

Advances in Mathematics: Scientific Journal **9** (2020), no.9, 7249–7255 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.9.74

ANTI-VAGUE IDEALS OF SUBTRACTION ALGEBRA

K. PRASAD¹, D. V. RAMALINGA REDDY, Y. PRABHAKARA RAO, S. VENU MADHAVA SARMA, P. RANGASWAMY, AND P. RAMI REDDY

ABSTRACT. In this paper we introduce the concept of anti-vague ideals of subtraction algebra and investigate some results on anti-vague ideals of subtraction algebras.

1. INTRODUCTION AND PRELIMINARIES

In this paper we introduced a notion of anti-vague ideal in a subtraction algebra and study some properties of them.

Definition 1.1. By a subtraction algebra, we mean an algebra (X, -) with a single binary operation "-" that satisfies the following identities for any $x, y, z \in X$.

(1) x - (y - x) = x(2) x - (x - y) = y - (y - x)(3) (x - y) - z = (x - z) - y.

The last identity permits us to omit parentheses in expressions of the form (x - y) - z. The Subtraction determines an ordered relation on X .

$$a \le b \Leftrightarrow a - b = 0,$$

where 0 = a - a is an element that does not dependent on the choice of $a \in X$. The ordered set (X, \leq) is a semi-Boolean algebra. That is ,it is meet semi-lattice

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 06A99.

Key words and phrases. Vague set, Vague ideal, Anti-Vague ideal, Subtraction Algebra.

7250 K. PRASAD, D. V. R. REDDY, Y. P. RAO, S. V. M. SARMA, P. RANGASWAMY, AND P. R. REDDY

with zero in which every interval [0, a] is a Boolean algebra with respect to the induced order, Here $a \wedge b = a - (a - b)$ the complement of an element $b \in [0, a]$ is a - b and if $b, c \in [0, a]$ then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c)) = a - ((a - b) - ((a - b) - (a - c))).$$

Definition 1.2. A non-empty sub-set A of a subtraction algebra X is called an ideal of X, if it satisfies $(a-x) \in A$ for any $a \in A$ and $x \in X \forall a$, $b \in A$, whenever $a \lor b$ exists in X then $a \lor b \in A$.

Proposition 1.1. Let X be a subtraction algebra and let $x, y \in X$. If $w \in X$ is an upper bound for x and y then the element $x \lor y = w - ((w - y) - x)$ is a least upper bound for x and y.

For further reference see [1–7].

2. VAGUE SETS

Definition 2.1. A Vague set 'A' in the universe of discourse 'U' is characterized by two membership functions given by

- (1) A truth membership function $t_A: U \rightarrow [0,1]$ and
- (2) A false membership function $f_A: U \rightarrow [0,1]$

where $t_A(u)$ is a lower bound of the grade of membership of 'u' derived from the evidence for u, and $f_A(u)$ is a lower bound on the negation of 'u' derived from the "evidence against u" and $t_A(u) + f_A(u) \le 1$.

Thus the grade of membership of 'u' in the Vague set 'A' is bounded by a sub interval $[t_A(u), 1 - f_A(u)]$ of [0,1]. This indicates that if the actual grade of membership is $\mu(u)$, then $[t_A(u) \le \mu(u) \le 1 - f_A(u)]$. The Vague set 'A' is written as $A = \{(u, [t_A(u), f_A(u)]) | u \in U\}$ where the interval $[t_A(u), 1 - f_A(u)]$ is called the Vague value of 'u' in A and is denoted by $V_A(u)$.

Definition 2.2. A Vague set 'A' of a set U is called

- (1) The Zero Vague set of U if $t_A(u) = 0$ and $f_A(u) = 1$ for all $u \in U$.
- (2) The unit Vague set of U if $t_A(u) = 1$ and $f_A(u) = 0$ for all $u \in U$.
- (3) The α -Vague set of U if $t_A(u) = \alpha$ and $f_A(u) = 1 \alpha$ for all $u \in U$ where $\alpha \in (0,1)$ For $\alpha, \beta \in [0,1]$ we now define (α,β) cut and α cut of a Vague set.

Definition 2.3. Let 'A' be a Vague set of a universe X with the true-membership function t_A and the false membership function f_A . The (α, β) – cut of a Vague set A is a crisp subset $A(\alpha, \beta)$ of the set 'X' given by $A(\alpha, \beta) = \{x \in X \mid V_A(x) \leq [\alpha, \beta]\}$

Definition 2.4. The α – cut of the Vague set 'A' is a crisp subset A_{α} of the set X given by $A_{\alpha} = A(\alpha, \alpha)$ we can define the α – cut as $A_{\alpha} = \{x \in X | t_A(x) \le \alpha.\}$

Let I[0,1] denote the family of all closed sub intervals of [0,1]. If I= [a,b] and J=[c,d] be two elements of I[0,1], We call I \geq J if a \geq c and b \geq d. Similarly we understand the relations I \leq J and I=J. Clearly the relation I \geq J does not necessarily imply that I \supseteq J and conversely we define the "imax" to mean the maximum of two intervals as

- $\operatorname{imax}(I, J) = [\max(a, c), \max(b, d)],$
- $\operatorname{imin}(I, J) = [\min(a, c), \min(b, d)].$

3. ANTI-VAGUE IDEALS

In what follows let X be a subtraction algebra unless otherwise specified.

Definition 3.1. A Vague set A of X is called a anti-Vague ideal of X if the following conditions are true

(C1)
$$V_A(x-y) \leq V_A(x)$$
 for all $x, y \in X$.

(C2)
$$\exists (x \lor y) \in X \Rightarrow V_A(x \lor y) \leq max\{V_A(x), V_A(y)\}, \text{ for all } x, y \in X.$$

That is

- (1) $t_A(x-y) \le t_A(x), 1-f_A(x-y) \le 1-f_A(x)$ (2) $t_A(x \lor y) \le \max\{t_A(x), t_A(y)\}, 1-f_A(x \lor y) \le \max\{t_A(x), t_A(y)\}, 1-f_A(x) \lor y \le \max\{t_A(x), t_A(x), t_A(x), 1-f_A(x)\}, 1-f_A(x) \lor y \le \max\{t_A(x), t_A(x), 1-f_A(x), 1-f_$
- (2) $t_A(x \lor y) \le \max\{t_A(x), t_A(y)\}$ 1- $f_A(x \lor y) \le \max\{1-f_A(x), 1-f_A(y)\},$ whenever there exists $x \lor y$.

Example 1. Consider a subtraction algebra $X = \{0, x, y\}$ with the following table

-	0	X	y
0	0	0	0
x	x	0	x
y	у	y	0

The Vague set $A = \{(0, [0.5, 0.5]), (x, [0.5, 0.5]), (y, [0.5, 0.5])\}$ is a Anti Vague ideal of X.

Example 2. Consider a subtraction algebra $X = \{0,a,b\}$ with the following table

-	0	а	b
0	0	0	0
а	а	0	а
b	b	b	0

Let A be a Vague set in X define as follows. Then the Vague set $A = \{(0, [0.6, 0.2]), (a, [0.7, 0.2]), (b, [0.6, 0.2])\}$ is a Anti Vague ideal of X.

Example 3. Consider a subtraction algebra $X = \{0, a, b, c, d\}$ with the following table

-	0	а	b	с	d
0	0	0	0	0	0
а	а	0	а	0	а
b	b	b	0	0	b
c	с	b	а	0	с
d	d	d	d	d	0

Let A be a Vague set in X define as follows. Then the Vague set $A = \{(0, [0.7, 0.2]), (a, [0.7, 0.2]), (b, [0.8, 0.2]), (c, [0.8, 0.2]), (d, [0.7, 0.2]\}$ is a Anti Vague ideal of X.

Proposition 3.1. If a Vague set A of X satisfies

$$\forall x, a, b \in X(V_A(x - ((x - a) - b)) \le max\{V_A(a), V_b(b)\}.$$

Then 'A' is anti-Vague ideal of X.

Proof. Let 'A' be a Vague set of X that satisfies the above condition, then

$$t_A(x-y) = t_A((x-y) - (((x-y) - x) - x))$$

$$\leq max\{t_A(x), t_A(x)\} = t_A(x)$$

$$1 - f_A(x-y) = 1 - f_A((x-y) - (((x-y) - x) - x)))$$

$$\leq max\{1 - f_A(x), 1 - f_A(x)\} == 1 - f_A(x)$$

Now suppose $x \lor y$ exists for $x, y \in X$. Putting $w = x \lor y$, we have $x \lor y = w - ((w - x) - y)$ by Proposition 1.1. It follows from example 1 that

$$t_A(x \lor y) = t_A(w - ((w - x) - y)) \le \max\{t_A(x), t_A(y)\} \text{ and}$$

$$1 - f_A(x \lor y) = 1 - f_A(w - ((w - x) - y))$$

$$\le \max\{1 - f_A(x), 1 - f_A(y)\}.$$

Hence 'A' is anti-Vague ideal of X.

Proposition 3.2. Zero Vague set, unit Vague set and α -Vague set of X are trivial anti-Vague ideals of X.

Proposition 3.3. For every anti–Vague ideal 'A' of X, we have the following inequality: $\forall x \in X, V_A(0) \leq V_A(x)$.

Proof. If we take y = x in (C1), then $t_A(0) = t_A(x - x) \le t_A(x)$ and

 $1 - f_A(0) = 1 - f_A(x - x) \le 1 - f_A(x).$

Hence $V_A(0) \leq V_A(x)$, $\forall x \in X$.

Proposition 3.4. Let 'A' be a Vague set of X such that

(K1) $V_A(0) \le V_A(x) \forall x \in X.$ (K2) $V_A(x-z) \le \max\{V_A((x-y)-z), V_A(y)\} \ \forall x, y, z \in X.$

Then we have the following implication: $x \le a \Rightarrow V_A(x) \le V_A(a) \forall a, x \in X$.

Proof. Let $a, x \in X$ be such that $x \leq a$ then:

$$\begin{aligned} t_A(x) &= t_A(x-0) \le \max\{t_A(x-a)-0), t_A(a)\} \\ &= \max\{t_A(0), t_A(a)\} = t_A(a) \\ 1-f_A(x) &= 1-f_A(x-0) \\ &\le \max\{1-f_A((x-a)-0), 1-f_A(a)\} \\ &= \max\{1-f_A(0), 1-f_A(a)\} \\ &= 1-f_A(a). \end{aligned}$$

Hence $V_A(x) \leq V_A(a)$.

Proposition 3.5. A necessary and sufficient condition for a Vague set $A = (x, t_A, f_A)$ of X to be anti-Vague ideal of X is that t_A and $1 - f_A$ are anti-fuzzy ideals of X.

Theorem 3.1. Let \mathcal{X} be a anti-Vague ideal of X. Then for $\alpha \in [0, 1]$, the α -cut A_{α} is a crisp ideal of X.

Proof. Let $x \in X$ and $a \in A_{\alpha}$. Then $t_A(a) \leq \alpha$, and so $t_A(a - x) \leq t_A(a) \leq \alpha$. Thus $(a - x) \in A_{\alpha}$. Let $a, b \in A_{\alpha}$ and assume that $\exists (a \lor b)$. Then $t_A(a) \leq \alpha$ and $t_A(b) \leq \alpha$ which implies from (C2) that $t_A(a \lor b) \leq max\{t_A(a), t_b(b)\} \leq \alpha$ so that $(a \lor b) \in A_{\alpha}$. Therefore A_{α} is a crisp ideal of X.

7254 K. PRASAD, D. V. R. REDDY, Y. P. RAO, S. V. M. SARMA, P. RANGASWAMY, AND P. R. REDDY

Theorem 3.2. Let 'A' be a anti-Vague ideal of X. Then for $(\alpha, \beta) \in [0, 1]$, the Vaguecut $A(\alpha, \beta)$ is a crisp ideal of X.

Proof. Let $x \in X$ and $a \in A(\alpha, \beta)$. Then $t_A(a) \leq \alpha$ and $(1 - f_A(a)) \leq \beta$. Thus $t_A(a - x) \leq t_A(a) \leq \alpha$ and $1 - f_A(a - x) \leq 1 - f_A(a) \leq \beta$. Therefore $(a - x) \in A(\alpha, \beta)$. Now let $a, b \in A(\alpha, \beta)$ and assume that there exists $a \lor b$. Then $t_A(a \lor b) \leq max\{t_A(a), t_A(b)\} \leq \alpha$, $1 - f_A(a \lor b) \leq max\{1 - f_A(a), 1 - f_A(b)\} \leq \beta$. Which shows that $(a \lor b) \in A(\alpha, \beta)$.

Theorem 3.3. Any ideal J of X is a Vague-cut ideal of some anti-vague ideal of X.

Proof. Consider the vague set A of X is given by V_A (\mathbf{x}) = [\mathbf{t} , \mathbf{t}] if $x \in J[0,0]$, if $x \notin J$, where $t \in (0,1)$. It can be proved that $V_A(x-y) \leq V_A(x)$ for all $x, y \in X$ and $V_A(x \lor y) \leq max\{V_A(x), V_A(y)\}$, whenever there exist $x \lor y$ for all $x, y \in X$. Thus 'A' is anti-Vague ideal of X Clearly $J = A_{[t,t]}$.

Theorem 3.4. Let A be a anti-vague ideal of X. Then the set $K = \{x \in X | V_A(x) = V_A(0)\}$ is a crisp ideal of X.

Proof. Let $a \in K$ and $x \in X$. Then $V_A(a) = V_A(0)$, and so $V_A(a-x) \le V_A(a) = V_A(0)$ by (C1). It follows from Proposition 3.2 that $V_A(a-x) = V_A(0)$. So that $(a-x) \in K$. Let $a,b \in K$ and assume that there exists $a \lor b$ by means of (C2), we know that $V_A(a \lor b) \le \max\{V_A(a), V_A(b)\} = V_A(0)$ Thus $V_A(a \lor b) = V_A(0)$ by Proposition 3.2 and so $a \lor b \in K$. 'K' is a crisp ideal of X.

REFERENCES

- V. B. V. N PRASAD, T. RAMA RAO, T. S. RAO, T. RAMA RAO, K. PRASAD: Some Basic Principles on Posets, Hasse Diagrams and Lattices, Test Engineering and Management., 83 (2020), 10771 – 10775.
- [2] K. PRASAD, V. B. V. N. PRASAD, T. S. RAO, M. GNANAKIRAN, M. RAMESH: Anti Fuzzy Gamma Near Algebras Over Anti Fuzzy Fields, Journal of Critical Reviews., 7 (2020), 313 – 315.
- [3] K. PRASAD, V. B. V. N. PRASAD, K. PUSHPALATHA, M. GNANAKIRA: α_1 , α_2 Near Subtraction Semigroups, Journal of Critical Reviews., 7 (2020), 727 730.
- [4] K. PRASAD, V. B. V. N PRASAD, T.S. RAO, G. BALAJI PRAKASH, RAMA DEVI BURRI: A Note On Stone Spaces Of Advanced Distributive Lattices, International Journal of Advanced Science and Technology., 29 (2020), 8494 – 8500.

- [5] K. PRASAD, S. VENU MADHAVA SARMA, D. V. RAMALINGA REDDY, Y. PRABHAKARA RAO, P.RANGASWAMY: A Note on Anti-Fuzzy Ideals in Subtraction Semi Group, International Journal of Advanced Science and Technology, 29 (2020), 8557 – 8562.
- [6] K. PRASAD, S. VENU MADHAVA SARMA, P. RANGASWAMY: On Subtraction Algebras, Journal of Xidian University, 14 (2020), 2070 2074.
- [7] K. PUSHPALATHA, D. RAMESH, S. VENU MADHAVA SARMA, K. PRASAD : Anti Fuzzy Ideals (AFI) in Boolean Near Rings (BNR), Test Engineering and Management., 83 (2020), 8413 – 8416.

DEPARTMENT OF MATHEMATICS, KONERU LAKSHMAIAH EDUCATION FOUNDATION VADDESWARAM, GUNTUR(DT), A.P., INDIA *Email address*: prasad.qiscet@gmail.com

DEPARTMENT OF MATHEMATICS, PRAKASAM ENGINEERING COLLEGE KANDUKURU, PRAKASAM(DT), A.P., INDIA *Email address*: dvrlreddy@gmail.com

DEPARTMENT OF SCIENCE AND HUMANITIES VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY NAMBUR, GUNTUR(DT), A.P, INDIA *Email address*: prabhakargnt@gmail.com

DEPARTMENT OF MATHEMATICS, KONERU LAKSHMAIAH EDUCATION FOUNDATION VADDESWARAM, GUNTUR(DT), A.P., INDIA *Email address*: svms_css@kluniversity.in

DEPARTMENT OF MATHEMATICS, RGUKT-AP ONGOLE CAMPUS ONGOLE, PRAKASAM(DT), A.P., INDIA

DEPARTMENT OF MATHEMATICS GUDLAVALLERU ENGINEERING COLLEGE GUDLAVALLERU - 521356 A.P., INDIA