Advances in Mathematics: Scientific Journal **9** (2020), no.9, 7201–7210 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.9.69

ACCURATE NEIGHBORHOOD RESOLVING NUMBER OF A GRAPH

BADEKARA SOORYANARAYANA¹, RAMYA HEBBAR, AND LALITHA S. LAMANI

ABSTRACT. A neighborhood set of a graph G(V, E) is a subset $S \subseteq V$ such that $G = \bigcup_{v \in S} \langle N[v] \rangle$, where N[v] is the closed neighborhood of the vertex v. A resolving set of a graph G(V, E) is a subset $S \subseteq V$ such that every pair of distinct vertices of G is resolved by some vertex in S. A neighborhood set of G, which is also a resolving set is called as neighborhood resolving set (*nr*-set) of G. An *nr*-set S of G is called an accurate neighborhood resolving set (*anr*-set) of G if \overline{S} has no *nr*-set of G with cardinality of S. In this paper, we determine the minimum cardinality of *nr*-sets and *anr*-sets of total graph of a cycle and a prism graph.

1. INTRODUCTION

The graphs that are considered throughout this paper are finite, simple, connected, nontrivial and undirected. The terms not defined here may be found in [1,3]. For a graph G(V, E) and a vertex $v \in V$, N(v) denotes the set of all vertices which are adjacent to v and $N[v] = N(v) \cup \{v\}$. A subset S of V is a neighborhood set (*n*-set) of G if $\bigcup_{v \in S} \langle N[v] \rangle = G$, where $\langle N[v] \rangle$ is the sub graph of G induced by N[v]. The minimum cardinality of an *n*-set of G is called the neighborhood number of G and is denoted by ln(G). Neighborhood number of a graph was first introduced by E. Sampathkumar and Prabha S. Neeralagi [7].

Given a graph G and a subset S of the vertex set of G, a vertex $s \in S$ resolves a pair of vertices $u, v \in V$, if $d(u, s) \neq d(v, s)$. A resolving set (r-set) S is a subset

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C12, 05C56.

Key words and phrases. Neighborhood set, resolving sets, metric dimension.

of vertex set of G such that each pair of vertices $u, v \in V(G)$ is resolved by at least one vertex in S. If $S = \{s_1, s_2, \ldots, s_k\}$ is a resolving set of G, then we can associate a unique vector for each $v \in V(G)$ with respect to S as $\Gamma(v/S) = (d(v, s_1), d(v, s_2), \ldots, d(v, s_k))$, where d(u, v) is the distance between the vertices u and v in G. The minimum cardinality of an r-set of G is called the resolving number of G and is denoted by lr(G). The concept of resolving number of a graph was first introduced by P. J. Slater [8] and independently by F. Harary and R. A Melter [2].

A subset S of V is called a neighborhood resolving set (nr-set) of G, if S is both neighborhood set and resolving set of G. The minimum cardinality of an nr-set is called the neighborhood resolving number of G and is denoted lnr(G). An nr-set S of G is called an accurate neighborhood resolving set (anr-set) of G if \overline{S} has no nr-set of G with cardinality of S. The minimum cardinality of an anr-set is called the accurate neighborhood resolving number of G and is denoted by $lnr_a(G)$. The concept of anr-set was first introduced and studied by Reshma et al. in [6]. For similar works we refer [4, 5, 10, 11].

The total graph T(G) of a graph G is a graph such that the vertex set of T(G) corresponds to the vertices and edges of G and two vertices are adjacent in T(G), if their corresponding elements are either adjacent or incident in G.

We now recall the following results for immediate reference.

Theorem 1.1 (B. Sooryanarayana, Shreedhar K. and Narahari N. [9]). For a graph G, lr(T(G)) = 2 if and only if G is a path P_n , $n \ge 2$.

Theorem 1.2 (E. Sampathkumar and P. S. Neeralagi [7]). A set S of vertices of a graph G is an n-set if and only if every edge of $\langle V(G) - S \rangle$ belongs to a triangle one of whose vertices belongs to S.

If S is an n-set of G, then we say that an edge e is covered by S, if S contains a vertex s such that s is incident with e, or s is adjacent to both the end vertices of e in G. Also, we note that neighborhood property, resolving property, and neighborhood resolving property are all super hereditary.

Corollary 1.1 (E. Sampathkumar and P. S. Neeralagi [7]). A set S is an *n*-set of a triangular free graph G if and only if \overline{S} is totally disconnected.

Observation 1.1. For any graph G, as every *nr*-set is also an *n*-set and an *r*-set of G, it follows that $lnr(G) \ge ln(G)$ and $lnr(G) \ge lr(G)$.

Observation 1.2. For any graph G, as every anr-set is also an *nr*-set, an *r*-set and an *n*-set of G, it follows that $lnr_a(G) \ge lnr(G)$, $lnr_a(G) \ge lr(G)$ and $lnr_a \ge ln(G)$.

2. TOTAL GRAPH OF A CYCLE

Throughout this section, the vertices $v_0, v_1, v_2, \ldots, v_{n-1}$ of the total graph $T(C_n)$ corresponds to the vertices of the cycle C_n , and the vertices $e_0, e_1, \ldots, e_{n-1}$ of $T(C_n)$ corresponds to the edge of C_n with $e_i = v_i v_{i+1(mod n)}$ for each i, $0 \le i \le n-1$.

FIGURE 1. The total graph of the cycle C_6 .

Theorem 2.1. For any integer $n \ge 3$, $lnr(T(C_n)) = \begin{cases} 3, & \text{if } n = 3. \\ \lceil \frac{2n}{3} \rceil, & \text{if } n \ge 4. \end{cases}$

Proof. Consider the graph $G = T(C_n)$ on 2n vertices.

Lower bound: Let *S* be any *nr*-set of *G* and |S| = k. Without loss of generality, we take $v_0 \in S$ (due to symmetry). The vertex v_0 covers exactly 7 edges namely, v_0v_1 , v_0e_0 , v_0v_{n-1} , v_0e_{n-1} , v_1e_0 , $v_{n-1}e_{n-1}$ and e_0e_{n-1} as per the criteria of the *n*-set. While covering these seven edges, to cover the edge e_0e_1 , the set *S* should include at least one of the elements in the set $T = \{e_0, e_1, v_1\}$. However, each single element in $T \cap S$ will cover at the most 6 new edges of *G* (since one edge is already covered by v_0) and e_1 is the only vertex in $S \cap T$ which covers the maximum of six edges. Further, v_3 is the vertex which covers maximum of 6 edges while covering the next edge v_2v_3 . Continuing this way, every vertex in $S - \{v_0\}$ will cover at most 6 edges of *G*. Hence *S* will cover at most 7 + 6(k - 1) = 6k + 1 edges of *G*. Thus, as the graph *G* is a 4 regular graph 2n vertices, (the number of edges in *G*) $4n \le 6k + 1$. That is $k \ge \lfloor \frac{4n-1}{6} \rfloor$. Therefore,

 $lnr(G) = \min\{|S| : S \text{ is an } nr \text{-set of } G\} \ge \lceil \frac{4n-1}{6} \rceil = \lceil \frac{2n}{3} \rceil$. But when n = 3, by Theorem 1.1, $lr(G) \ge 3$ and hence by Observation 1.1, $lnr(G) \ge 3$.

Upper bound: We show the lower bound obtained above is tight by executing an nr-set S of G.

Case 1: $3 \le n \le 6$.

Consider the sets; $S_3 = \{v_0, v_1, v_2\}$, $S_4 = \{v_0, e_1, v_2\}$, $S_5 = \{v_0, e_1, v_3, e_4\}$ and $S_6 = \{v_0, e_1, v_3, e_4\}$. It can be easily verified that S_3, S_4, S_5 and S_6 are *nr*-sets of *G* for n = 3, 4, 5, 6, respectively.

Case 2: $n \ge 7$.

Consider the set
$$S = \begin{cases} \{v_0, e_1, v_3, e_4, \dots, v_{n-3}, e_{n-2}\}, & \text{if} \quad n \equiv 0 \pmod{3}. \\ \{v_0, e_1, v_3, e_4, \dots, e_{n-3}, v_{n-1}\}, & \text{if} \quad n \equiv 1 \pmod{3}. \\ \{v_0, e_1, v_3, e_4, \dots, v_{n-2}, e_{n-1}\}, & \text{if} \quad n \equiv 2 \pmod{3}. \end{cases}$$

The set S defined above is an n-set of G. In fact,

Subcase 1: $n \equiv 0 \pmod{3}$.

In this case, $v_i, e_{j+1} \in S$, for every $i \equiv 0 \pmod{3}$ and $0 \leq i \leq n-2$. The edges: $v_{3i}v_{3i\pm 1 \pmod{n}}$ are covered by $v_{3i} \in S$; $v_{3i+1 \pmod{n}}v_{3i+2 \pmod{n}}$ are covered by $e_{3i+1} \in S$; $e_{3i+1}e_{3i+2 \pmod{n}}$ and $e_{3i+1}e_{3i-1 \pmod{n}}$ are covered by $e_{3i+1} \in S$; $e_{3i-1 \pmod{n}}e_{3i}$ are covered by $v_{3i} \in S$; $e_{3i}v_{3i+1 \pmod{n}}$ and $e_{3i-1 \pmod{n}}v_{3i}$ are covered by $v_{3i} \in S$; $e_{3i+1}v_{3i+1}$ are covered by $e_{3i+1} \in S$; $e_{3i-1 \pmod{n}}v_{3i}$ are covered by $v_{3i} \in S$; $e_{3i+1}v_{3i+1}$ are covered by $e_{3i+1} \in S$; $e_{3i-1 \pmod{n}}v_{3i-1 \pmod{n}}$ and $e_{3i}v_{3i}$ are covered by $v_{3i} \in S$; and $e_{3i+1}v_{3i+1}$ are covered by $e_{3i+1} \in S$. Hence, $G = \bigcup_{v \in S} \langle N[v] \rangle$ and $|S| = |S \cap V(C_n)| + |S \cap E(C_n)| = 2|S \cap V(C_n)| = 2[1 + \frac{n-3}{3}] = \frac{2n}{3} = \lceil \frac{2n}{3} \rceil$.

Subcase 2: $n \equiv 1 \pmod{3}$.

In this case, all the edges of G between two vertices are covered by the set $S' = \{v_0, e_1, v_3, e_4, \ldots, v_{n-4}, e_{n-3}\}$ as in the above Subcase 1 except the 3 edges, namely $v_{n-2}v_{n-1}$, $e_{n-2}v_{n-1}$ and e_{n-2}, e_{n-1} . These 3 edges are now covered by $v_{n-1} \in S$. Hence S is an n-set with $|S| = |S'| + 1 = 2[1 + \frac{n-4}{3}] + 1 = \frac{2n+1}{3} = \lceil \frac{2n}{3} \rceil$. Subcase 3: $n \equiv 2 \pmod{3}$.

In this case, all the edges of *G* between two vertices are covered by the set $S' = \{v_0, e_1, v_3, e_4, \dots, e_{n-4}, v_{n-2}\}$ as in Subcase 2 except one edge, namely $e_{n-2}e_{n-1}$.

This extra edge is covered by $e_{n-1} \in S$. Hence S is an n-set and $|S| = 2\left[1 + \frac{n-2}{3}\right] = \frac{2n+2}{3} = \lceil \frac{2n}{3} \rceil$.

Now to prove $lnr(G) \leq \lceil \frac{2n}{3} \rceil$, it remains to show that the set *S* defined above is also an *r*-set. For this, let $S_1 = \{v_0, e_1\}$. Then the vector associated for each vertex of *G* with respect to S_1 is given by

$$\begin{array}{lll} \Gamma(v_i/S_1)=(i,2-i) & \text{and} & \Gamma(e_i/S_1)=(i+1,1-i) & \text{if} & i=0,1\\ \Gamma(v_i/S_1)=(i,i-1) & \text{and} & \Gamma(e_i/S_1)=(i+1,i-1) & \text{if} & 2\leq i\leq \lceil n/2\rceil-1\\ \Gamma(v_i/S_1)=(n-i,i-\lfloor\frac{n-1}{i}\rfloor) & \text{and} & \Gamma(e_i/S_1)=(n-i,i-\lfloor\frac{n-1}{i}\rfloor) & \text{if} & \lfloor\frac{n+1}{2}\rfloor\leq i\leq \lceil\frac{n+1}{2}\rceil\\ \Gamma(v_i/S_1)=(n-i,n-i+2) & \text{and} & \Gamma(e_i/S_1)=(n-i,n-i+1) & \text{if} & \lceil\frac{n+1}{2}\rceil < i\leq n-1. \end{array}$$

From the above vector, it is easy to see that $\Gamma(u/S_1) = \Gamma(v/S_1)$ if and only if $(u, v) \in T_1 = \{(v_1, e_0), (v_{\lfloor \frac{n+1}{2} \rfloor}, e_{\lfloor \frac{n+1}{2} \rfloor}), (v_{\lceil \frac{n+1}{2} \rceil}, e_{\lceil \frac{n+1}{2} \rceil})\}$. But, for each pair $(u, v) \in T$, $|d(u, v_3) - d(v, v_3)| \neq 0$ and hence v_3 will resolve u and v. Thus, $S_2 = S_1 \cup \{v_3\}$ is an r-set of G. Further, as $S_2 \subseteq S$ and super hereditary property of resolving sets, the set S is an r-set of G. Hence the proof. \Box

Theorem 2.2. For any integer $n \ge 3$,

$$lnr_{a}(T(C_{n})) = \begin{cases} 4, & \text{if } n = 3.\\ \lceil \frac{2n}{3} \rceil + 1, & \text{if } n \equiv 1, 2 \pmod{3}.\\ \lceil \frac{2n}{3} \rceil + 2, & \text{if } n \equiv 0 \pmod{3}. \end{cases}$$

Proof. Let $G = T(C_n)$, $n \ge 3$ be the graph with 2n vertices.

Lower bound: Let S be an *anr*-set. Then S is an *nr*-set and \overline{S} has no *nr*-set of cardinality |S|. Without loss of generality, we assume $v_0 \in S$. We first see that if S contains all the three vertices of a triangle in G, then \overline{S} is not an *n*-set of G for all $n \geq 4$ and hence \overline{S} has no *nr*-set of any cardinality. Therefore, if n = 3, 4 and |S| = 3, then $\langle S \rangle = C_3$ and $n \geq 4$ (else by symmetry G - S has a subgraph H isomorphic to $\langle S \rangle$ and hence V(H) will be an *nr*-set of G). Further, if n = 4, without loss of generality, let $S = \{v_0, e_0, v_1\}$. Then the edge v_2v_3 is not in any triangle of G with one vertex in S, contradiction to Theorem 1.2. So, $lnr_a(G) \geq 4$, for n = 3, 4. Let $n \geq 5$ and S' be any minimum *nr*-set of G. Then, by Theorem 2.1, $|S'| = \lceil \frac{2n}{3} \rceil$. Further, each element of S' is a corner vertex of the shaded triangle which is in maximum number of unshaded triangles behind it (starting with $v_0 \in S'$) as in Figure 2. Thus, in each minimum *nr*-set S' if $v_i \in S'$ then $e_i \notin S'$. This shows that the set S'' obtained by just interchanging e_i and

FIGURE 2. Optimal choice of an *nr*-set.

 v_i in S' is also an nr-set of G. Since $S'' \subseteq \overline{S}$, it follows that $lnr_a(G) > lnr(G)$. Hence $lnr_a(G) \ge \lceil \frac{2n}{3} \rceil + 1$. Further, if any nr-set S' contains a pair v_i, e_i for at most one i and no two adjacent pairs of C_n , then it is easy to verify that the set S'' containing x_{i+1} for each x_i in S' is an nr-set of G. Therefore, C_3 should be an induced subgraph of $\langle S \rangle$ for every minimum anr-set S. But then, as these three vertices of a triangle in S will be covering exactly 11 edges, to cover the remaining 4n - 11 edges we need at least $\frac{4n-11}{6}$ vertices in S other than those three which are in a triangle. That is, $4n - 11 \le 6(|S| - 3)$ implies that $|S| \ge \frac{4n+7}{6}$. So, $|S| \ge \lceil \frac{2n}{3} \rceil + 1$ if $n \not\equiv 0 \pmod{3}$, and $|S| \ge \lceil \frac{2n}{3} \rceil + 2$ if $n \equiv 0 \pmod{3}$.

Upper bound: Here we show that the above lower bound is tight by executing an *anr*-set of *G*.

Case 1: $n \equiv 0 \pmod{3}$.

When n = 3, it is easy to see that the set $S = \{v_0, v_1, v_2, e_1\}$ is an *anr*-set for G. For n > 3, let S_1 be a minimum *nr*-set of G. Without loss of generality, we assume $v_0 \in S$. Since S_1 is a minimum *nr*-set, as per the above discussion, e_0, v_1 are not in S. Taking $S = S_1 \cup \{e_0, v_1\}$ and by the super hereditary of *nr* property, we see that S is an *nr*-set of G. Further, \overline{S} contains none of the vertices of a triangle of G. Hence \overline{S} is not an *nr*-set. Thus, S is an *anr*-set with $|S| = |S_1| + 2 = \lceil \frac{2n}{3} \rceil + 2$.

Case 2: $n \equiv 1 \pmod{3}$.

In this case, consider the *nr*-set $S_1 = \{v_0, e_1, v_3, e_4, \dots, e_{n-3}, v_{n-1}\}$ (as in the proof of Theorem 2.1). The set $S = S_1 \cup \{e_{n-1}\}$ is then an *nr*-set and $\langle \{v_0, e_{n-1}, v_{n-1}\} \rangle$ is an induced cycle C_3 of $\langle S \rangle$. Hence, \overline{S} is not an *nr*-set implies that S is an *anr*-set with $|S| = |S_1| + 1 = \lceil \frac{2n}{3} \rceil + 1$.

Case 3: $n \equiv 2 \pmod{3}$.

7206

In this case, consider the *nr*-set $S_1 = \{v_0, e_1, v_3, e_4, \dots, v_{n-2}, e_{n-1}\}$ (as in the proof of Theorem 2.1). The set $S = S_1 \cup \{v_{n-1}\}$ is then an *nr*-set and $\langle \{v_0, e_{n-1}, v_{n-1}\} \rangle$ is an induced cycle C_3 of $\langle S \rangle$. Hence, \overline{S} is not an *nr*-set implies that S is an *anr*-set with $|S| = |S_1| + 1 = \lceil \frac{2n}{3} \rceil + 1$.

3. Prism graph

The *Cartesian product* of two graphs G and H, denoted by $G\Box H$, is a graph whose vertex set is $V(G) \times V(H)$ and two vertices (g, h) and (g', h') are adjacent in $G\Box H$ if either g = g' and $hh' \in E(H)$, or h = h' and $gg' \in E(G)$. Prism graph is the Cartesian product of C_n and P_2 , denoted by $C_n\Box P_2$. Throughout this section, we label the vertices of the prism graph, $C_n\Box P_2$ as $v_0, v_1, v_2, \ldots, v_{n-1}$, $u_0, u_1, u_2, \ldots, u_{n-1}$ such that v_i is adjacent to $v_{i+1(mod n)}$ for all $i, 0 \le i \le n - 1$, u_i is adjacent to $u_{i+1(mod n)}$ for all $i, 0 \le i \le n - 1$ and v_i is adjacent to u_i for all $i, 0 \le i \le n - 1$.

FIGURE 3. Prism graph, $C_6 \Box P_2$.

Theorem 3.1. For any integer $n \ge 3$ and a prism graph $C_n \Box P_2$, $lnr(C_n \Box P_2) = 2 \left\lceil \frac{n}{2} \right\rceil$.

Proof. Let $G = C_n \Box P_2$ be a prism graph on 2n vertices.

Lower bound: The graph G is triangle free and hence for every n-set S of G, by Corollary 1.1, its complement \overline{S} is totally disconnected and vice versa. Thus, the nr-number of the graph G is equal to |V(G)| - id(G), where id(G) is the independent number of G. Let $S_u = \{u_i : 0 \le i \le n-1\}$ and $S_v = \{v_i : 0 \le i \le n-1\}$. Then S_u and S_v are the partition of V(G). Since $\langle S_u \rangle$ and

7207

 $\langle S_v \rangle$ are isomorphic to the cycle C_n , each independent set of G contains at most $\lfloor \frac{n}{2} \rfloor$ vertices from each of these sets. Therefore, $lnr(G) \ge ln(G) \ge 2n - 2\lfloor \frac{n}{2} \rfloor = 2(n - \lfloor \frac{n}{2} \rfloor) = 2\lceil \frac{n}{2} \rceil$.

Upper bound: We show that lower bound obtained above is tight by exacting an *nr*-set *S*. For this, we first consider the set $T = \{v_0, v_3\}$.

Case 1: $3 \le n \le 6$.

Consider the sets; $S_3 = \{v_0, u_0, v_1, u_3\}$, $S_4 = \{v_0, u_1, v_2, u_3\}$, $S_5 = \{v_0, u_0, u_1, v_2, u_3, v_4\}$ and $S_6 = \{v_0, u_1, v_2, u_3, v_4, u_5\}$. It can be easily verified that S_3, S_4, S_5 and S_6 are *r*-sets of *G* for n = 3, 4, 5, 6, respectively. Also, for each of the sets \overline{S} is independent. Hence they are the desired *nr*-sets.

Case 2: $n \ge 7$.

The vectors associated to each vertex of G with respect to T is as below.

$\Gamma(v_i/T) = (i, 2 - i)$	and	$\Gamma(u_i/T) = (i+1, 3-i)$	for	$1 \leq i \leq 2$
$\Gamma(v_i/T) = (i, i-2)$	and	$\Gamma(u_i/T) = (i+1, i-1)$	for	$3 \le i \le \lfloor \frac{n}{2} \rfloor$
$\Gamma(v_i/T) = (n-i, i-2)$	and	$\Gamma(u_i/T) = (n+1-i, i-1)$	for	$\left\lceil \frac{n}{2} \right\rceil \leq i \leq \left\lceil \frac{n}{2} \right\rceil + 1$
$\Gamma(v_i/T) = (n-i, n+2-i)$	and	$\Gamma(u_i/T) = (n+1-i, n+3-i)$	for	$\left\lceil \frac{n}{2} \right\rceil + 2 \leq i \leq n-1$

This shows that, T will resolve all the pairs of vertices of G except those in $H = \{(v_i, u_{i-1}) : 3 \le i \le \lfloor \frac{n}{2} \rceil\} \cup \{(v_i, u_{i+1 \pmod{n}}) : \lceil \frac{n}{2} \rceil + 2 \le i \le n-1\}$. Now for each pair $(v_i, u_{i+1}) \in H$, $d(v_i, u_1) = d(u_{i+1}, u_1) + 2$ and hence u_1 , will resolve all the pairs in H. Thus, the set $S_1 = T \cup \{u_1\}$ is an r-set for G.

Now consider the set
$$S = \begin{cases} \{v_0, u_1, v_2, u_3, \dots, v_{n-2}, u_{n-1}\} & \text{if } n \text{ is even.} \\ \{v_0, u_1, v_2, u_3, \dots, v_{n-1}, u_0\} & \text{if } n \text{ is odd.} \end{cases}$$

The set S_1 is a subset of S and hence by super hereditary of the resolving property, S is an r-set. Also, \overline{S} is an independent set of G. Hence, by Corollary 1.1, S is an nr-set and it contains $2\lceil \frac{n}{2} \rceil$ vertices of G. Hence $lnr(G) \le 2\lceil \frac{n}{2} \rceil$. Hence the proof.

We now state the following generalized theorem whose proof follows similar to the above theorem.

Theorem 3.2. For the integers $m \ge 1$ and $n \ge 3$,

$$lnr(C_n \Box P_m) = m \left\lceil \frac{n}{2} \right\rceil.$$

For each odd n, every minimum nr-set S of the prism $C_n \Box P_2$ contains n + 1elements (by Theorem 3.1). Therefore, $|\bar{S}| = 2n - (n+1) = n - 1 < |S|$, implies that \bar{S} can not have any nr-set with cardinality |S|. Hence every minimum nr-set of $C_n \Box P_2$ is also an anr-set of G whenever n is odd. But this is not the case when n is even. If n is even, then both S and \bar{S} are independent with $|S| = |\bar{S}| = n$, for every nr-set S of $C_n \Box P_2$. Therefore, every minimum anr-set should contain one more element than in a minimum nr-set. We record these in the form of following theorem.

Corollary 3.1. For any integer $n \ge 3$ and a prism graph $C_n \Box P_2$,

 $lnr_a(C_n \Box P_2) = n + 1.$

ACKNOWLEDGMENT

The authors are very much thankful to Visvesvaraya Technological University and the Management of Dr. Ambedkar Institute of Technology for providing research facilities and TEQIP-III assistantship during the preparation of this paper. Also special thanks to the anonymous referees for their suggestions for the improvement of this paper.

REFERENCES

- [1] F. BUCKLEY, F. HARARY: Distance in graphs, Addison-Wesley, New York, 1990.
- [2] F. HARARY, R. A. MELTER: On the metric dimension of a graph, Ars Combin., 2 (1976), 191-195.
- [3] N. HARTSFIELD, G. RINGEL : Pearls in graph theory, Academic Press, USA, 1994.
- [4] M. M. PADMA, M. JAYALAKSHMI: On Classes of rational resolving set of derived graphs of *a path*, Far. East. Journal of Mathematical Sciences, **110**(2)(2019), 247-259.
- [5] M. M. PADMA, M. JAYALAKSHMI: k-local resolving and rational resolving sets of graphs, Int. Journal of Engineering Sciences and Management, 2(2) (2020), 15-20.
- [6] L. RESHMA, S. LAMANI, B. SOORYANARAYANA: Accurate neighborhood resolving sets of a graph, International Journal of Applied Engineering Research, 14(15) (2019), 3460-3463.
- [7] E. SAMPATHKUMAR, P. S. NEERALAGI: *The neighbourhood number of a graph*, Indian J. Pure Appl. Math., **16**(2) (1985), 126-132.
- [8] P. J. SLATER: Leaves of trees, Congr. Numer., 14 (1975), 549-559.
- [9] B. SOORYANARAYANA, K. SHREEDHAR, N. NARAHARI: On the metric dimension of the total graph of a graph, Electron. Notes Discrete Math., **22**(4) (2016), 82-95.

7210 B. SOORYANARAYANA, R. HEBBAR, AND L. S. LAMANI

- [10] B. SOORYANARAYANA, SILVIA LEERA SEQUEIRA, M. VISHU KUMAR: Accurate Alliances in Graphs, Jour of Adv Research in Dynamical and Control Systems, 12(4) (2020), 203-215.
- [11] B. SOORYANARAYANA, A. S. SUMA: On classes of neighborhood resolving sets of a graph, Electron. J. Graph Theory Appl. (EJGTA), **6**(1) (2018), 29-36.

DEPARTMENT OF MATHEMATICS DR. AMBEDKAR INSTITUTE OF TECHNOLOGY AFFILIATED TO VISVESVARYA TECHNOLOGICAL UNIVERSITY, BELGAVI B.D.A. OUTER RING ROAD, MALLATHALLI BENGALURU-560 056, INDIA Email address: dr_bsnrao@dr-ait.org

DEPARTMENT OF MATHEMATICS DR. AMBEDKAR INSTITUTE OF TECHNOLOGY AFFILIATED TO VISVESVARYA TECHNOLOGICAL UNIVERSITY, BELGAVI B.D.A. OUTER RING ROAD, MALLATHALLI BENGALURU-560 056, INDIA Email address: ramya357@gmail.com

DEPARTMENT OF MATHEMATICS DR. AMBEDKAR INSTITUTE OF TECHNOLOGY AFFILIATED TO VISVESVARYA TECHNOLOGICAL UNIVERSITY, BELGAVI B.D.A. OUTER RING ROAD, MALLATHALLI BENGALURU-560 056, INDIA Email address: lallichavan@gmail.com