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ON FRACTIONAL Q-CALCULUS OF THE R-FUNCTION
CRISTINA GAMMENG!, U. K. SAHA, AND S. MAITY

ABSTRACT. The F-function and its generalization the R-function are of para-
mount significance in the fractional calculus. In this paper we establish 2 the-
orems that interconnects the R-function and the Riemann-Liouville fractional
g-integral and g-derivative operators. As special case, we get the fractional
g-integral and g-derivative of the F-function.

1. INTRODUCTION

The quantum calculus designated as the calculus devoid of limits, replaces
the classical derivative with the difference operator to assist the sets of non-
differentiable functions. The fractional g-calculus is the expansion of the regu-
lar fractional calculus in the g-theory. It has been employed in various areas of
physics, mathematics and engineerings. Al-Salam [5] initiated the conception
of g-fractional calculus. Subsequently Al-Salam [4],[5] and Agarwal [1] studied
cer- tain g-fractional derivatives and integrals.

The fractional g-integral of Riemann-Liouville type is is given as
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Choosing the lower limit of integration h = 0, (1.1) takes the form

1 T
1.2) 19)@) = 5 | 0= 2" gz o € B).
Ly(e) Jo
The fractional g-derivative can be defined as:

1

a3 (D)) = U0 = s / (= q2)g(2)dgzs i < 0.

Of late, many new developments have been made in the field of fractional g- cal-
culus engaging these g-derivatives and integrals by numerous researchers, see
[2,3,6,7,8,11,12]. It was of immense benefit to discover a generalized function
which when differintegrated fractionally by whatsoever order, returned itself. A
function as such could enormously simplify the evaluation of fractional order
differential equations.

The R-function [9] is defined as

X m(, _ S\(m+l)p—1-0c
R,,(a,c,x) = Z aI‘((QEm_T_)l) — ,t>c>0,p>0,Re(p—0)>0.
m=0 P

Hartley and Lorenzo formulated a function that would straight away influence
the result of the fractional order fundamental linear differential equation and
named it as the F-function.

The F-function [9] is defined as

> a™ (x)(m+1)p—1

(1.9 F,(a,z) = Z m

m=0
They also showed that the F-function satisfied that which, the Oldham and
Spanier (1974) referred to as the eigen function property. Earlier Robotnov
(1969,1980) [10] had examined this function in detailed with respect to the
hered- itary integrals for utilization in solid mechanics. F-function and its gen-
eralization the R-function are of extreme importance in finding solutions of fun-
damental linear differential equation.

,p>0.

2. MAIN RESULT

In this segment, we present the g-integral and g-derivative formula associated
with the R-function. Also, as special case we get the fractional g-integral and
g-derivative of the F-function.
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Theorem 2.1. Let z > ¢ > 0,p > 0,Re(p — o) > 0 and I? be the fractional
g-integral operator, then:

m+1)p—1—o
IP[R, 0 (a,c, )] mZ:OF m+1 )I(f(x—c)( )P .

Proof.
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Shifting the integration and summation order, we get:
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Corollary 2.1. For ¢ = 0,0 = 0, there holds the formula

I?[R,(a,0,2)] Z F(( (‘f(x)(m*l)p’l
m=0

is the fractional g-integral of F-function, that can be calculated by using (1.2) and
(1.4).

Corollary 2.2. For ¢ = 0,0 = 0,m = 1, there holds the formula

[f[Ry(a,z)] =

; I?(x)* 1,

a
I'(2p) 1
Theorem 2.2. Let v > ¢ > 0,p > 0, Re(p — o) > 0 and D¢ be the fractional
g-derivative, then:

m
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Proof.

Q = D?[R,.(a,c )]
1 /x S
- — r—qz) " R,(a,c,2)dyz
Fq<—90> 0 ( ) P ( ) q
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Shifting the integration and summation order, we get:
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Corollary 2.3. For ¢ = 0,0 = 0, theorem 2.4 reduces to

(m+1)p—1
D?[R,(a,0,z)] W;)F —— ;"(:1:) e

which is the fractional g-derivative of F-function, that can be obtained by solving
(1.3) and (1.4).

Corollary 2.4. For ¢ = 0,0 = 0,m = 1, the formula reduces to

D?(R,(a,0,2)] = ﬁDg’(x)%l .

3. CONCLUSION

It is contemplated that the outcomes of the study may find utilization in find-
ing solutions of fundamental linear fractional differential equation and frac-
tional order problems of physical sciences and engineering areas where the R-
function and F-function plays a pivotal role.
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