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ACCURATE NEIGHBORHOOD RESOLVING NUMBER OF A GRAPH

BADEKARA SOORYANARAYANA1, RAMYA HEBBAR, AND LALITHA S. LAMANI

ABSTRACT. A neighborhood set of a graph G(V,E) is a subset S ⊆ V such
that G = ∪v∈S〈N [v]〉, where N [v] is the closed neighborhood of the vertex v.
A resolving set of a graph G(V,E) is a subset S ⊆ V such that every pair of
distinct vertices of G is resolved by some vertex in S. A neighborhood set of G,
which is also a resolving set is called as neighborhood resolving set (nr-set) of
G. An nr-set S of G is called an accurate neighborhood resolving set (anr-set)
of G if S has no nr-set of G with cardinality of S. In this paper, we determine
the minimum cardinality of nr-sets and anr-sets of total graph of a cycle and a
prism graph.

1. INTRODUCTION

The graphs that are considered throughout this paper are finite, simple, con-
nected, nontrivial and undirected. The terms not defined here may be found
in [1, 3]. For a graph G(V,E) and a vertex v ∈ V , N(v) denotes the set of all
vertices which are adjacent to v and N [v] = N(v) ∪ {v}. A subset S of V is a
neighborhood set (n-set) of G if ∪v∈S〈N [v]〉 = G, where 〈N [v]〉 is the sub graph
of G induced by N [v]. The minimum cardinality of an n-set of G is called the
neighborhood number of G and is denoted by ln(G). Neighborhood number of
a graph was first introduced by E. Sampathkumar and Prabha S. Neeralagi [7].

Given a graph G and a subset S of the vertex set of G, a vertex s ∈ S resolves
a pair of vertices u, v ∈ V , if d(u, s) 6= d(v, s). A resolving set (r-set) S is a subset
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of vertex set of G such that each pair of vertices u, v ∈ V (G) is resolved by at
least one vertex in S. If S = {s1, s2, . . . , sk} is a resolving set of G, then we
can associate a unique vector for each v ∈ V (G) with respect to S as Γ(v/S) =

(d(v, s1), d(v, s2), . . . , d(v,sk)), where d(u, v) is the distance between the vertices
u and v in G. The minimum cardinality of an r-set of G is called the resolving
number of G and is denoted by lr(G). The concept of resolving number of a
graph was first introduced by P. J. Slater [8] and independently by F. Harary
and R. A Melter [2].

A subset S of V is called a neighborhood resolving set (nr-set) of G, if S is
both neighborhood set and resolving set of G. The minimum cardinality of an
nr-set is called the neighborhood resolving number of G and is denoted lnr(G).
An nr-set S of G is called an accurate neighborhood resolving set (anr-set) of
G if S̄ has no nr-set of G with cardinality of S. The minimum cardinality of
an anr-set is called the accurate neighborhood resolving number of G and is
denoted by lnra(G). The concept of anr-set was first introduced and studied by
Reshma et al. in [6]. For similar works we refer [4,5,10,11].

The total graph T (G) of a graph G is a graph such that the vertex set of T (G)

corresponds to the vertices and edges of G and two vertices are adjacent in
T (G), if their corresponding elements are either adjacent or incident in G.

We now recall the following results for immediate reference.

Theorem 1.1 (B. Sooryanarayana, Shreedhar K. and Narahari N. [9]). For a
graph G, lr(T (G)) = 2 if and only if G is a path Pn, n ≥ 2.

Theorem 1.2 (E. Sampathkumar and P. S. Neeralagi [7]). A set S of vertices of
a graph G is an n-set if and only if every edge of 〈V (G)− S〉 belongs to a triangle
one of whose vertices belongs to S.

If S is an n-set of G, then we say that an edge e is covered by S, if S contains
a vertex s such that s is incident with e, or s is adjacent to both the end vertices
of e in G. Also, we note that neighborhood property, resolving property, and
neighborhood resolving property are all super hereditary.

Corollary 1.1 (E. Sampathkumar and P. S. Neeralagi [7]). A set S is an n-set of
a triangular free graph G if and only if S is totally disconnected.

Observation 1.1. For any graph G, as every nr-set is also an n-set and an r-set of
G, it follows that lnr(G) ≥ ln(G) and lnr(G) ≥ lr(G).
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Observation 1.2. For any graph G, as every anr-set is also an nr-set, an r-set and
an n-set of G, it follows that lnra(G) ≥ lnr(G), lnra(G) ≥ lr(G) and lnra ≥ ln(G).

2. TOTAL GRAPH OF A CYCLE

Throughout this section, the vertices v0, v1, v2, . . . , vn−1 of the total graph T (Cn)

corresponds to the vertices of the cycle Cn, and the vertices e0, e1, . . . , en−1

of T (Cn) corresponds to the edge of Cn with ei = vivi+1(mod n) for each i,
0 ≤ i ≤ n− 1.

FIGURE 1. The total graph of the cycle C6.

Theorem 2.1. For any integer n ≥ 3, lnr(T (Cn)) =

{
3, if n = 3.

d2n
3
e, if n ≥ 4.

Proof. Consider the graph G = T (Cn) on 2n vertices.

Lower bound: Let S be any nr-set of G and |S| = k. Without loss of gener-
ality, we take v0 ∈ S (due to symmetry). The vertex v0 covers exactly 7 edges
namely, v0v1, v0e0, v0vn−1, v0en−1, v1e0, vn−1en−1 and e0en−1 as per the criteria of
the n-set. While covering these seven edges, to cover the edge e0e1, the set S
should include at least one of the elements in the set T = {e0, e1, v1}. However,
each single element in T ∩ S will cover at the most 6 new edges of G (since
one edge is already covered by v0) and e1 is the only vertex in S ∩ T which
covers the maximum of six edges. Further, v3 is the vertex which covers maxi-
mum of 6 edges while covering the next edge v2v3. Continuing this way, every
vertex in S − {v0} will cover at most 6 edges of G. Hence S will cover at most
7 + 6(k − 1) = 6k + 1 edges of G. Thus, as the graph G is a 4 regular graph 2n

vertices, (the number of edges in G) 4n ≤ 6k + 1. That is k ≥ d4n−1
6
e. Therefore,
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lnr(G) = min{|S| : S is an nr-set of G} ≥ d4n−1
6
e = d2n

3
e. But when n = 3, by

Theorem 1.1, lr(G) ≥ 3 and hence by Observation 1.1, lnr(G) ≥ 3.

Upper bound: We show the lower bound obtained above is tight by executing
an nr-set S of G.

Case 1: 3 ≤ n ≤ 6.

Consider the sets; S3 = {v0, v1, v2}, S4 = {v0, e1, v2}, S5 = {v0, e1, v3, e4} and
S6 = {v0, e1, v3, e4}. It can be easily verified that S3, S4, S5 and S6 are nr-sets of
G for n = 3, 4, 5, 6, respectively.

Case 2: n ≥ 7.

Consider the set S =


{v0, e1, v3, e4, . . . , vn−3, en−2}, if n ≡ 0 (mod 3).

{v0, e1, v3, e4, . . . , en−3, vn−1}, if n ≡ 1 (mod 3).

{v0, e1, v3, e4, . . . , vn−2, en−1}, if n ≡ 2 (mod 3).

The set S defined above is an n-set of G. In fact,

Subcase 1: n ≡ 0 (mod 3).

In this case, vi, ej+1 ∈ S, for every i ≡ 0 (mod 3) and 0 ≤ i ≤ n− 2. The
edges: v3iv3i±1 (mod n) are covered by v3i ∈ S; v3i+1 (mod n)v3i+2 (mod n) are covered
by e3i+1 ∈ S; e3i+1e3i+2 (mod n) and e3i+1e3i−1 (mod n) are covered by e3i+1 ∈ S;
e3i−1 (mod n)e3i are covered by v3i ∈ S; e3iv3i+1 (mod n) and e3i−1 (mod n)v3i are cov-
ered by v3i ∈ S; e3i+1v3i+1 are covered by e3i+1 ∈ S; e3i−1 (mod n)v3i−1 (mod n) and
e3iv3i are covered by v3i ∈ S; and e3i+1v3i+1 are covered by e3i+1 ∈ S. Hence,
G = ∪v∈S〈N [v]〉 and |S| = |S∩V (Cn)|+|S∩E(Cn)| = 2|S∩V (Cn)| = 2[1+ n−3

3
] =

2n
3

= d2n
3
e.

Subcase 2: n ≡ 1 (mod 3).

In this case, all the edges of G between two vertices are covered by the set
S ′ = {v0, e1, v3, e4, . . . , vn−4, en−3} as in the above Subcase 1 except the 3 edges,
namely vn−2vn−1, en−2vn−1 and en−2, en−1. These 3 edges are now covered by
vn−1 ∈ S. Hence S is an n-set with |S| = |S ′|+ 1 = 2[1 + n−4

3
] + 1 = 2n+1

3
= d2n

3
e.

Subcase 3: n ≡ 2 (mod 3).

In this case, all the edges of G between two vertices are covered by the set S ′ =
{v0, e1, v3, e4, . . . , en−4, vn−2} as in Subcase 2 except one edge, namely en−2en−1.
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This extra edge is covered by en−1 ∈ S. Hence S is an n-set and |S| = 2[1+ n−2
3

] =
2n+2

3
= d2n

3
e.

Now to prove lnr(G) ≤ d2n
3
e, it remains to show that the set S defined above

is also an r-set. For this, let S1 = {v0, e1}. Then the vector associated for each
vertex of G with respect to S1 is given by

Γ(vi/S1) = (i, 2− i) and Γ(ei/S1) = (i + 1, 1− i) if i = 0, 1

Γ(vi/S1) = (i, i− 1) and Γ(ei/S1) = (i + 1, i− 1) if 2 ≤ i ≤ dn/2e − 1

Γ(vi/S1) = (n− i, i− bn−1i c) and Γ(ei/S1) = (n− i, i− bn−1i c) if bn+1
2 c ≤ i ≤ dn+1

2 e
Γ(vi/S1) = (n− i, n− i + 2) and Γ(ei/S1) = (n− i, n− i + 1) if dn+1

2 e < i ≤ n− 1.

From the above vector, it is easy to see that Γ(u/S1) = Γ(v/S1) if and only if
(u, v) ∈ T1 = {(v1, e0), (vbn+1

2
c, ebn+1

2
c), (vdn+1

2
e, edn+1

2
e)}. But, for each pair (u, v) ∈

T , |d(u, v3)−d(v, v3)| 6= 0 and hence v3 will resolve u and v. Thus, S2 = S1∪{v3}
is an r-set of G. Further, as S2 ⊆ S and super hereditary property of resolving
sets, the set S is an r-set of G. Hence the proof. �

Theorem 2.2. For any integer n ≥ 3,

lnra(T (Cn)) =


4, if n = 3.

d2n
3
e+ 1, if n ≡ 1, 2 (mod 3).

d2n
3
e+ 2, if n ≡ 0 (mod 3).

Proof. Let G = T (Cn), n ≥ 3 be the graph with 2n vertices.

Lower bound: Let S be an anr-set. Then S is an nr-set and S̄ has no nr-set
of cardinality |S|. Without loss of generality, we assume v0 ∈ S. We first see
that if S contains all the three vertices of a triangle in G, then S̄ is not an n-set
of G for all n ≥ 4 and hence S̄ has no nr-set of any cardinality. Therefore, if
n = 3, 4 and |S| = 3, then 〈S〉 = C3 and n ≥ 4 (else by symmetry G − S has a
subgraph H isomorphic to 〈S〉 and hence V (H) will be an nr-set of G). Further,
if n = 4, without loss of generality, let S = {v0, e0, v1}. Then the edge v2v3 is
not in any triangle of G with one vertex in S, contradiction to Theorem 1.2. So,
lnra(G) ≥ 4, for n = 3, 4. Let n ≥ 5 and S ′ be any minimum nr-set of G. Then,
by Theorem 2.1, |S ′| = d2n

3
e. Further, each element of S ′ is a corner vertex of the

shaded triangle which is in maximum number of unshaded triangles behind it
(starting with v0 ∈ S ′) as in Figure 2. Thus, in each minimum nr-set S ′ if vi ∈ S ′

then ei /∈ S ′. This shows that the set S ′′ obtained by just interchanging ei and
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FIGURE 2. Optimal choice of an nr-set.

vi in S ′ is also an nr-set of G. Since S ′′ ⊆ S̄, it follows that lnra(G) > lnr(G).
Hence lnra(G) ≥ d2n

3
e + 1. Further, if any nr-set S ′ contains a pair vi, ei for at

most one i and no two adjacent pairs of Cn, then it is easy to verify that the
set S ′′ containing xi+1 for each xi in S ′ is an nr-set of G. Therefore, C3 should
be an induced subgraph of 〈S〉 for every minimum anr-set S. But then, as these
three vertices of a triangle in S will be covering exactly 11 edges, to cover the
remaining 4n − 11 edges we need at least 4n−11

6
vertices in S other than those

three which are in a triangle. That is, 4n−11 ≤ 6(|S|−3) implies that |S| ≥ 4n+7
6

.
So, |S| ≥ d2n

3
e+ 1 if n 6≡ 0 (mod 3), and |S| ≥ d2n

3
e+ 2 if n ≡ 0 (mod 3).

Upper bound: Here we show that the above lower bound is tight by executing
an anr-set of G.

Case 1: n ≡ 0 (mod 3).

When n = 3, it is easy to see that the set S = {v0, v1, v2, e1} is an anr-set
for G. For n > 3, let S1 be a minimum nr-set of G. Without loss of generality,
we assume v0 ∈ S. Since S1 is a minimum nr-set, as per the above discussion,
e0, v1 are not in S. Taking S = S1 ∪ {e0, v1} and by the super hereditary of
nr property, we see that S is an nr-set of G. Further, S̄ contains none of the
vertices of a triangle of G. Hence S̄ is not an nr-set. Thus, S is an anr-set with
|S| = |S1|+ 2 = d2n

3
e+ 2.

Case 2: n ≡ 1 (mod 3).

In this case, consider the nr-set S1 = {v0, e1, v3, e4, . . . , en−3, vn−1} (as in the
proof of Theorem 2.1). The set S = S1∪{en−1} is then an nr-set and 〈{v0, en−1, vn−1}〉
is an induced cycle C3 of 〈S〉. Hence, S̄ is not an nr-set implies that S is an anr-
set with |S| = |S1|+ 1 = d2n

3
e+ 1.

Case 3: n ≡ 2 (mod 3).
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In this case, consider the nr-set S1 = {v0, e1, v3, e4, . . . , vn−2, en−1} (as in the
proof of Theorem 2.1). The set S = S1∪{vn−1} is then an nr-set and 〈{v0, en−1, vn−1}〉
is an induced cycle C3 of 〈S〉. Hence, S̄ is not an nr-set implies that S is an anr-
set with |S| = |S1|+ 1 = d2n

3
e+ 1. �

3. PRISM GRAPH

The Cartesian product of two graphs G and H, denoted by G�H, is a graph
whose vertex set is V (G)×V (H) and two vertices (g, h) and (g′, h′) are adjacent
in G�H if either g = g′ and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). Prism graph
is the Cartesian product of Cn and P2, denoted by Cn�P2. Throughout this
section, we label the vertices of the prism graph, Cn�P2 as v0, v1, v2, . . ., vn−1,
u0, u1, u2, . . ., un−1 such that vi is adjacent to vi+1(mod n) for all i, 0 ≤ i ≤ n− 1,
ui is adjacent to ui+1(mod n) for all i, 0 ≤ i ≤ n− 1 and vi is adjacent to ui for all
i, 0 ≤ i ≤ n− 1.

FIGURE 3. Prism graph, C6�P2.

Theorem 3.1. For any integer n ≥ 3 and a prism graph Cn�P2,

lnr(Cn�P2) = 2
⌈n

2

⌉
.

Proof. Let G = Cn�P2 be a prism graph on 2n vertices.

Lower bound: The graph G is triangle free and hence for every n-set S of
G, by Corollary 1.1, its complement S̄ is totally disconnected and vice versa.
Thus, the nr-number of the graph G is equal to |V (G)| − id(G), where id(G) is
the independent number of G. Let Su = {ui : 0 ≤ i ≤ n − 1} and Sv = {vi :

0 ≤ i ≤ n − 1}. Then Su and Sv are the partition of V (G). Since 〈Su〉 and
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〈Sv〉 are isomorphic to the cycle Cn, each independent set of G contains at most
bn
2
c vertices from each of these sets. Therefore, lnr(G) ≥ ln(G) ≥ 2n − 2bn

2
c =

2
(
n− bn

2
c
)

= 2dn
2
e.

Upper bound: We show that lower bound obtained above is tight by exacting
an nr-set S. For this, we first consider the set T = {v0, v3}.

Case 1: 3 ≤ n ≤ 6.

Consider the sets; S3 = {v0, u0, v1, u3}, S4 = {v0, u1, v2, u3}, S5 = {v0, u0, u1,
v2, u3, v4} and S6 = {v0, u1, v2, u3, v4, u5}. It can be easily verified that S3, S4, S5

and S6 are r-sets of G for n = 3, 4, 5, 6, respectively. Also, for each of the sets S̄

is independent. Hence they are the desired nr-sets.

Case 2: n ≥ 7.

The vectors associated to each vertex of G with respect to T is as below.

Γ(vi/T ) = (i, 2− i) and Γ(ui/T ) = (i + 1, 3− i) for 1 ≤ i ≤ 2

Γ(vi/T ) = (i, i− 2) and Γ(ui/T ) = (i + 1, i− 1) for 3 ≤ i ≤ bn2 c
Γ(vi/T ) = (n− i, i− 2) and Γ(ui/T ) = (n + 1− i, i− 1) for dn2 e ≤ i ≤ dn2 e+ 1

Γ(vi/T ) = (n− i, n + 2− i) and Γ(ui/T ) = (n + 1− i, n + 3− i) for dn2 e+ 2 ≤ i ≤ n− 1

This shows that, T will resolve all the pairs of vertices of G except those in
H = {(vi, ui−1) : 3 ≤ i ≤ bn

2
e}∪ {(vi, ui+1 (mod n)) : dn

2
e+ 2 ≤ i ≤ n− 1}. Now for

each pair (vi, ui+1) ∈ H, d(vi, u1) = d(ui+1, u1) + 2 and hence u1, will resolve all
the pairs in H. Thus, the set S1 = T ∪ {u1} is an r-set for G.

Now consider the set S =

{
{v0, u1, v2, u3, . . . , vn−2, un−1} if n is even.
{v0, u1, v2, u3, . . . , vn−1, u0} if n is odd.

The set S1 is a subset of S and hence by super hereditary of the resolving prop-
erty, S is an r-set. Also, S̄ is an independent set of G. Hence, by Corollary 1.1,
S is an nr-set and it contains 2dn

2
e vertices of G. Hence lnr(G) ≤ 2dn

2
e .Hence

the proof. �

We now state the following generalized theorem whose proof follows similar
to the above theorem.

Theorem 3.2. For the integers m ≥ 1 and n ≥ 3,

lnr(Cn�Pm) = m
⌈n

2

⌉
.
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For each odd n, every minimum nr-set S of the prism Cn�P2 contains n + 1

elements (by Theorem 3.1). Therefore, |S̄| = 2n− (n+ 1) = n− 1 < |S|, implies
that S̄ can not have any nr-set with cardinality |S|. Hence every minimum nr-set
of Cn�P2 is also an anr-set of G whenever n is odd. But this is not the case when
n is even. If n is even, then both S and S̄ are independent with |S| = |S̄| = n,
for every nr-set S of Cn�P2. Therefore, every minimum anr-set should contain
one more element than in a minimum nr-set. We record these in the form of
following theorem.

Corollary 3.1. For any integer n ≥ 3 and a prism graph Cn�P2,

lnra(Cn�P2) = n + 1.
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