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ON FRACTIONAL Q-CALCULUS OF THE R-FUNCTION

CRISTINA GAMMENG1, U. K. SAHA, AND S. MAITY

ABSTRACT. The F-function and its generalization the R-function are of para-
mount significance in the fractional calculus. In this paper we establish 2 the-
orems that interconnects the R-function and the Riemann-Liouville fractional
q-integral and q-derivative operators. As special case, we get the fractional
q-integral and q-derivative of the F-function.

1. INTRODUCTION

The quantum calculus designated as the calculus devoid of limits, replaces
the classical derivative with the difference operator to assist the sets of non-
differentiable functions. The fractional q-calculus is the expansion of the regu-
lar fractional calculus in the q-theory. It has been employed in various areas of
physics, mathematics and engineerings. Al-Salam [5] initiated the conception
of q-fractional calculus. Subsequently Al-Salam [4],[5] and Agarwal [1] studied
cer- tain q-fractional derivatives and integrals.

The fractional q-integral of Riemann-Liouville type is is given as

(1.1) (Iϕq,hg)(x) =
1

Γq(ϕ)

∫ x

h

(x− qz)ϕ−1g(z)dqz, (ϕ ∈ R+) .
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Choosing the lower limit of integration h = 0, (1.1) takes the form

(1.2) (Iϕq g)(x) =
1

Γq(ϕ)

∫ x

0

(x− qz)ϕ−1g(z)dqz, (ϕ ∈ R+) .

The fractional q-derivative can be defined as:

(1.3) (Dϕ
q g)(x) = (I−ϕq g)(x) =

1

Γq(−ϕ)

∫ x

0

(x− qz)−ϕ−1g(z)dqz, ϕ < 0.

Of late, many new developments have been made in the field of fractional q- cal-
culus engaging these q-derivatives and integrals by numerous researchers, see
[2,3,6,7,8,11,12]. It was of immense benefit to discover a generalized function
which when differintegrated fractionally by whatsoever order, returned itself. A
function as such could enormously simplify the evaluation of fractional order
differential equations.

The R-function [9] is defined as

Rρ,σ(a, c, x) ≡
∞∑
m=0

am(x− c)(m+1)ρ−1−σ

Γ((m+ 1)ρ− σ)
, x > c ≥ 0, ρ ≥ 0, Re(ρ− σ) > 0 .

Hartley and Lorenzo formulated a function that would straight away influence
the result of the fractional order fundamental linear differential equation and
named it as the F-function.

The F-function [9] is defined as

(1.4) Fρ(a, x) ≡
∞∑
m=0

am(x)(m+1)ρ−1

Γ((m+ 1)ρ)
, ρ > 0 .

They also showed that the F-function satisfied that which, the Oldham and
Spanier (1974) referred to as the eigen function property. Earlier Robotnov
(1969,1980) [10] had examined this function in detailed with respect to the
hered- itary integrals for utilization in solid mechanics. F-function and its gen-
eralization the R-function are of extreme importance in finding solutions of fun-
damental linear differential equation.

2. MAIN RESULT

In this segment, we present the q-integral and q-derivative formula associated
with the R-function. Also, as special case we get the fractional q-integral and
q-derivative of the F-function.
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Theorem 2.1. Let x > c ≥ 0, ρ ≥ 0, Re(ρ − σ) > 0 and Iϕq be the fractional
q-integral operator, then:

Iϕq [Rρ,σ(a, c, x)] =
∞∑
m=0

am

Γ((m+ 1)ρ− σ)
Iϕq (x− c)(m+1)ρ−1−σ .

Proof.

Ω ≡ Iϕq [Rρ,σ(a, c, x)]

=
1

Γq(ϕ)

∫ x

0

(x− qz)ϕ−1Rρ,σ(a, c, z)dqz

=
1

Γq(ϕ)

∫ x

0

(x− qz)ϕ−1
∞∑
m=0

am(z − c)(m+1)ρ−1−σ

Γ((m+ 1)ρ− σ)
dqz .

Shifting the integration and summation order, we get:

=
∞∑
m=0

am

Γ((m+ 1)ρ− σ)

1

Γq(ϕ)

∫ x

0

(x− qz)ϕ−1(z − c)(m+1)ρ−1−σdqz

=
∞∑
m=0

am

Γ((m+ 1)ρ− σ)
Iϕq (x− c)(m+1)ρ−1−σ .

Corollary 2.1. For c = 0, σ = 0, there holds the formula

Iϕq [Rρ(a, 0, x)] =
∞∑
m=0

am

Γ((m+ 1)ρ)
Iϕq (x)(m+1)ρ−1

is the fractional q-integral of F-function, that can be calculated by using (1.2) and
(1.4).

Corollary 2.2. For c = 0, σ = 0,m = 1, there holds the formula

Iϕq [Rρ(a, x)] =
a

Γ(2ρ)
Iϕq (x)2ρ−1 .

Theorem 2.2. Let x > c ≥ 0, ρ ≥ 0, Re(ρ − σ) > 0 and Dϕ
q be the fractional

q-derivative, then:

Dϕ
q [Rρ,σ(a, c, x)] =

∞∑
m=0

am

Γ((m+ 1)ρ− σ)
Dϕ
q (x− c)(m+1)ρ−1−σ .
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Proof.

Ω ≡ Dϕ
q [Rρ,σ(a, c, x)]

=
1

Γq(−ϕ)

∫ x

0

(x− qz)−ϕ−1Rρ,σ(a, c, z)dqz

=
1

Γq(−ϕ)

∫ x

0

(x− qz)−ϕ−1
∞∑
m=0

am(z − c)(m+1)ρ−1−σ

Γ((m+ 1)ρ− σ)
dqz .

Shifting the integration and summation order, we get:

=
∞∑
m=0

am

Γ((m+ 1)ρ− σ)

1

Γq(−ϕ)

∫ x

0

(x− qz)−ϕ−1(z − c)(m+1)ρ−1−σdqz

=
∞∑
m=0

am

Γ((m+ 1)ρ− σ)
Dϕ
q (x− c)(m+1)ρ−1−σ .

�

Corollary 2.3. For c = 0, σ = 0, theorem 2.4 reduces to

Dϕ
q [Rρ(a, 0, x)] =

∞∑
m=0

am

Γ((m+ 1)ρ)
Dϕ
q (x)(m+1)ρ−1 ,

which is the fractional q-derivative of F-function, that can be obtained by solving
(1.3) and (1.4).

Corollary 2.4. For c = 0, σ = 0,m = 1, the formula reduces to

Dϕ
q [Rρ(a, 0, x)] =

a

Γ(2ρ)
Dϕ
q (x)2ρ−1 .

3. CONCLUSION

It is contemplated that the outcomes of the study may find utilization in find-
ing solutions of fundamental linear fractional differential equation and frac-
tional order problems of physical sciences and engineering areas where the R-
function and F-function plays a pivotal role.
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