

Advances in Mathematics: Scientific Journal **9** (2020), no.9, 7257–7268 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.9.75

LACUNARY STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES OF ORDER $\bar{\alpha}$ IN PROBABILISTIC NORMED SPACES

MEENAKSHI¹ AND PALAK

ABSTRACT. In this paper, the idea of lacunary statistical convergence of order $\bar{\alpha} \ (0 < \bar{\alpha} \le 1)$ for double sequences $(S^{\bar{\alpha}}_{\theta_{rs}} - \text{convergent})$ in probabilistic normed spaces has been elaborated. We have obtained the relation of usual convergence of order $\bar{\alpha} \ (0 < \bar{\alpha} \le 1)$ and $S^{\bar{\alpha}}_{\theta_{rs}} - \text{convergent}$ in these spaces. We have given examples to show that $S^{\bar{\alpha}}_{\theta_{rs}} - \text{convergent}$ is more generalized than the usual convergence in these spaces.

1. INTRODUCTION

The notion of statistical convergence was initiated by Fast [5] and has motivated many researchers to work. One of the most important generalization was initiated by Fridy and Orhan [7] named as lacunary statistical convergence in which they studied the relation of N_{θ} -summability and (C, 1)-summability. Further, Patterson and Savaş [17] theorize the same concept for double sequences in which they take double lacunary sequence $\theta = \theta_{rs} = (m_r, n_s)$ such that $m_0, n_0 = 0, h_r = m_r - m_{r-1} \longrightarrow \infty$ as $r \longrightarrow \infty$ and $h_s = n_s - n_{s-1} \longrightarrow \infty$ as $s \longrightarrow \infty$ and the intervals determined by θ_{rs} will be denoted by $I_r = (m_{r-1}, m_r]$ and $I_s = (n_{s-1}, n_s]$ and also investigated by many researchers. The double sequence can be stated as function f from $N \times N$ to N such that

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 40A35, 26E50, 40G15, 46S40.

Key words and phrases. Distribution functions, t-Norm, Statistical convergence, Lacunary statistical convergence, Probabilistic normed space.

$$f(mn) = a_{mn}$$
 where $m, n \in N$

Patterson and Savaş [17] specified lacunary statistical convergence for double sequences.

Definition 1.1. [17] Let $\theta = (\theta_{rs})$ be the double lacunary sequence then $y = (y_{mn})$ is termed as lacunary statistically convergent if $\forall \epsilon > 0$ we have

$$\lim_{r,s} \frac{1}{h_r h_s} |\{(m,n) \in I_r \times I_s : |y_{mn} - p| \ge \epsilon\}| = 0.$$

where I_r and I_s be the interval defined as $I_r = (m_{r-1}, m_r]$ and $I_s = (n_{s-1}, n_s]$ and h_r and h_s are the increasing sequences.

Another important generalization of statistical convergence is statistical convergence of double sequences of order $\bar{\alpha}$ where $\bar{\alpha}$ represents the pair (α_1, α_2) such that $0 < \alpha_1 \leq 1$ and $0 < \alpha_2 \leq 1$ was initiated by Çolak and Altin [3]. They work on the hypothesis of $\bar{\alpha}$ -double density.

Definition 1.2. [3] Let A be the subset of $N \times N$ then $\bar{\alpha}$ -double density can be stated as

$$\delta_{\bar{\alpha}}^2(A) = \lim_{m,n} \frac{A(m,n)}{m^{\alpha_1} n^{\alpha_2}}$$

where A(m,n) be the number of (m_1, n_1) in A such that $m_1 \leq m$ and $n_1 \leq n$.

Definition 1.3. [3] A double sequence $y = (y_{m_1n_1})$ is termed as statistically convergent of order $\bar{\alpha}$ $(0 < \bar{\alpha} \le 1)$ if for any $\epsilon > 0$

$$\lim_{m,n} \frac{1}{m^{\alpha_1} n^{\alpha_2}} |\{(m_1, n_1) : m_1 \le m, n_1 \le n : |y_{m_1 n_1} - p| \ge \epsilon\}| = 0$$

It can be written as $S^2_{\bar{\alpha}} - \lim y_{m_1n_1} = p$.

Mohiuddine and Savaş [13] had researched on the conceit of lacunary statistical convergence double sequences for probabilistic normed spaces (PN spaces). Some basic terminologies given as follows :

Definition 1.4. [13] A continuous mapping \circledast : $[0,1] \times [0,1] \rightarrow [0,1]$ is termed as *t*-norm if it is abelian monoid with unit one and $u \circledast v \le t \circledast w$ then $u \le t$ and $v \le w$ for all $u, v, t, w \in [0,1]$.

Definition 1.5. [13] Let $F : R \to R_0^+$ be the function then the function F is termed as distribution function if it is non-decreasing and left continuous with $inf_{t\in R}F(t) = 0$ and $sup_{t\in R}F(t) = 1$. It is denoted by D.

Definition 1.6. [13] Let Y be the real vector space and $v : Y \to D$ where D denotes the set of all distribution function then (Y, v, \circledast) is termed as probabilistic normed space if following postulates holds.

(i) $v_y(0) = 0$. (ii) $v_y(r) = 1 \ \forall \ r > 0 \ iff \ y = 0$. (ii) $v_{cy}(r) = v_y(\frac{r}{|c|}) \ \forall \ c \in R - \{0\}$. (iv) $v_{y+z}(r+s) \ge v_y(r) + v_z(s) \ \forall \ y, z \in Y \ and \ r, s \in R_0^+$.

Definition 1.7. [13] Let (Y, v, \circledast) be a PN space then $y = (y_{mn})$ is termed as lacunary statistically convergent in PN space Y if for any $\lambda \in [0, 1]$ we have

$$\lim_{r,s} \frac{1}{h_r h_s} |\{(m,n) \in I_r \times I_s : |v_{y_{mn}-p}| \le 1 - \lambda\}| = 0.$$

The hypothesis of statistical convergence, double sequences, PN spaces and order $\bar{\alpha}$ (0 < $\bar{\alpha} \le 1$) was an active area of research by many researchers [6] [14] [19] [15] [9] [12] [20] [21] [8] [16] [11] [2] [4] [10], [1] [18].

2. $S_{\theta_{rs}}^{\bar{\alpha}}$ -convergent in probabilistic normed spaces

Throughout the paper, we consider $\bar{\alpha}$ as $0 < \bar{\alpha} \leq 1$ and $\theta = (\theta_{rs})$ be a double lacunary sequence, otherwise specified.

In this section, we initiate the idea of $S_{\theta_{rs}}^{\bar{\alpha}}$ -convergent and $S_{\theta_{rs}}^{\bar{\alpha}}$ -Cauchy in PN spaces.

Definition 2.1. Let (Y, v, \circledast) be a PN space. Then $y = (y_{mn})$ is termed as $S_{\theta_{rs}}^{\bar{\alpha}}$ -convergent to p in PN space Y, if for every $\epsilon > 0$ and $\lambda \in (0, 1)$

$$\delta_{\theta_{rs}}^{\bar{\alpha}}\{(m,n)\in I_r\times I_s: \upsilon_{y_{mn}-p}(\epsilon)\leq 1-\lambda\}=0$$

i.e.,

$$\frac{1}{h_r^{\alpha_1}h_s^{\alpha_2}}|\{(m,n)\in I_r\times I_s: v_{y_{mn}-p}(\epsilon)\leq 1-\lambda\}|=0.$$

Theorem 2.1. Suppose (Y, v, \circledast) is a PN space. If $y = (y_{mn})$ is $S_{\theta_{rs}}^{\bar{\alpha}}$ -convergent in PN space Y, then the limit is unique.

Proof. Suppose that $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y = p_1$ and $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y = p_2$. For given $\epsilon > 0, t > 0$. Take $\lambda \in (0, 1)$ such that

$$(1-\lambda) \circledast (1-\lambda) \ge 1-t.$$

Define,

$$A(\lambda, \epsilon) = \{(m, n) \in I_r \times I_s : v_{y_{mn}-p_1}(\frac{\epsilon}{2}) \le 1 - \lambda\},\$$
$$B(\lambda, \epsilon) = \{(m, n) \in I_r \times I_s : v_{y_{mn}-p_2}(\frac{\epsilon}{2}) \le 1 - \lambda\}.$$

As $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y = p_1$ and $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y = p_2$, therefore $\delta_{\theta_{rs}}^{\bar{\alpha}}(A(\lambda,\epsilon)) = 0$ and $\delta_{\theta_{rs}}^{\bar{\alpha}}(B(\lambda,\epsilon)) = 0$.

i.e.,

$$\frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |\{(m,n) \in I_r \times I_s : v_{y_{mn}-p_1}(\frac{\epsilon}{2}) \le 1-\lambda\}| = 0,$$

and

$$\frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |\{(m,n) \in I_r \times I_s : \upsilon_{y_{mn} - p_2}(\frac{\epsilon}{2}) \le 1 - \lambda\}| = 0.$$

Suppose

$$C(\lambda,\epsilon) = A(\lambda,\epsilon) \cap B(\lambda,\epsilon).$$

It gives $\delta_{\theta_{rs}}^{\bar{\alpha}}(C(\lambda,\epsilon)) = 0$, which implies $\delta_{\theta_{rs}}^{\bar{\alpha}}(C^c(\lambda,\epsilon)) = 1$. Suppose $(m,n) \in (C^c(\lambda,\epsilon))$, then

$$v_{p_1-p_2}(\epsilon) = v_{p_1+y_{mn}-y_{mn}-p_2}(\epsilon) = v_{y_{mn}-p_1+y_{mn}-p_2}(\frac{\epsilon}{2} + \frac{\epsilon}{2}) \ge v_{y_{mn}-p_1}(\frac{\epsilon}{2}) \circledast v_{y_{mn}-p_2}(\frac{\epsilon}{2}) \ge (1-\lambda) \circledast (1-\lambda) \ge 1-t.$$

Since t > 0 was arbitrary, So we have,

$$v_{p_1-p_2}(\epsilon) = 1,$$

which implies that

$$p_1 = p_2$$

Theorem 2.2. Let (y_{mn}) and (z_{mn}) be the double sequence in PN space Y then

GENERALIZED LACUNARY STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES ... 7261

- (1) If $S_{\theta_{rs}}^{\bar{\alpha}} \lim y_{mn} = p_1$ and $S_{\theta_{rs}}^{\bar{\alpha}} \lim z_{mn} = p_2$ then $S_{\theta_{rs}}^{\bar{\alpha}} - \lim (y_{mn} + z_{mn}) = p_1 + p_2.$ (2) If $S^{\bar{\alpha}} - \lim y_{mn} = p_1$ and $a \in R$ then $S^{\bar{\alpha}} - \lim (ay_{mn}) = ap_2$
- (2) If $S_{\theta_{rs}}^{\bar{\alpha}} \lim y_{mn} = p_1$ and $a \in R$ then $S_{\theta_{rs}}^{\bar{\alpha}} \lim (ay_{mn}) = ap_1$.

Proof. (1) Suppose that $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y_{mn} = p_1$ and $S_{\theta_{rs}}^{\bar{\alpha}} - \lim z_{mn} = p_2$. For given $\epsilon > 0$ and t > 0, take $\lambda \in (0, 1)$ such that

$$(1-\lambda) \circledast (1-\lambda) > (1-t).$$

Define,

$$A(\lambda, \epsilon) = \{ (m, n) \in I_r \times I_s : v_{y_{mn}-p_1}(\frac{\epsilon}{2}) \le 1 - \lambda \}$$

and

$$B(\lambda,\epsilon) = \{(m,n) \in I_r \times I_s : v_{z_{mn}-p_2}(\frac{\epsilon}{2}) \le 1-\lambda\}.$$

As $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y_{mn} = p_1$ and $S_{\theta_{rs}}^{\bar{\alpha}} - \lim z_{mn} = p_2$, therefore $\delta_{\theta_{rs}}^{\bar{\alpha}}(A(\lambda, \epsilon)) = 0$ and $\delta_{\theta_{rs}}^{\bar{\alpha}}(B(\lambda, \epsilon)) = 0$.

Let $(m, n) \notin A(\lambda, \epsilon) \cup B(\lambda, \epsilon)$ then

$$v_{y_{mn}+z_{mn}-p_1-p_2}(\epsilon) \ge v_{y_{mn}-p_1}(\frac{\epsilon}{2}) \circledast v_{z_{mn}-p_2}(\frac{\epsilon}{2}) > (1-\lambda) \circledast (1-\lambda) > 1-t$$

which implies that

$$\{(m,n)\in I_r\times I_s: v_{y_{mn}+z_{mn}-p_1-p_2}(\epsilon)\leq 1-t\}\subseteq A(\lambda,\epsilon)\cup B(\lambda,\epsilon)$$

i.e.,

$$\delta^{\bar{\alpha}}_{\theta_{rs}}\{(m,n)\in I_r\times I_s: v_{y_{mn}+z_{mn}-p_1-p_2}(\epsilon)\leq 1-t\}\subseteq \delta^{\bar{\alpha}}_{\theta_{rs}}(A(\lambda,\epsilon))\cup \delta^{\bar{\alpha}}_{\theta_{rs}}(B(\lambda,\epsilon)).$$

Hence

$$S^{\alpha}_{\theta_{rs}} - \lim(y_{mn} + z_{mn}) = p_1 + p_2.$$

(2) Suppose that $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y_{mn} = p_1$. Let $a \neq 0$. For each $\epsilon > 0$ and $\lambda \in (0, 1)$. Define,

$$A(\lambda,\epsilon) = \{(m,n) \in I_r \times I_s : v_{y_{mn}-p_1}(\epsilon) \le 1-\lambda\}$$

As $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y_{mn} = p_1$, therefore $\delta_{\theta_{rs}}^{\bar{\alpha}}(A(\lambda, \epsilon)) = 0$. Let $(m, n) \notin A(\lambda, \epsilon)$ then

$$\upsilon_{a(y_{mn}-p_1)}(\epsilon) = \upsilon_{y_{mn}-p_1}(\frac{\epsilon}{|a|}) \ge \upsilon_{y_{mn}-p_1}(\epsilon) \circledast \upsilon_o(\frac{\epsilon}{|a|}-\epsilon) = \upsilon_{y_{mn}-p_1}(\epsilon) > 1-\lambda$$

which implies that

$$\{(m,n)\in I_r\times I_s: v_{a(y_{mn}-p_1)}(\epsilon)\leq 1-\lambda\}\subseteq A(\lambda,\epsilon),\$$

i.e.,

$$\delta_{\theta_{rs}}^{\bar{\alpha}}\{(m,n)\in I_r\times I_s: \upsilon_{a(y_{mn}-p_1)}(\epsilon)\leq 1-\lambda\}\leq \delta_{\theta_{rs}}^{\bar{\alpha}}(A(\lambda,\epsilon))=0.$$

Let a = 0. For every $\epsilon > 0$ and $\lambda \in (0, 1)$

$$v_{0.y_{mn}-0.p_1}(\epsilon) = v_0(\epsilon) = 1 > 1 - \lambda.$$

This shows that $S_{\theta_{rs}}^{\bar{\alpha}} - \lim(ay_{mn}) = ap_1$.

Theorem 2.3. Let (Y, v, \circledast) be a PN space. If $y = (y_{mn})$ is v-convergent to p then it is $S_{\theta_{rs}}^{\bar{\alpha}}$ -convergent to p. But not conversely.

Proof. Suppose that $v - \lim y = p$. Then for every $\epsilon > 0$ and $\lambda \in (0, 1)$, \exists a pair (M, N) such that $\forall m \ge M$ and $n \ge N$, we have

$$v_{y_{mn}-p}(\epsilon) > 1 - \lambda.$$

So the set $\{(m,n) \in I_r \times I_s : v_{y_{mn}-p}(\epsilon) \leq 1-\lambda\}$ has $\delta_{\theta_{rs}}^{\bar{\alpha}}$ -density zero and hence

$$\frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |\{(m,n) \in I_r \times I_s : v_{y_{mn}-p}(\epsilon) \le 1-\lambda\}| = 0,$$

$$\lim y = p.$$

i.e., $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y = p$.

Next to show that the converse of above result does not hold in general which can be illustrated by the following Example.

Example 1. Let us consider the space of real numbers (R,|.|) under usual norm. Let $v_y(\epsilon) = 1 - e^{\left(\frac{-\epsilon}{|y|}\right)}$. Define the sequence $y = (y_{mn})$ by

$$y_{mn} = \begin{cases} mn & : m_r - [(h_r)^{(\frac{2}{3})}] + 1 \le m \le m_r, n_s - [(h_s)^{(\frac{2}{3})}] + 1 \le n \le n_s; \\ 0 & : otherwise. \end{cases}$$

For $\epsilon > 0$ and $\lambda \in (0, 1)$, Consider

$$A(\lambda, \epsilon) = \{ (m, n) \in I_r \times I_s : \upsilon_{y_{mn}}(\epsilon) \le 1 - \lambda \}$$

= $\{ (m, n) \in I_r \times I_s : 1 - e^{\frac{-\epsilon}{|y_{mn}|}} \le 1 - \lambda \},$
= $\{ (m, n) \in I_r \times I_s : e^{\frac{-\epsilon}{|y_{mn}|}} \ge \lambda \},$

7262

$$= \{(m,n) \in I_r \times I_s : \frac{1}{e^{\frac{-\epsilon}{|y_{mn}|}}} \leq \frac{1}{\lambda}\},\$$

$$= \{(m,n) \in I_r \times I_s : e^{\frac{\epsilon}{|y_{mn}|}} \leq \frac{1}{\lambda}\},\$$

$$= \{(m,n) \in I_r \times I_s : \frac{\epsilon}{|y_{mn}|} \leq \log(\frac{1}{\lambda})\},\$$

$$= \{(m,n) \in I_r \times I_s : |y_{mn}| \geq \frac{\epsilon}{\log(\frac{1}{\lambda})} > 0\},\$$

$$= \{(m,n) \in I_r \times I_s : y_{mn} = mn\},\$$

$$= \{(m,n) \in I_r \times I_s : m_r - [(h_r)^{(\frac{2}{3})}] + 1 \leq m \leq m_r,\$$

$$n_s - [(h_s)^{(\frac{2}{3})}] + 1 \leq n \leq n_s\}.$$

So,

$$\begin{aligned} \frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |A(\lambda, \epsilon)| &\leq \frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |\{(m, n) \in I_r \times I_s : m_r - [(h_r)^{(\frac{2}{3})}] + 1 \leq m \leq m_r, \\ n_s - [(h_s)^{(\frac{2}{3})}] + 1 \leq n \leq n_s\}| \\ \frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |A(\lambda, \epsilon)| &\leq \frac{(h_r)^{\frac{2}{3}} (h_s)^{\frac{2}{3}}}{h_r^{\alpha_1} h_s^{\alpha_2}}, \end{aligned}$$

Thus for $\bar{\alpha} > \frac{2}{3}$, $\lim_{r,s} \frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |A(\lambda, \epsilon)| = 0$ i.e., $y = (y_{mn})$ is $S_{\theta_{rs}}^{\bar{\alpha}}$ -convergent, but not v-convergent since

$$\upsilon_{y_{mn}}(\epsilon) = \begin{cases} 1 - e^{\frac{-\epsilon}{|y_{mn}|}} & : m_r - [(h_r)^{(\frac{2}{3})}] + 1 \le m \le m_r, n_s - [(h_s)^{(\frac{2}{3})}] + 1 \le n \le n_s; \\ 1 & : otherwise. \end{cases} \le 1$$

Theorem 2.4. Let (Y, v, \circledast) be a PN space and $0 < \bar{\alpha} \leq \bar{\beta} \leq 1$. Then $S_{\theta_{rs}}^{\bar{\alpha}} \subset S_{\theta_{rs}}^{\bar{\beta}}$. *Proof.* Suppose $y = (y_{mn})$ is $S_{\theta_{rs}}^{\bar{\alpha}}$ -convergent in PN space. Then for given $\epsilon > 0$ and $\lambda \in (0, 1)$ and $0 < \bar{\alpha} \leq \bar{\beta} \leq 1$ we have

$$\frac{1}{h_r^{\alpha_1}h_s^{\alpha_2}}|\{(m,n)\in I_r\times I_s: \upsilon_{y_{mn}-p}(\epsilon)\leq 1-\lambda\}|\leq \frac{1}{h_r^{\beta_1}h_s^{\beta_2}}|\{(m,n)\in I_r\times I_s: \upsilon_{y_{mn}-p}(\epsilon)\leq 1-\lambda\}|.$$

This gives that $S_{\theta_{rs}}^{\bar{\alpha}} \subseteq S_{\theta_{rs}}^{\bar{\beta}}$.

Theorem 2.5. Let (Y, v, \circledast) be a PN space. If $y = (y_{mn})$ is $S_{\theta_{rs}}^{\bar{\alpha}}$ -convergent in PN space Y then \exists a set $A = \{(m_i, n_i) : m_1 < m_2 < \cdots ; n_1 < n_2 < \cdots \}$ such that $\delta_{\theta_{rs}}^{\bar{\alpha}}(A) = 1$ with $v - \lim_i y_{m_i n_i} = p$.

Proof. Suppose that $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y = p$. Then for given $\epsilon > 0$ and $k \in N$ Define,

$$A(k,\epsilon) = \{ (m,n) \in I_r \times I_s : v_{y_{mn}-p}(\epsilon) > 1 - \frac{1}{k} \}.$$

As $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y = p$, therefore $\delta_{\theta_{rs}}^{\bar{\alpha}}(A^c(k, \epsilon)) = 0$. So $\forall k \in N$, we have

$$A(k+1,\epsilon) \subset A(k,\epsilon)$$
.

Let $\{H_{ij}\}_{i,j\in N}$ is the increasing double sequence of non-negative numbers that is $\lim_{i,j} H_{ij} = \infty$.

Choose $(v_1, v_2) \in A(1, \epsilon)$ and choose another pair say $(v_3, v_4) \in A(2, \epsilon)$ such that $(v_3, v_4) > (v_1, v_2)$ we have $\frac{A(2, \epsilon)}{h_r^{\alpha_1} h_s^{\alpha_2}} > H_{22}$. Similarly we get $\frac{A(3, \epsilon)}{h_r^{\alpha_1} h_s^{\alpha_2}} > H_{33}$. Proceeding the same way then we get a double sequence of positive integer $(v_1, v_2) < (v_3, v_4) \cdots < (v_k, v_l) \cdots$ such that

$$\frac{A(k,\epsilon)}{h_r^{\alpha_1}h_s^{\alpha_2}} > H_{kk} \,.$$

Now let $A \subseteq I_r \times I_s$ such that every number of the interval $(h_{r-1}, h_r] \times (h_{s-1}, h_s]$ belongs to A. Further any number of the interval $(h_{r-1}, h_r] \times (h_{s-1}, h_s]$ belongs to A iff it belongs to $A(k, \epsilon)$. So,

$$\frac{A}{h_r^{\alpha_1}h_s^{\alpha_2}} \ge \frac{A(k,\epsilon)}{h_r^{\alpha_1}h_s^{\alpha_2}} > H_{kk}$$

which implies that

$$\delta^{\bar{\alpha}}_{\theta_{rs}}(A) = 1.$$

Let $\lambda \in (0, 1)$ and take $k \in N$ such that $\frac{1}{k} < \lambda$. Then \exists a natural number $r \geq k$ such that for all $(m, n) \geq (v_k, v_l)$

$$v_{y_{mn}-p}(\epsilon) > 1 - \frac{1}{r} > 1 - \frac{1}{k} > 1 - \lambda$$
.

So $y = (y_{mn})$ is $v - \lim_{i \to w} y_{m_i n_i} = p$.

7264

3. $S_{\theta_{rs}}^{\bar{\alpha}}$ – Cauchy in probabilistic normed spaces

Definition 3.1. Let (Y, v, \circledast) be a PN space. Then $y = (y_{mn})$ is termed as $S_{\theta_{rs}}^{\bar{\alpha}}$ -Cauchy in probabilistic normed space Y, if $\forall \epsilon > 0$ and $\lambda \in (0, 1) \exists$ a pair (\dot{M}, \dot{N}) such that $\forall m, m_1 \ge \dot{M}$ and $n, n_1 \ge \dot{N}$ we have

$$\delta_{\theta_{rs}}^{\bar{\alpha}}|\{(m,n)\in I_r\times I_s: \upsilon_{y_{mn}-y_{m_1n_1}}(\epsilon)\leq 1-\lambda\}|=0$$

i.e.,

$$\frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |\{(m,n) \in I_r \times I_s : v_{y_{mn} - y_{m_1 n_1}}(\epsilon) \le 1 - \lambda\}| = 0.$$

Theorem 3.1. Let (Y, v, \circledast) be a PN space. If $y = (y_{mn})$ is $S_{\theta_{rs}}^{\bar{\alpha}}$ -convergent then it is $S_{\theta_{rs}}^{\bar{\alpha}}$ -Cauchy in PN space Y.

Proof. Suppose that $S_{\theta_{rs}}^{\bar{\alpha}} - \lim y = p$. For any $\epsilon > 0$ and $\lambda \in (0, 1)$. Take $\lambda_1 > 0$

$$(1-\lambda) \circledast (1-\lambda) > (1-\lambda_1).$$

Define,

$$A(\lambda, \epsilon) = \{ (m, n) \in I_r \times I_s : \upsilon_{y_{mn}-p}(\frac{\epsilon}{2}) \le 1 - \lambda \}$$

which implies that

$$A^{c}(\lambda,\epsilon) = \{(m,n) \in I_{r} \times I_{s} : \upsilon_{y_{mn}-p}(\frac{\epsilon}{2}) > 1-\lambda\}.$$

As $S^{\bar{\alpha}}_{\theta_{rs}} - \lim y = p$, therefore $\delta^{\bar{\alpha}}_{\theta_{rs}}(A(\lambda, \epsilon)) = 0$ and $\delta^{\bar{\alpha}}_{\theta_{rs}}(A^c(\lambda, \epsilon)) = 1$. *i.e.*,

$$\delta_{\theta_{rs}}^{\bar{\alpha}}(A(\lambda,\epsilon)) = \frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |\{(m,n) \in I_r \times I_s : \upsilon_{y_{mn}-p}(\frac{\epsilon}{2}) \le 1-\lambda\}| = 0$$

and

$$\delta_{\theta_{rs}}^{\bar{\alpha}}(A^c(\lambda,\epsilon)) = \frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |\{(m,n) \in I_r \times I_s : v_{y_{mn}-p}(\frac{\epsilon}{2}) > 1-\lambda\}| = 1.$$

Let $(m_1, n_1) \in A^c(\lambda, \epsilon)$. Then $v_{y_{m_1n_1}-p}(\frac{\epsilon}{2}) > 1 - \lambda$. Define,

$$B(\lambda_1, \epsilon) = \{ (m, n) \in I_r \times I_s : \upsilon_{y_{mn} - y_{m_1 n_1}}(\epsilon) \le 1 - \lambda_1 \}.$$

Now we have to prove that $B(\lambda_1, \epsilon)$ is a subset of $A(\lambda, \epsilon)$. Suppose $(m, n) \in B(\lambda_1, \epsilon)$ Then, $v_{y_{mn}-y_{m_1n_1}}(\epsilon) \leq 1 - \lambda_1$. Let if possible

$$\upsilon_{y_{mn}-p}(\frac{\epsilon}{2}) > 1 - \lambda.$$

Then

$$1 - \lambda_1 \ge v_{y_{mn} - y_{m_1 n_1}}(\epsilon) \ge v_{y_{mn} - p}(\frac{\epsilon}{2}) \circledast v_{y_{m_1 n_1} - p}(\frac{\epsilon}{2}) > (1 - \lambda) \circledast (1 - \lambda) > (1 - \lambda_1),$$

which is not possible. So

$$v_{y_{mn}-p}(\frac{\epsilon}{2}) \le 1 - \lambda,$$

which implies that $(m, n) \in A(\lambda, \epsilon)$. Hence $B(\lambda_1, \epsilon) \subseteq A(\lambda, \epsilon)$. So, $y = (y_{mn})$ is $S_{\theta_{rs}}^{\bar{\alpha}}$ -Cauchy.

Theorem 3.2. Let (Y, v, \circledast) is a PN space. If $y = (y_{mn})$ is $S_{\theta_{rs}}^{\bar{\alpha}}$ -Cauchy in PN space Y then for any $\epsilon > 0$ and $\lambda \in (0, 1) \exists a$ set $A(\lambda, \epsilon) \subset I_r \times I_s$ with $\delta_{\theta_{rs}}^{\bar{\alpha}}(A(\lambda, \epsilon)) = 0$ such that $v_{y_{mn}-y_{m_1n_1}} > 1 - \lambda$ for any $(m, n), (m_1, n_1) \notin A(\lambda, \epsilon)$.

Proof. Let $\epsilon > 0$, $\lambda > 0$ and take $\lambda_1 \in (0, 1)$ such that

$$(1-\lambda_1) \circledast (1-\lambda_1) > 1-\lambda.$$

Since the double sequence $y = (y_{mn})$ is $S_{\theta_{rs}}^{\bar{\alpha}}$ -Cauchy. So \exists a non-negative integer \hat{M} and \hat{N} such that

$$\frac{1}{h_r^{\alpha_1} h_s^{\alpha_2}} |\{(m,n) \in I_r \times I_s : v_{y_{mn} - y_{\hat{M}\hat{N}}}(\frac{\epsilon}{2}) \le 1 - \lambda_1\}| = 0.$$

Define,

$$A(\lambda,\epsilon) = \{(m,n) \in I_r \times I_s : v_{y_{mn}-y_{\dot{M}\dot{N}}}(\frac{\epsilon}{2}) \le 1 - \lambda_1\},\$$

which implies that $\delta_{\theta_{rs}}^{\bar{\alpha}}(A(\lambda,\epsilon)) = 0$. If (m,n) and $(m_1,n_1) \notin A(\lambda,\epsilon)$ then, $v_{y_{mn}-y_{\hat{M}\hat{N}}}(\frac{\epsilon}{2}) > 1 - \lambda_1$ and $v_{y_{m_1n_1}-y_{\hat{M}\hat{N}}}(\frac{\epsilon}{2}) > 1 - \lambda_1$. So, we have $v_{y_{mn}-y_{m_1n_1}}(\epsilon) \ge v_{y_{mn}-y_{\hat{M}\hat{N}}}(\frac{\epsilon}{2}) \circledast v_{y_{m_1n_1}-y_{\hat{M}\hat{N}}}(\frac{\epsilon}{2}) > (1-\lambda_1) \circledast (1-\lambda_1) > 1 - \lambda$.

which implies that for any $(m, n), (m_1, n_1) \notin A(\lambda, \epsilon)$,

$$v_{y_{mn}-y_{m_1n_1}}(\epsilon) > 1 - \lambda.$$

References

- [1] M. CHAWLA, M. S. SAROA, V. KUMAR: On ∧-statistical convergence of order α in random 2-normed space, Miskolc Mathematical Notes, **16**(2) (2015), 1003–1015.
- [2] R. ÇOLAK: *Modern methods in analysis and its applications*, New Delhi, India: Anamaya Pub., 121–129, 2010.
- [3] R. ÇOLAK, Y. ALTIN: Statistical convergence of double sequences of order $\bar{\alpha}$, Journal of Function Spaces and Applications, **2013**, 2013.
- [4] R. ÇOLAK, Ç. A. BEKTAŞ: λ-statistical convergence of order α, Acta Mathematica Scientia, 31(3) (2011), 953–959.
- [5] H. FAST: Sur la convergence statistique, Colloquium mathematicae, 2 (1951), 241–244.
- [6] J. A. FRIDY: On statistical convergence, Analysis, 5(4): (1985), 301–314.
- [7] J. A. FRIDY, C. ORHAN: *Lacunary statistical convergence*, Pacific Journal of Mathematics, 160(1) (1993), 43–51.
- [8] S. KARAKUS: Statistical convergence on probabilistic normed spaces, Mathematical Communications, **12**(1) (2007), 11–23.
- [9] V. KUMAR, B. LAFUERZA-GUILLÉN: On ideal convergence of double sequences in probabilistic normed spaces, Acta Mathematica Sinica, English Series, 28(8) (2012), 1689–1700.
- [10] V. KUMAR, M. CHAWLA, M. S. SAROA: Some remarks on statistical summability of order α defined by generalized de la valléee-pousin mean Boletim da Sociedade Paranaense de Matemática, **33**(1) (2015), 147–156.
- [11] M. KARAKAŞ, M. ÇINAR, M. ET: On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory and Applications, **2013**, ID2013(1):33.
- [12] K. MENGER: Statistical metrics, Proceedings of the National Academy of Sciences of the United States of America, 28(12) (1942), 535.
- [13] S. A. MOHIUDDINE, E. SAVAŞ: Lacunary statistically convergent double sequences in probabilistic normed spaces, Annali Dell'Universita'Di Ferrara, 58(2) (2012), 331–339.
- [14] M. MURSALEEN, O. H. H. EDELY: Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications, 288(1) (2003), 223–23.
- [15] M. MURSALEEN, S. A. MOHIUDDINE: Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 41(5) (2009), 2414–2421.
- [16] M. MURSALEEN, S. A. MOHIUDDINE: On ideal convergence in probabilistic normed spaces, Mathematica slovaca, **62**(1): (2012), 49–62.
- [17] R. F. PATTERSON, E. SAVAŞ: Lacunary statistical convergence of double sequences, Mathematical Communications, 10(1) (2015), 55–61.
- [18] M. CHAWLA, R. ANTAL, V. KUMAR: Statistical ∧ -convergence in intuitionistic fuzzy normed spaces, Buletinul Academiei de Ştiinţe a Moldovei. Matematica, 91(3) (2019), 22–33.
- [19] E. SAVAŞ, S. A. MOHIUDDINE: $\bar{\lambda}$ -statistically convergent double sequences in probabilistic normed spaces, Mathematica Slovaca, **62**(1) (2012), 99–108.

- [20] B. SCHWEIZER ,A. SKLAR: Statistical metric spaces, Pacific J. Math, 10(1) (1960), 313– 334.
- [21] B. SCHWEIZER, A. SKLAR: Probabilistic metric spaces, Courier Corporation, 2011.

DEPARTMENT OF MATHEMATICS UNIVERSITY INSTITUTE OF SCIENCES CHANDIGARH UNIVERSITY, MOHALI, PUNJAB, INDIA *Email address*: chawlameenakshi7@gmail.com

DEPARTMENT OF MATHEMATICS UNIVERSITY INSTITUTE OF SCIENCES CHANDIGARH UNIVERSITY, MOHALI, PUNJAB, INDIA *Email address*: gargpalak1697@gmail.com