ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.9, 7235–7240 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.9.72

UNITARY DIVISOR ADDITION CAYLEY GRAPHS

C. THILAGA¹ AND P. B. SARASIJA

ABSTRACT. Let $n \ge 1$ be an integer and S be the set of Unitary Divisor of n. Then the set $S^* = \{s, n - s/s \in S \text{ and } n \ne s\}$ is a symmetric subset of the group (Z_n, \oplus) , the additive Abelian group of integers modulo n. The Cayley graph of (Z_n, \oplus) associated with the above symmetric subset S^* is called the Unitary Divisor Addition Cayley graph and it is denoted by $G_n(D)$. That is the graph $G_n(D)$ is the graph whose vertex set is $V = \{0, 1, \ldots, (n-1)\}$ and the edge set E is the set of all ordered pairs of vertices x, y such that $x + y \in S^*$. In this paper, we discuss the degree of the vertices and the total number of edges and some properties of Unitary Divisor Addition Cayley graph $G_n(D)$.

1. INTRODUCTION

A graph G is a pair (V, E), where $V = \{0, 1, ..., (n-1)\}$, be the vertex set and E is a set of unordered pairs of elements of V are the edges of G. The degree of a vertex v, d(v) in G is the number of edges incident at v. If the degree of each vertex is equal, say r in G, then G is called r-regular graph. A graph is called (r_1, r_2) -semi regular if its vertex set can be partitioned into two subsets V_1 and V_2 such that all the vertices in V_i are of degree for i = 1, 2. Vertices uand v of a graph G are adjacent if $uv \in E(G)$. Throughout the text, we consider non-trivial, finite, undirected graph with no loops or multiple edges. For standard terminology and notation in graph theory we follow [1],[4].

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C50, 05C78.

Key words and phrases. Unitary Cayley Graphs; Unitary Addition Cayley graph; Unitary Divisor Cayley graph; Unitary Divisor Addition Cayley graph.

For a positive integer n > 1, the Unitary Addition Cayley graph G_n is the graph whose vertex set is Z_n , the integers modulo n and if U_n denotes set of all units of the ring Z_n , then two vertices a, b are adjacent if and only if $a + b \in U_n$ [2] and also refer [5], [6].

Let $n \ge 1$ be an integer and S be the set of unitary divisor of n. Then the set $S^* = \{s, n - s/s \in S, n \ne s\}$ is a symmetric subset of the group (Z_n, \oplus) , the additive abelian group of integers modulo n. The Cayley graph of (Z_n, U_n) , associated with the above symmetric subset S^* is called the Unitary Divisor Cayley graph $G(Z_n, U_n)$. That is $G(Z_n, U_n)$ is the graph whose vertex set V = $\{0, 1, \ldots, (n-1)\}$ and the edge set E is the set of all ordered pairs of vertices x, y, such that $x - y \in S^*$ or $y - x \in S^*$, see [3].

Now motivated by the Unitary Addition Cayley graph and Unitary Divisor Cayley graph we introduce the Unitary Divisor Addition Cayley graph as follows: Let $n \ge 1$ be an integer and S be the set of Unitary Divisor of n. Then the set $S^* = \{s, n - s/s \in S \text{ and } n \ne s\}$ is a symmetric subset of the group (Z_n, \oplus) , the additive abelian group of integers modulo n the Cayley graph of (Z_n, \oplus) associated with the above symmetric subset S^* is called the Unitary Divisor Addition Cayley graph and it is denoted by $G_n(D)$. That is the graph $G_n(D)$ is the graph whose vertex set is $V(G_n(D)) = \{0, 1, \dots, (n-1)\}$ and the edge set E is the set of all ordered pairs of vertices x, y, such that $x + y \in S^*$.

The diameter of graph is the maximum distance between the pair of vertices. The number of edges in the maximum matching of G is called the matching number. Let G(V, E) be a connected with vertex set V and edge set E. A subset of V is called independence if its vertices are mutually non-adjacent. A graph is Eulerian if the graph both connected and has a closed trial(a walk with no repeated edges) containing all edges of the graph. A connected graph has an Euler cycle if and only if every vertex has even degree. A Hamiltonian path is an undirected or directed graph that visits each vertex exactly once.

7236

2. Some examples of Unitary Divisor Addition Cayley graph

Theorem 2.1. Let *m* be any vertex of Unitary Divisor Addition Cayley graph $G_n(D)$, then the degree of *m* is $d(m) = \begin{cases} |S^*| \text{ if } 2m(modn) \notin S^* \\ |S^*| - 1 \text{ if } 2m(modn) \in S^* \end{cases}$.

Proof. Consider Unitary Divisor Addition Cayley graph $G_n(D)$ with vertex set $V(G_n(D)) = \{0, 1, \ldots, (n-1)\}$. Let m be any vertex in $V(G_n(D))$. Let S be the set of unitary divisor of n and $S^* = \{s, n - s/s \in S \text{ and } n \neq s\}$. The graph $G_n(D)$ is $|S^*|$ (equal to 2)-regular if n is 2^{γ} , $\gamma > 1$, and $(|S^*|, |S^*| - 1)$ -semi regular otherwise.

The vertex $0 \in V(G_n(D))$ and $0 \notin S^*$, 0 is adjacent to all the vertices in S^* . Hence degree of 0 is $|S^*|$. That is $d(0) = |S^*|$. If the vertex $m \in V(G_n(D))$ then either $m \in S^*$ or $m \notin S^*$.

Suppose $m \in S^*$ and m = n - m. If m = n - m implies 2m = n. Take (modn) on both sides we get 2m(modn) = n(modn). That is $2m(modn) \equiv 0 \notin S^*$. The m vertex is adjacent to all the vertices in S^* . Hence degree of m is $|S^*|$. That is $d(m) = |S^*|$.

Suppose $m \in S^*$ and $m \neq n-m$. Also $m \notin S^*$. Then $2m(modn) \neq n(modn)$. Let $2m(modn) \equiv k(modn)$. If $k \notin S^*$ then the vertex m is adjacent to all the vertices in S^* . Hence degree of m is $|S^*|$. That is $d(m) = |S^*|$. If $k \in S^*$ then $d(m) = |S^*| - 1$.

Hence
$$d(m) = \begin{cases} |S^*| \text{ if } 2m(modn) = k \notin S^* \\ |S^*| - 1 \text{ if } 2m(modn) = k \in S^* \end{cases}$$
.

Remark 2.1. If $n = 2^{\gamma}$, $\gamma > 1$, then the Unitary Divisor is 1. Hence $S^* = \{1, n-1\}$. The Unitary Divisor Addition Cayley graph is a cycle. Thus d(n) = 2.

Remark 2.2. If $n = p^{\alpha}$, $\alpha \ge 1$, then $S^* = \{1, n - 1\}$. The Unitary Divisor Addition Cayley graph is a path. The vertices $\lceil \frac{n}{2} \rceil$ and $\lfloor \frac{n}{2} \rfloor$ have degree 1 and all other vertices have degree 2.

Theorem 2.2. The total number of edges in the Unitary Divisor Addition Cayley $\int n \, if \, n = 2^{\gamma}, \, \gamma > 1$

graph
$$G_n(D)$$
 is
$$\begin{cases} \frac{|S^*|(n-1)|^2}{2} & \text{if } n \text{ is odd} \\ \frac{|S^*|(n-1)+1}{2} & \text{if } n = 2p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r} \\ \frac{|S^*|(n-1)}{2} + 1 & \text{if } n = 2^{\alpha} p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r} \end{cases}$$

Proof. Suppose that $n = 2^{\gamma}$, $\gamma > 1$.

Then 1 is the only unitary divisor of n, so that $S^* = \{1, n - 1\}$. The Unitary Divisor Addition Cayley graph is a cycle. So each vertex of degree is 2. Therefore number of edges is n.

Suppose *n* is odd, then $n - |S^*|$ vertices having degree $|S^*|$ and $|S^*|$ vertices having degree $|S^*| - 1$. Therefore number of edges in $G_n(D)$ is $\frac{(n - |S^*|)|S^*| + |S^*|(|S^*| - 1)}{2} = \frac{|S^*|(n-1)|}{2}$.

Suppose $n = 2p_1^{\alpha_1}p_2^{\alpha_2}...p_r^{\alpha_r}$. Here $(n - |S^*| + 1)$ vertices having degree $|S^*|$ and $|S^*| - 1$ vertices having degree $|S^*| - 1$. Therefore number of edges is $\frac{(n - |S^*| + 1)|S^*| + (|S^*| - 1)(|S^*| - 1)}{2} = \frac{|S^*|(n - 1) + 1}{2}$.

Suppose
$$n = 2^{\alpha} p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$$

Here $(n - |S^*| + 2)$ vertices having degree $|S^*|$ and $|S^*| - 2$ vertices having degree $|S^*| - 1$. The number of edges is $\frac{(n - |S^*| + 2)|S^*| + (|S^*| - 2)(|S^*| - 1)}{2} = \frac{|S^*|(n - 1)}{2} + 1$. \Box

Theorem 2.3. The Unitary Divisor Addition Cayley graph is Eulerian iff $n = 2^{\gamma}$, $\gamma > 1$.

Proof. Suppose $G_n(D)$ is Eulerian. If possible n is other than 2^{γ} , $\gamma > 1$.

A graph is Eulerian iff G is connected and its vertices all have even degree Therefore $G_n(D)$ is not Eulerian , a contradiction to our assumption.

Next suppose $n = 2^{\gamma}$ and $\gamma > 1$, then the degree of each vertex is $|S^*|$ and $|S^*|=2$ is even. Hence the result.

Theorem 2.4. The Unitary Divisor Addition Cayley graph is Hamiltonian for n is even and also connected for all n.

Proof. Now we construct a cycle $C = (0, n - 1, 2, n - 3, 4, \dots, n - 4, 3, n - 2, 1, 0).$

7238

Since the cycle C contains all the vertices of $G_n(D)$ exactly once, C is a Hamilonian cycle of $G_n(D)$. Thus $G_n(D)$ is Hamiltonian.

Suppose *n* is even the Unitary Divisor Addition Cayley graph is Hamiltonian , then find a Hamiltonian path P = (n - 1, 2, n - 3, 4, ..., n - 4, 3, n - 2, 0). Then $G_n(D)$ is connected.

Suppose *n* is odd, there exists a path $(\frac{n+1}{2}, \ldots, 3, n-2, 1, 0, n-1, 2, n-3, \ldots, \frac{n-1}{2})$. Thus $G_n(D)$ is connected.

Theorem 2.5. The Unitary Divisor Addition Cayley graph is bipartite iff $n = 2^{\alpha}$, $\alpha > 1$ and $n = p^m$, $m \ge 1$; p is prime.

Proof. Suppose $n = 2^{\alpha}$, $\alpha > 1$ and $n = p^m$, $m \ge 1$. We can split the vertex set into two parts $X = \{0, 2, 4, ..., n - 2\}$ and $Y = \{1, 3, ..., n - 1\}$ and $V = X \bigcup Y$. Hence $G_n(D)$ is bipartite.

Theorem 2.6. The diameter of Unitary Divisor Addition Cayley graph is

$$\begin{cases} n-1 \text{ if } n = p^m \\ \frac{n}{2} \text{ if } n = 2^\alpha \\ 2 \text{ if } n = 6, 12 \\ 3 \text{ otherwise.} \end{cases}$$

Proof. Suppose $n = p^m$, $m \ge 1$; it is a bipartite graph with $X = \{1, 3, ..., n-1\}$ and $Y = \{0, 2, ..., n-2\}$. It is also a path graph. Hence diameter = n - 1.

Suppose $n = 2^{\alpha}$, $\alpha > 1$; the Unitary Divisor Addition Cayley graph is bipartite, the vertex set can split into two parts $X = \{0, 2, 4, ..., n-2\}$ and $Y = \{1, 3, 5, ..., n-1\}$, it is a cycle. Hence diameter is $\frac{n}{2}$.

Suppose n = 6 and n = 12, there exists a path (1, 0, n - 1) of length 2. Hence diameter=2.

Suppose *n* is odd. Then there exists two non adjacent vertices *x* and *y* in vertex set in $G_n(D)$ such that *x* is even and *y* is odd and have no common neighbour. Let *z* be a neighbour of *x* in S^* and odd , there have a common neighbour *u*. Hence we take a path x - z - u - y of length 3. Hence diameter =3.

Theorem 2.7. The matching number of Unitary Divisor Addition Cayley graph is

$$\begin{cases} \frac{n}{2} \text{ if } n \text{ is even} \\ \frac{n-1}{2} \text{ if } n \text{ is odd} \end{cases}$$

Proof. In $G_n(D)$, the generating set S^* must contain 1.

Suppose *n* is even. The edge set $E_1 = \{(0, 1), (n - 1, 2), (n - 2, 3), \dots, (\frac{n+2}{2}, \frac{n}{2})\}$ is an independent set in $G_n(D)$ and $|E_1| = \frac{n}{2}$. So the matching number is $\frac{n}{2}$.

Suppose *n* is odd. The edge set $E_2 = \{(0,1), (n-1,2), \dots, (\frac{n+3}{2}, \frac{n-1}{2})\}$ is an independent set in $G_n(D)$, and $|E_2| = \frac{n-1}{2}$. Therefore matching number is $\frac{n-1}{2}$.

References

- [1] N. BIGGS: *Algebraic graph theory*, Second Edition.Cambridge Mathematical Library Cambridge University Press, 1993.
- [2] D. SINHA, P. GARG, A. SINGH: Some properties of unitary addition Cayley graphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 49–59.
- [3] G. MIRONA, B. MAHESWAR: Domination Sets of Unitary divisor Cayley graphs, International Journal of Applied Mathematics and Statistical Sciences, **6**(5) (2017), 19–42.
- [4] J. A BONDY, U. S. R MURTY: Graph Theory with Application, Macmillian Press, London, 1976.
- [5] N. PALANIVEL, A. V. CHITRA: Some Structural Properties of Unitary Addition Cayley *Graphs*, International Journal of Computer Applications 0975-8887, 2015.
- [6] C. THILAGA, P. B. SARASIJA: Wiener Index and Hyper Wiener Index of Unitary Addition Cayley Graph, International Journal of Recent Technology and Engineering 2(3) (2019), 131-132.

DEPARTMENT OF MATHEMATICS NOORUL ISLAM CENTRE FOR HIGHER EDUCATION KUMARACOIL-629175 *Email address*: thilagakmoorthy7@gmail.com

DEPARTMENT OF MATHEMATICS NOORUL ISLAM CENTRE FOR HIGHER EDUCATION KUMARACOIL-629175 *Email address*: sijavk@gmail.com

7240