). In [6], Sampathkumar and Walikar proved the following characterization result on splittance of a graph.

Theorem 2.1. A graph G is a splitting graph if and only if V(G) can be partitioned into two sets $V_1 \cup V_2$ such that (i) there exists a bijective mapping $V_1 \rightarrow V_2$ and (ii) $N(v_2) = N(v_1) \cap V_1$, where $N(v) = \{u : uv \in E(G)\}$.

3. MAIN RESULT

In [3], Hartsfield and Ringel proved that all cycles are anti-magic. In this section, we prove our main result that the splittance of cycles are anti-magic.

Theorem 3.1. Splittance of cycles are anti-magic.

Proof. Consider a cycle $C_n, n \geq 3$ along with its anti-magic labeling φ . For the convenience, let us name the edges of C_n as $\{e_1, 2_2, \ldots, e_n\}$ in such a way that $\varphi(e_i) = i$. That is, arrange the edges of C_n as per the increasing order as defined by the anti-magic labeling φ . From the definition of anti-magic labeling, the vertex label of a vertex $u \in V(C_n)$ is defined as the sum of the edge labels of edges that are incident with vertex u. Let us arrange the vertices of C_n as $\{v_1, v_2, \ldots, v_n\}$ as per the increasing order of their vertex labels. Since the cycles C_n are anti-magic, this arr angement of vertices and edges are possible. During the operation of splittance of cycles, let $v'_1, v'_2, v'_3, \ldots, v'_n$ are the newly added vertices corresponding to the vertices $v_1, v_2, v_3, \ldots, v_n$ respectively. Let $e_{i,1}$ and $e_{i,2}$, for $1 \leq i \leq n$, are the newly added edges that are incident with vertex v'_i and the adjacent vertices of v_i . In view of the above notations, the vertex set of the splittance of cycle C_n is $V(S(C_n)) = \{v_1, v_2, \dots, v_n\} \cup \{v'_1, v'_2, \dots, v'_n\} = V_1 \cup V_2$ and the edge set of the splittance of cycle C_n is $E(S(C_n)) = \{e_1, e_2, \ldots, e_n\} \cup$ $\{e_{1,1}, e_{1,2}, \ldots, e_{n,1}, e_{n,2}\} = E_1 \cup E_2$. Note that $|V(S(C_n))| = 3n$. Now, let us define the function $f: E(S(C_n)) \longrightarrow \{1, 2, 3, \dots, 3n\}$ as follows: For each edge $e_i \in E_1, 1 \leq i \leq n$ define:

(3.1)
$$f(e_i) = 2n + i$$
.

For each edge $ei, j \in E_2, 1 \le i \le n$ and $1 \le j \le 2$, define:

(3.2)
$$f(n) = \begin{cases} 2i - 1 & \text{if } j = 1\\ 2i & \text{if } j = 2. \end{cases}$$

For each vertex $v_1 \in V_1, 1 \leq i \leq n$, the vertex sum

$$\psi_f(v_i) = \sum_{e \in E(v_i)} f(e) \,,$$

where $E(v_i)$ is the set of edges that are incident with vertex v_i . For each vertex $v'_i \in V_2, 1 \le i \le n$, the vertex sum

$$\psi_f(v'_i) = \sum_{e \in E(v'_i)} f(e) = 4i - 1,$$

where $E(v'_i)$ is the set of edges that are incident with vertex v'_i .

From the definition of edge labels defined in equations (3.1) and (3.2), it is clear that the edge labels of the edges in E_1 are from the set $\{2n + 1, 2n + 2, ..., 3n\}$ and the edge labels of the edges in E_2 are from the set $\{1, 2, ..., 2n\}$. Therefore, the function f is a bijective function.

Remark 3.1. Vertex sum of vertices of $S(C_n)$ defined by ψ_f are distinct.

By the definition of splittance of graph, it is clear that $deg(v_i) = 4$ for every vertex $v_i \in V_1$, for $1 \le i \le n$. Similarly, $deg(v'_i = 2$ for every vertex $v'_i \in V_2$, for $1 \le i \le n$. From the definition, it is clear that the set of vertex sum of vertices in V_1 and the set of vertex sum of vertices in V_2 are disjoint. Further, the labels in the set of vertex sum of vertices in V_1 are distinct. Similarly, the labels in the set of vertex sum of vertices in V_2 are distinct. Therefore, vertex sum of vertices of $S(C_n)$ defined by ψ_f are distinct. Hence, we proved that splittance of cycles $S(C_n)$ for $n \ge 3$ are anti-magic

4. CONCLUSION AND DISCUSSIONS

In this paper, we proved that the splittance of cycles $S(C_n)$ for $n \ge 3$ are antimagic. In this direction, it is natural to ask whether for what classes of graphs C, its splittance admit anti-magic. Is it necessary that a graph G is anti-magic, to admit the anti-magicness of its splittance graph S(G)? In this point of view, we

FIGURE 2. Anti-magic labeling of C_5 and $S(C_5)$

provided the result to support the conjecture that every connected graph other than K_2 is anti-magic.

REFERENCES

- [1] N. ALON, G. KAPLAN, A. LEV, Y. RODITTY, R. YUSTER: Dense graphs are antimagic, J. Graph Theory, 47 (2004), 297–309.
- [2] J. A. GALLIAN: A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 24, 2017.
- [3] N. HARTSFIELD, G. RINGEL: *Pearls in Graph Theory*, Academic Press, INC, Boston, 1990, 180-109, Revised version 1994.
- [4] G. KAPLAN, A. LEV, Y. RODITTY: On zero-sum partitions and anti-magic trees, Discrete Math., **309** (2009), 2010–2014.
- [5] Y. LIANG, X. ZHU: Anti-magic labeling of cubic graphs, J. Graph Theory, 75 (2014), 31–36.
- [6] E. SAMPATHKUMAR, H. B. WALIKAR: *On the Splitting graph of a graph*, The Karnataka University Journal, Science, **25** (1980-81), 13–16.
- [7] D. B. WEST: Introduction to Graph Theory, Prentice Hall of India, 2nd Edition, 2001.

7170 K. VENKATA REDDY, A. MALLIKARJUNA REDDY, AND K. RAJYALAKSHMI

DEPARTMENT OF MATHEMATICS SRI KRISHNADEVARAYA UNIVERSITY ANANTAPURAMU, A.P -515003 *Email address*: kondapureddyv@gmail.com

DEPARTMENT OF MATHEMATICS SRI KRISHNADEVARAYA UNIVERSITY ANANTAPURAMU, A.P -515003

DEPARTMENT OF MATHEMATICS KONERU LAKSHMAIAH EDUCATION FOUNDATION VADDESWARAM, GUNTUR-522502