

Advances in Mathematics: Scientific Journal **9** (2020), no.9, 7283–7291 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.9.77

LAPLACIAN ENERGY'S ECCENTRICITY VERSION OF A FUZZY GRAPH

E. KARTHEEK, S. SHARIEF BASHA¹, AND RAJA DAS

ABSTRACT. The addition of absolute values of the eigen values of the adjacency matrix of \tilde{G} is equal to energy of a fuzzy graph \tilde{G} and the sum of absolute value of the difference between the eigen values of the Laplacian matrix of \tilde{G} and average degree of the vertices \tilde{G} ii identical to the Laplacian energy of a fuzzy graph \tilde{G} . The biggest distance from v to any other vertex u of \tilde{G} is known as the eccentricity of a vertex v and is signified by $\varepsilon_G(v)$ is. The total eccentricity of a fuzzy graph is denoted by $\xi(\tilde{G})$ and is equal to sum of eccentricities of all the vertices of the fuzzy graph. In this paper, we investigate the eccentricity version of Laplacian energy of a fuzzy graph \tilde{G} .

1. INTRODUCTION

Let \tilde{G} be a simple fuzzy graph with n vertices and m edges. Let the vertex and edge sets of \tilde{G} are denoted by σ and μ respectively. The degree of a vertex v is denoted by $d_{\tilde{G}}(v)$ is the sum of the membership values of edges incident with vi.e.,

$$d\left(v\right) = \sum_{u,v \in E} \mu\left(u,v\right) \,.$$

Consider any two vertices $u, v \in \sigma(\tilde{G})$, the distance among u and v is signified by $d_{\tilde{G}}(u, v)$ and is assumed by the length of the shortest path among them

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C72.

Key words and phrases. Eccentricity, Eigenvalues, Energy of fuzzy graph, Laplacian energy of fuzzy graph, Topological index.

i.e.,

$$d(\sigma(u_i), \sigma(v_j)) = \min \sum \mu(u_i, v_j)$$

We represent the sum of distances among $v \in V\left(\tilde{G}\right)$ and all additional vertices in \tilde{G} by $d\left(\frac{x}{y}\right)$ i.e $d\left(\frac{x}{y}\right) = \sum_{v \in V(G)} d_G(x, v)$.

The eccentricity of a vertex $\sigma(v)$, represented by $\xi_G\left(\sigma\left(\tilde{G}\right)\right)$, is the biggest distance from $\sigma(v)$ to some additional vertex $\sigma(u)$ of G. The total eccentricity of a fuzzy graph is denoted by $\xi\left(\tilde{G}\right)$ and is equal to sum of eccentricities of all the vertices of the fuzzy graph \tilde{G} .

Let the adjacency matrix be $A = [a_{ij}]$ of fuzzy graph \tilde{G} and let $\lambda_1, \lambda_2, ..., \lambda_n$ are eigen values of A i.e the eigen values of the fuzzy graph \tilde{G} . The energy of a fuzzy graph is introduced by Anajali N, Mathew S [1] in 2013 and demarcated as the addition of the absolute standards of its eigen values and is denoted by $E(\tilde{G})$. Then

$$E\left(\tilde{G}\right) = \sum_{i=1}^{n} |\lambda_i|$$

A large number of results on the fuzzy graph have been reported, see [8]. Beyond theory of fuzzy graph energy, other energy have been proposed and improved by different researchers. Let the diagonal matrix be $D(\tilde{G}) = [d_{ij}]$ related with the fuzzy graph \tilde{G} , where $d_{ij} = d_G(\sigma(v_i))$ and $d_{ij} = 0$ if $i \neq j$.

Again $L\left(\tilde{G}\right) = D\left(\tilde{G}\right) - A\left(\tilde{G}\right)$ is called the laplacian energy of fuzzy graph \tilde{G} is defined as [8]

$$LE\left(\tilde{G}\right) = \sum_{i=1}^{n} \left| \lambda_i - \frac{2\sum_{1 \le i \le j \le n} \mu\left(v_i, v_j\right)}{n} \right|$$

Various study on laplacian energy of fuzzy graphs were reported in the literature [1,3,8].

In this present study inspired by the work in [7], we investigate the laplacian energy of fuzzy graph's eccentricity version denoted by $LE_{\varepsilon}\left(\tilde{G}\right)$, we define the laplacian eccentricity matrix as $L_{\epsilon}\left(\tilde{G}\right) = \epsilon\left(\tilde{G}\right) - A\left(\tilde{G}\right)$ where $\varepsilon\left(\tilde{G}\right) = [e_{ij}]$ is $n \times n$ diagonal matrix of fuzzy graph \tilde{G} with $e_{ij} = \varepsilon_G (\sigma(v_i))$ and $e_{ij} = 0$ if $i \neq j$. $\varepsilon_G (\sigma(v_i))$ with eccentricity of the vertex $\sigma(v_i)$, $i = 1, 2, \cdots, n$.

Let the eigen values of the matrix $L_{\varepsilon}\left(\tilde{G}\right)$ be $\mu'_1, \mu'_2, ..., \mu'_n$. The eccentricity version of laplacian energy of the fuzzy graph \tilde{G} is demarcated as

$$EL_{\epsilon}\left(\tilde{G}\right) = \sum_{i=1}^{n} \left| \mu' - \frac{\zeta\left(\tilde{G}\right)}{n} \right|.$$

Recall that $\xi\left(\tilde{G}\right)/n$ is the average vertex eccentricity. In this paper, we first calculate some basic proportion and then establish some lower and upper bounds for $LE_{\varepsilon}\left(\tilde{G}\right)$.

2. MAIN RESULTS

We already know that, the ordinary and laplacian energy of fuzzy graph eigen values conform the succeeding associations

$$\sum_{i=1}^{n} \lambda_i = 0; \sum_{i=1}^{n} \lambda_i^2 = 2m; \sum_{i=1}^{n} \mu_i = 2m; \sum_{i=1}^{n} \mu_i^2 = 2m + \sum_{i=1}^{n} d(v_i)^2.$$

As the laplacian spectrum is denoted by $\mu'_1, \mu'_2, \cdots, \mu'_n$. Let $v'_i = \left| \mu'_i - \frac{\xi(\tilde{G})}{n} \right|$. In the following, we investigate some basic properties of μ'_i and v'_i .

Lemma 2.1. The eigen values $\mu'_1, \mu'_2, \cdots, \mu'_n$ satisfies the following relations

(i)
$$\sum_{i=1}^{n} \mu'_{i} = \xi\left(\tilde{G}\right)$$
.
(ii) $\sum_{i=1}^{n} \mu'^{2}_{i} = E_{1}\left(\tilde{G}\right) + 2m$.

Proof.

(i) Subsequently the trace of a square matrix is equivalent to the addition of the eigen standards

$$\sum_{i=1}^{n} \mu'_{i} = tr\left(EL_{\varepsilon}\left(\tilde{G}\right)\right) = \sum_{i=1}^{n} \left[\varepsilon\left(v_{i}\right) - a_{ij}\right] = \xi\left(\tilde{G}\right).$$

(ii) Again we have

$$\sum_{i=1}^{n} \mu_i'^2 = tr \left[\left(\varepsilon \left(\tilde{G} \right) - A \left(\tilde{G} \right) \right) \left(\varepsilon \left(\tilde{G} \right) - A \left(\tilde{G} \right) \right)^T \right] \\ = tr \left[\left(\varepsilon \left(\tilde{G} \right) - A \left(\tilde{G} \right) \right) \left(\varepsilon \left(\tilde{G} \right)^T - A \left(\tilde{G} \right)^T \right) \right] \\ = tr \left[\left(\varepsilon \left(\tilde{G} \right) \varepsilon \left(\tilde{G} \right)^T - A \left(\tilde{G} \right) \varepsilon \left(\tilde{G} \right)^T - A \left(\tilde{G} \right)^T \varepsilon \left(\tilde{G} \right) - A \left(\tilde{G} \right) A \left(\tilde{G} \right)^T \right) \right] \\ = \sum_{i=1}^{n} \varepsilon \left(v_i \right)^2 + \sum_{i=1}^{n} \lambda_i^2 = E_1 \left(\tilde{G} \right) + 2m.$$

Lemma 2.2. The eigen values v'_1, v'_2, \dots, v'_n fulfils the succeeding associations

(i)
$$\sum_{i=1}^{n} v'_{i} = 0.$$

(ii) $\sum_{i=1}^{n} v'^{2}_{i} = E_{1}\left(\tilde{G}\right) - \frac{\xi(\tilde{G})}{n} + 2m.$

Proof. (i)

$$\sum_{i=1}^{n} v'_{i} = \sum_{i=1}^{n} \left[\mu'_{i} - \frac{\xi\left(\tilde{G}\right)}{n} \right]$$
$$= \sum_{i=1}^{n} \mu_{i} - \xi\left(\tilde{G}\right) = 0.$$

(ii)

$$\sum_{i=1}^{n} v_i'^2 = \sum_{i=1}^{n} \left[\mu_i' - \frac{\xi\left(\tilde{G}\right)}{n} \right]^2$$
$$= \sum_{i=1}^{n} \left[\mu_i'^2 - \frac{\xi\left(\tilde{G}\right)^2}{n^2} - 2\mu_i' \frac{\xi\left(\tilde{G}\right)}{n} \right]$$
$$= E_1\left(\tilde{G}\right) + 2m + \frac{\xi\left(\tilde{G}\right)^2}{n} - 2\frac{\xi\left(\tilde{G}\right)^2}{n}$$
$$= E_1\left(\tilde{G}\right) - \frac{\xi\left(\tilde{G}\right)^2}{n} + 2m.$$

Lemma 2.3. The eigen values v'_1, v'_2, \dots, v'_n fulfils the succeeding associations

$$\left|\sum_{i < j} v'_i v'_j\right| = \frac{1}{2} \left| E_1\left(\tilde{G}\right) - \frac{\xi\left(\tilde{G}\right)^2}{n} - 2m \right|.$$

Proof. Since $\sum_{i=1}^{n} v'_i = 0$. So we can write

$$\sum_{i=1}^{n} v_i'^2 = -2 \sum_{i < j} v_i' v_j'$$

$$2 \left| \sum_{i \le j} v_i' v_j' \right| = \sum_{i=1}^{n} v_i'^2 = E_1 \left(\tilde{G} \right) - \frac{\xi(\tilde{G})^2}{n} + 2m \cdot$$

Hence the desired result.

Next we investigate some upper and lower bounds of eccentricity version of laplacian energy of a fuzzy graph \tilde{G} .

Theorem 2.1. Let a associated fuzzy graph be \tilde{G} of n^{th} order and m^{th} size, then

$$EL_{\varepsilon}\left(\tilde{G}\right) \geq 2\sqrt{m+\frac{1}{2}\left(E_{1}\left(\tilde{G}\right)-\frac{\xi\left(\tilde{G}\right)^{2}}{n}\right)}.$$

Proof. We have from the definition

$$EL_{\varepsilon}(G) = \sum_{i=1}^{n} |v_i'|,$$

so we can write

$$EL_{\varepsilon}\left(\tilde{G}\right)^{2} = \sum_{i=1}^{n} v_{i}^{\prime 2} + 2\sum_{i < j} \left|v_{i}^{\prime}v_{j}^{\prime}\right|$$
$$\geq \left(E_{1}\left(\tilde{G}\right) - \frac{\xi(\tilde{G})^{2}}{n} + 2m\right) + 2\sum_{i < j} \left|v_{i}^{\prime}v_{j}^{\prime}\right| \cdot$$

By using Lemma 2.3, the result follows as

$$EL_{\varepsilon}\left(\tilde{G}\right)^{2} \geq \left(E_{1}\left(\tilde{G}\right) - \frac{\xi(\tilde{G})^{2}}{n} + 2m\right) + 2\frac{1}{2}\left(E_{1}\left(\tilde{G}\right) - \frac{\xi(\tilde{G})^{2}}{n} + 2m\right)$$
$$\geq 2\left(E_{1}\left(\tilde{G}\right) - \frac{\xi(\tilde{G})^{2}}{n} + 2m\right)$$

E. KARTHEEK, S. SHARIEF BASHA, AND R. DAS

$$EL_{\varepsilon}\left(\tilde{G}\right) \geq 2\sqrt{m + \frac{1}{2}\left(E_{1}\left(\tilde{G}\right) - \frac{\xi\left(\tilde{G}\right)^{2}}{n}\right)}.$$

Hence the proof.

Theorem 2.2. Let a associated fuzzy graph be \tilde{G} of n^{th} order and m^{th} size; and v'_1 and v'_n are maximum and minimum absolute values of v'_i 's then

$$EL_{\varepsilon}\left(\tilde{G}\right) \geq \sqrt{nE_1\left(\tilde{G}\right) - \xi\left(\tilde{G}\right)^2 + 2mn - \frac{n^2}{4}\left(v_1' - v_n'\right)^2}.$$

Proof. Let c_i and d_i , $1 \le i \le n$ are non-negative real numbers, then using the ozek's inequality [5]. We have

$$\sum_{i=1}^{n} c_i^2 \sum_{i=1}^{n} d_i^2 - \left(\sum_{i=1}^{n} c_i d_i\right) \le \frac{n^2}{4} \left(M_1 M_2 - m_1 m_2\right)^2 \,,$$

where $M_1 = \max(c_i)$, $m_1 = \min(c_i)$ and $M_2 = \max(d_i)$, $m_2 = \min(d_i)$. Let $c_i = |v'_i|$ and $d_i = 1$ then from the above inequality we have

$$\sum_{i=1}^{n} v_i'^2 \sum_{i=1}^{n} 1^2 - \left(\sum_{i=1}^{n} |v_i'|\right)^2 \le \frac{n^2}{4} (v_1' - v_n')^2$$
$$EL_S(G)^2 \ge n \sum_{i=1}^{n} |v_i'|^2 - \frac{n^2}{4} (v_1' - v_n')^2$$
$$EL_S(G)^2 \ge n \left(E_1(G) - \frac{\zeta(G)^2}{n} + 2m\right) - \frac{n^2}{4} (v_1' - v_n')^2$$
$$EL_\varepsilon \left(\tilde{G}\right) \ge \sqrt{nE_1\left(\tilde{G}\right) - \xi\left(\tilde{G}\right)^2 + 2mn - \frac{n^2}{4} (v_1' - v_n')^2}$$
$$EL_\varepsilon \left(\tilde{G}\right) \ge 2\sqrt{m + \frac{1}{2} \left(E_1\left(\tilde{G}\right) - \frac{\xi\left(\tilde{G}\right)^2}{n}\right)}.$$

Hence the desired proof.

7288

Theorem 2.3. Let a associated fuzzy graph be \tilde{G} of n^{th} order and m^{th} size and v'_1 and v'_n are maximum and minimum absolute values of v'_i s then

$$EL_{\varepsilon}\left(\tilde{G}\right) \geq \frac{1}{\left(v_{1}'+v_{n}'\right)}\left(E_{1}\left(\tilde{G}\right)-\frac{\xi\left(\tilde{G}\right)^{2}}{n}+2m+nv_{1}'v_{n}'\right)$$

Proof. Let c_i and d_i , $1 \le i \le n$ are being positive real numbers, then using the Diaz-Metcalf inequality [2]. We have

$$\sum_{i=1}^{n} d_i^2 + mM \sum_{i=1}^{n} c_i^2 \le (m+M) \left(\sum_{i=1}^{n} c_i d_i \right) \,,$$

where $mc_i \leq d_i \leq Mc_i$. Let $c_i = 1$ and $d_i = |v'_i|$ then from the above inequality we have

$$\sum_{i=1}^{n} |v_i'|^2 + v_1' v_n' \sum_{i=1}^{n} 1^2 \le (v_1' + v_n')^2 \left(\sum_{i=1}^{n} |v_i'|\right)$$
$$E_1\left(\tilde{G}\right) - \frac{\xi\left(\tilde{G}\right)^2}{n} + 2m + nv_1' v_n' \le (v_1' + v_n') EL_{\varepsilon}\left(\tilde{G}\right)$$
$$EL_{\varepsilon}\left(\tilde{G}\right) \ge \frac{1}{(v_1' + v_n')} \left(E_1\left(\tilde{G}\right) - \frac{\xi\left(\tilde{G}\right)^2}{n} + 2m + nv_1' v_n'\right).$$

Hence the desired proof.

Theorem 2.4. Let a connected fuzzy graph be \tilde{G} of n^{th} order and m^{th} size, then

$$EL_{\varepsilon}\left(\tilde{G}\right) \leq \sqrt{nE_1\left(\tilde{G}\right) - \xi\left(\tilde{G}\right)^2 + 2mn}.$$

Proof. Using the Cauchy-Schwartz inequality to the vertices $(|v'_1|, |v'_2|, ..., |v'_n|)$ and (1, 1, ..., 1), we have:

$$\sum_{i=1}^{n} |v_i'| \le \sqrt{n\left(\sum_{i=1}^{n} |v_i'|\right)^2}$$

Then from definition, we have

$$EL_{\varepsilon}\left(\tilde{G}\right) = \sum_{i=1}^{n} |v_i'| \le \sqrt{n\left(\sum_{i=1}^{n} |v_i'|\right)^2}$$

E. KARTHEEK, S. SHARIEF BASHA, AND R. DAS

$$EL_{\varepsilon}\left(\tilde{G}\right) \leq \sqrt{n\left(E_{1}\left(\tilde{G}\right) - \frac{\xi\left(\tilde{G}\right)^{2}}{n} + 2m\right)}$$
$$EL_{\varepsilon}\left(\tilde{G}\right) \leq \sqrt{nE_{1}\left(\tilde{G}\right) - \xi\left(\tilde{G}\right)^{2} + 2mn}.$$

Hence the desired result.

Theorem 2.5. Let a associated fuzzy graph be G of n^{th} order and m^{th} size, then

$$EL_{\varepsilon}\left(\tilde{G}\right) \geq \frac{2\sqrt{v_1'v_n'}}{v_1'+v'}\sqrt{nE_1\left(\tilde{G}\right)-\xi\left(\tilde{G}\right)^2+2mn}.$$

Proof. We have, from Polya-szego inequality [6] for non-negative real numbers c_i and d_i , $1 \le i \le n$.

$$\sum_{i=1}^{n} c_i^2 \sum_{i=1}^{n} d_i^2 \le \frac{1}{4} \left(\sqrt{\frac{M_1 M_2}{m_1 m_2}} + \sqrt{\frac{m_1 m_2}{M_1 M_2}} \right)^2 \left(\sum_{i=1}^{n} c_i d_i \right)^2,$$

where $M_1 = \max(c_i)$, $m_1 = \min(c_i)$ and $M_2 = \max(d_i)$, $m_2 = \min(d_i)$. Let $c_i = 1$ and $d_i = |v'_i|$ then from the above inequality

$$n\sum_{i=1}^{n} |v_{i}'|^{2} \sum_{i=1}^{n} 1^{2} \leq \frac{1}{4} \left(\sqrt{\frac{v_{n}'}{v_{1}'}} + \sqrt{\frac{v_{1}'}{v_{n}'}} \right)^{2} \left(\sum_{i=1}^{n} |v_{i}'| \right)^{2}$$
$$n\sum_{i=1}^{n} |v_{i}'|^{2} \leq \frac{1}{4} \left(\sqrt{\frac{v_{n}'}{v_{1}'}} + \sqrt{\frac{v_{1}'}{v_{n}'}} \right)^{2} \left(EL_{\varepsilon} \left(\tilde{G} \right) \right)^{2}$$
$$EL_{\varepsilon} \left(\tilde{G} \right) \geq \frac{2\sqrt{v_{1}'v_{n}'}}{v_{1}' + v'} \sqrt{nE_{1} \left(\tilde{G} \right) - \xi \left(\tilde{G} \right)^{2} + 2mn}.$$

Hence the desired result.

3. CONCLUSION

Here in paper, as we examine different properties and also lower and upper limits of laplacian energy 's eccentricity version of a fuzzy graph \tilde{G} . We observe that there is great analogy between the original laplacian energy and eccentricity version of laplacian energy whereas also has some distinct differences.

7290

References

- [1] M. N. ANJALI: *Energy of a fuzzy Graph*, Annals Fuzzy Maths and Informatics, **6**(2013), 455–465.
- [2] J. B. DIAZ, F. T. METCALF: Stronger forms of a class of inequalities of G. Palya G.Szego and L. V. Kantorovich, Bulletin of the AMS - American Mathematical Society, 69 (1963), 415–418.
- [3] I. GUTMANN, B. ZHOU: *Laplacian Energy of a Graph*, Linear Algebra and Its Applications, **414** (1963), 29–37.
- [4] J. N. MODERSON, P. S. NAIR: Fuzzy Graphs and Fuzzy hypergraphs, Springer-Verlag, Berlin, 2000.
- [5] N. OZEKI: On the estimation of inequalities by maximum and minimum values, J. College Arts Sci. Chiba Univ., 5 (1968), 199–203.
- [6] G. POLYA, G. SZEGO: *Problems and Theorems in analysis, Series, Integral Calculus*, Theory of Functions, Springer, Berlin, 1972.
- [7] R. SHARAFDINI, H. PANAHBAR: Vertex Weighted Laplacian graph energy and other topological indices, J.Math. Nanosci., 6 (2016), 49–57.
- [8] R. S. SADEGH, F. FATMEH: Laplacian Energy of a Fuzzy Graph, Iranian Journal of Mathematical chemistry, 5 (2014), 1–10.

DEPARTMENT OF MATHEMATICS VELLORE INSTITUTE OF TECHNOLOGY VELLORE, INDIA - 632014 *Email address*: ekartheek82@gmail.com

DEPARTMENT OF MATHEMATICS VELLORE INSTITUTE OF TECHNOLOGY VELLORE, INDIA - 632014 Email address: shariefbasha.s@vit.ac.in

DEPARTMENT OF MATHEMATICS VELLORE INSTITUTE OF TECHNOLOGY VELLORE, INDIA - 632014 *Email address*: rajadasrkl@gmail.com