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ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF
NONLINEAR PARABOLIC PROBLEMS IN NONCONVEX

POLYGONAL DOMAINS

TAMAL PRAMANICK1 AND SHANTIRAM MAHATA

ABSTRACT. In this exposition, we consider the nonlinear parabolic problem
with homogeneous Dirichlet boundary condition in a plane nonconvex polygo-
nal domain. Due to the reentrant corner on the boundary, the singularity occurs
in the finite element solutions near the reentrant corner (cf. Grisvard [1]). As
a result, the rate of convergence which is optimal order in a convex polygonal
domain is reduced for the case of nonconvex polygonal domain. We analyze
the convergence properties in the L2-norm for both the spatially semidiscrete
and fully discrete methods.

1. INTRODUCTION

In this paper we focus our attention to the nonlinear parabolic initial-boundary
value problems in domains with nonsmooth boundaries. Consider the nonlinear
parabolic problem, for u = u(x, t),

ut −∇ · (a(u)∇u) = f(u) in Ω, t ∈ J,
u = 0 on ∂Ω, t ∈ J,

with u(·, 0) = v in Ω,

(1.1)
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where J = (0, T ], T > 0, be a finite interval in time and Ω be a nonconvex
polygonal domain in R2, with boundary ∂Ω. Also, define the smooth functions
a and f on R such that

0 < µ ≤ a(u) ≤M, |a′(u)|+ |f ′(u)| ≤ B, for u ∈ R.(1.2)

We assume that the above problem admits a unique solution.
Parabolic partial differential equations (PDEs) in nonconvex polygonal do-

mains appear in many applications such as heat conduction in chip design, envi-
ronment modeling, porous media flow, modeling of complex technical engines
and many others (cf. [2, 3]). There has been several considerable research to
solve nonlinear parabolic PDEs using finite element method (FEM) in convex
domains, see [4, 5]. In [6, 7], Chatzipantelidis et al. have been made an effort
to investigate the FEM for problems in nonconvex polygonal domains which
are mainly focused on linear models. The regularity of the solution of elliptic
problems in a nonconvex domain Ω can be found in [8,9].

For simplicity, we assume that ω is exactly one interior angle which is reen-
trant such that π < ω < 2π. We set β = π/ω, and hence 1/2 < β < 1. In
particular, for the case of L-shaped domain, ω = 3π/2 and β = 2/3. Assume that
O is the associated vertex at the origin and (r, θ) denotes the polar coordinates
describing the domain near O, with 0 < θ < ω. The singularity in the solution
will arise at the corner O with a leading term near O of the form

κ(f)rβsin(βθ),

where κ(f) 6= 0 in general, even when f is smooth. For further details on the
singular functions and the singular solutions, we refer to [1, 6, 7]. We show
that the order of convergence in the L2-norm for both the spatially semidiscrete
and fully discrete method is reduced from O(h2) (the order of convergence for
the convex domain) to O(h2β), due to the presence of singularity in the solu-
tion of (1.1) at the reentrant corner. All notations used throughout this paper
are followed from [10]. To the best of authors’ knowledge there are no litera-
ture available concerning FEM for nonlinear parabolic problems in nonconvex
domains.

The paper is organized as follows. In the next section we define the finite
element space corresponding to the triangulation of the domain Ω and describe
the elliptic projection which is used in the error estimates. Section 3 is devoted
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to a priori error estimates for the spatially semidiscrete scheme. In Section 4,
we derive a priori error estimates for the fully discrete backward Euler method.
Finally, some concluding remarks are presented in Section 5.

2. FINITE ELEMENT SOLUTION

In order to introduce the finite element space, let Th = {K} be the family
of quasiuniform triangulations of Ω with maxK∈Thdiam(K) ≤ h. The triangu-
lations are quasiuniform in the sense that there is some constant c > 0 such
that minK∈Thdiam(K) ≥ ch. The finite element discretizations for an L-shaped
domain are depicted in Figures 1 and 2.

Let Sh be the finite dimensional space corresponding to the triangulations Th
is defined by

Sh = {χ ∈ C : χ|K is linear, ∀K ∈ Th and χ|∂Ω = 0},

where C = C(Ω) be the space of continuous functions on Ω̄. Then the ap-
proximation with the finite elements leads to the semidiscrete problem to find
uh(t) = uh(·, t), belonging to Sh for t ∈ J̄ , such that

(uh,t, χ) + (a(uh)∇uh,∇χ) = (f(uh), χ) ∀χ ∈ Sh, t ∈ J,(2.1)

uh(0) = vh,

where vh is an approximation of v in Sh. Following [4], it is easy to notice that
the semidiscrete approximation (2.1) has a unique solution which is bounded
for t ∈ J .

To start the spatially semidiscrete error analysis for the semidiscrete problem
(2.1), we first introduce the elliptic projection ũh = ũh(t) in Sh of the exact
solution u defined by

(a(u(t))∇(ũh(t)− u(t)),∇χ) = 0 ∀χ ∈ Sh, t ≥ 0.(2.2)

Now we need some estimates for the error in this projection and therefore we
first derive the following lemma.

Lemma 2.1. Assume b = b(x) be a smooth function in Ω with 0 < µ ≤ b(x) ≤ M

for x ∈ Ω. Consider ξ ∈ H1+s(Ω) ∩H1
0 (Ω), and let ξh be defined by

(b∇(ξh − ξ),∇χ) = 0 ∀χ ∈ Sh.
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Then

‖∇(ξh − ξ)‖ ≤ C1h
β‖∆ξ‖H−1+s for β < s ≤ 1,(2.3)

and

‖ξh − ξ‖ ≤ C2h
2β‖∆ξ‖H−1+s for β < s ≤ 1.(2.4)

The constants C1 and C2 depends on µ and M and on the family of triangulations
Th. Also C2 depends on an upper bound for ∇b.

Proof. For any χ ∈ Sh, we have

µ‖∇(ξh − ξ)‖2 ≤ (b∇(ξh − ξ),∇(ξh − ξ))

= (b∇(ξh − ξ),∇(χ− ξ))

≤M‖∇(ξh − ξ)‖‖∇(χ− ξ)‖,

which implies

‖∇(ξh − ξ)‖ ≤ (M/µ)‖∇(χ− ξ)‖.

Following [6, Lemma 2.5], and with the standard interpolant Ihξ of ξ, we obtain

‖∇(ξh − ξ)‖ ≤ C1h
β‖∆ξ‖H−1+s for β < s ≤ 1,

which proofs (2.3). In order to show (2.4) we use the duality argument. For
this purpose, we consider the problem

−∇ · (b∇ψ) ≡ −b∆ψ −∇b · ∇ψ = ϕ in Ω, ψ = 0 on ∂Ω,(2.5)

and since, ‖ψ‖ ≤ C‖∇ψ‖ for ψ ∈ H1
0 , we have

µ‖∇ψ‖2 ≤ (b∇ψ,∇ψ) = (ϕ, ψ) ≤ ‖ϕ‖‖ψ‖ ≤ C‖ϕ‖‖∇ψ‖,

which gives ‖∇ψ‖ ≤ C‖ϕ‖. Therefore, using the elliptic regularity estimate (see,
e.g. [6, Lemma 2.5], or Bacuta et al. [8]) and for boundedness of ∇b together
with equation (2.5), we get

‖∆ψ‖H−1+s ≤ C‖ϕ+∇b · ∇ψ‖ ≤ C‖ϕ‖.(2.6)
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Hence, with χ = Ihψ,

(ξh − ξ, ϕ) = (b∇(ξh − ξ),∇ψ)

= (b∇(ξh − ξ),∇(ψ − χ))

≤M‖∇(ξh − ξ)‖‖∇(ψ − χ)‖

≤ (Chβ‖∆ξ‖H−1+s)(Chβ‖∆ψ‖H−1+s)

≤ C2h
2β‖∆ξ‖H−1+s‖ϕ‖,

and this completes the proof of the lemma. �

3. SPATIALLY DISCRETE ERROR ANALYSIS

In this section we have concerned on some error estimates for the spatially
semidiscrete finite element approximation (2.1) of the parabolic problem (1.1).
For this purpose, we split the error term using the so called elliptic projection ũh
defined in (2.2) as a sum of two terms,

uh − u = (uh − ũh) + (ũh − u) = θ + ρ.(3.1)

Hence, for estimates the error we need to first estimate the terms ρ and ρt,
which is given in the following lemma.

Lemma 3.1. Let ρ be defined by (3.1) and C(u) is independent of t ∈ J . Then
under consideration the appropriate regularity assumptions on u, we have for t ∈
J , β < s ≤ 1,

‖ρ(t)‖+ hβ‖∇ρ(t)‖ ≤ C(u)h2β and ‖ρt(t)‖+ hβ‖∇ρt(t)‖ ≤ C(u)h2β.

Proof. Since ∇a(u) = a′(u)∇u, the first estimate easily follows from Lemma 2.1
with b(x) = a(u(x, t)).

For the second estimate, differentiating (2.2) we have

(a(u)∇ρt,∇χ) + (a(u)t∇ρ,∇χ) = 0 ∀χ ∈ Sh.
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FIGURE 1. Finite element discretizations for the L-shaped domain, ] triangles= 5178

and ] dof= 2702.

FIGURE 2. Further refinement made towards the nonconvex corner for the L-shaped
domain, ] triangles= 8646 and ] dof= 4468.

So, for uniformly boundedness of a(u) and a(u)t,

µ‖∇ρt‖2 ≤ (a(u)∇ρt,∇ρt)

= (a(u)∇ρt,∇(χ− ut)) + (a(u)∇ρt,∇(ũh,t − χ))

= (a(u)∇ρt,∇(χ− ut)) + (a(u)t∇ρ,∇(χ− ũh,t))

≤ C(‖∇ρt‖‖∇(χ− ut)‖+ ‖∇ρ‖‖∇(χ− ũh,t)‖)

≤ C
(
‖∇ρt‖‖∇(χ− ut)‖+ ‖∇ρ‖(‖∇(χ− ut)‖+ ‖∇ρt‖)

)
,
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following [4], with χ = Ihut and using Lemma 2.1, this yields

µ‖∇ρt‖2 ≤ µ

2
‖∇ρt‖2 + C‖∇ρ‖2 + C(u)h2β,

together with the previous estimate of ∇ρ already shown, we have ‖∇ρt‖ ≤
C(u)hβ.

Now for the estimate of ρt, we use the duality argument as in the proof of
Lemma 2.1. With b = a(u) and ψ defined as in (2.5), we have

(ρt, ϕ) = (a(u)∇ρt,∇ψ) = (a(u)∇ρt,∇(ψ − χ))− (a(u)t∇ρ,∇χ).(3.2)

Since a(u) is bounded by (1.2), hence using (2.2), the second term of the right
hand side of (3.2) gives

(a(u)t∇ρ,∇χ) =
a(u)t
a(u)

(a(u)∇ρ,∇χ) = 0,

and therefore, we have

(ρt, ϕ) = (a(u)∇ρt,∇(ψ − χ)),

choosing χ = Ihψ, together with (2.6) and with the estimates for∇ρt, we obtain

|(ρt, ϕ)| ≤ C‖∇ρt‖hβ‖∆ψ‖H−1+s ≤ C(u)h2β‖ϕ‖,

which gives, ‖ρt‖ ≤ C(u)h2β. This completes the proof. �

We are now ready to prove the following estimate in L2 for the error between
the solutions of the spatially semidiscrete problem (2.1) and the continuous
problem (1.1).

Theorem 3.1. Let uh and u be the solutions of (2.1) and (1.1), respectively. Then
under the assumption of (1.2), we have

‖uh(t)− u(t)‖ ≤ C‖vh − v‖+ C(u)h2β for β < s ≤ 1, t ∈ J̄ .

Proof. We first write the error term as in (3.1), and since ρ is bounded in view
of Lemma 3.1, so it remains to estimate θ. For χ ∈ Sh and using (2.2) yields

(θt, χ) + (a(uh)∇θ,∇χ)

= (uh,t, χ) + (a(uh)∇uh,∇χ)− (ũh,t, χ)− (a(uh)∇ũh,∇χ)

= (f(uh), χ)− (ũh,t − ut, χ)− (ut, χ)− (a(u)∇ũh,∇χ) + ((a(u)− a(uh))∇ũh,∇χ)

= (f(uh), χ)− (ρt, χ)− (ut, χ)− (a(u)∇u,∇χ) + ((a(u)− a(uh))∇ũh,∇χ),
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and thus

(θt, χ) + (a(uh)∇θ,∇χ) = (f(uh)− f(u), χ) + ((a(u)− a(uh))∇ũh,∇χ)− (ρt, χ).

(3.3)

Now, using (1.2) and (2.2),

µ‖∇ũh‖2 = µ(∇ũh,∇ũh) ≤ (a(u)∇ũh,∇ũh) = (a(u)∇u,∇ũh) ≤M(∇u,∇ũh),

which leads to ‖∇ũh‖ ≤ (M/µ)‖∇u‖ = C‖∇u‖, and this yields

‖∇ũh(t)‖ ≤ C(u).(3.4)

Therefore with χ = θ in (3.3), together with using (1.2) and (3.4), we have

1

2

d

dt
‖θ‖2 + µ‖∇θ‖2 ≤ C‖uh − u‖(‖θ‖+ ‖∇θ‖) + ‖ρt‖‖θ‖

≤ µ‖∇θ‖2 + C(‖θ‖2 + ‖ρ‖2 + ‖ρt‖2),

after integration this leads to

‖θ(t)‖2 ≤ ‖θ(0)‖2 + C

∫ t

0

(‖θ‖2 + ‖ρ‖2 + ‖ρt‖2)ds.

Now, using Gronwall’s lemma we obtain

‖θ(t)‖2 ≤ C‖θ(0)‖2 + C

∫ t

0

(‖ρ‖2 + ‖ρt‖2)ds,(3.5)

where C now depends on T . We have

‖θ(0)‖ ≤ ‖vh − v‖+ ‖ũh(0)− v‖ ≤ ‖vh − v‖+ Ch2β,(3.6)

where C = C(v). With this and together with Lemma 3.1 we obtain from (3.5)

‖θ(t)‖ ≤ C‖vh − v‖+ C(u)h2β,

and this completes the proof of the theorem. �
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4. FULLY DISCRETE ERROR ANALYSIS

Now we shall turn to the fully discrete scheme for the discretization with re-
spect to time variable of the spatially semidiscrete problem (2.1). We introduce
the backward Euler method and derive some a priori error estimates. Consider
a partitioning of the time interval J̄ = [0, T ] as

J̄ = {0} ∪ J1 ∪ J2 ∪ · · · ∪ JN

with subintervals Ji = (ti−1, ti] of size k and time points

0 = t0 < t1 < · · · tN−1 < tN = T,

where k denote the constant time step. Consider the backward Euler quotient
∂̄Un = (Un−Un−1)/k, where Un the approximation in Sh of un, with un = u(tn).
Then the backward Euler method is given by

(∂̄Un, χ) + (a(Un)∇Un,∇χ) = (f(Un), χ) ∀χ ∈ Sh, 1 ≤ n ≤ N,(4.1)

with U0 = vh.

The existence and uniqueness of the solution of (4.1) are easily follow from
the argument of [4]. Next, we are ready to prove the following estimate in L2

for the error between the solutions of the fully discrete problem (4.1) and the
continuous problem (1.1).

Theorem 4.1. Let Un and u be the solutions of (4.1) and (1.1), respectively. Then
under the assumption (1.2) we have, for small k,

‖Un − u(tn)‖ ≤ C‖vh − v‖+ C(u)(h2β + k),

for 0 ≤ n ≤ N , β < s ≤ 1.

Proof. With un = u(tn) and Ũn = ũh(tn), we first split the error term in two parts
θ and ρ as follows

Un − un = (Un − Ũn) + (Ũn − un) = θn + ρn,(4.2)

where ũh(tn) be the elliptic projection of un given in (2.2). Since, ρn is bounded
in view of Lemma 3.1, we only need to estimate θn. For χ ∈ Sh, using (2.2) and
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the weak form of the continuous problem we have

(∂̄θn, χ) + (a(Un)∇θn,∇χ)

= (∂̄Un, χ)− (∂̄Ũn, χ) + (a(Un)∇Un,∇χ)− (a(Un)∇Ũn,∇χ)

= (f(Un), χ)− (unt , χ)− (∂̄Ũn − unt , χ)− (a(un)∇Ũn,∇χ)− ((a(Un)− a(un))∇Ũn,∇χ)

= (f(Un), χ)− (unt , χ)− (∂̄Ũn − unt , χ)− (a(un)∇un,∇χ)− ((a(Un)− a(un))∇Ũn,∇χ),

and hence

(∂̄θn, χ) + (a(Un)∇θn,∇χ) = (f(Un)− f(un), χ)− (∂̄ρn, χ)− (∂̄un − unt , χ)

− ((a(Un)− a(un))∇Ũn,∇χ).

Choosing χ = θn, together with (1.2) and the boundedness of ∇Ũn in (3.4), we
obtain
1

2
∂̄‖θn‖2 + µ‖∇θn‖2 ≤ C‖Un − un‖(‖θn‖+ ‖∇θn‖) + (‖∂̄ρn‖+ ‖∂̄un − unt ‖)‖θn‖,

using (4.2) this yields

∂̄‖θn‖2 + µ‖∇θn‖2 ≤ C(‖θn‖2 + ‖∂̄ρn‖2 + ‖ρn‖2 + ‖∂̄un − unt ‖2) = C(‖θn‖2 + wn),

where wn = ‖∂̄ρn‖2 + ‖ρn‖2 + ‖∂̄un − unt ‖2. This reduce to

(1− Ck)‖θn‖2 ≤ ‖θn−1‖2 + Ckwn,

which gives

‖θn‖2 ≤ (1 + Ck)‖θn−1‖2 + Ckwn,

for small k. Then by repeated applications, for 1 ≤ n ≤ N ,

‖θn‖2 ≤ (1 + Ck)n‖θ0‖2 + Ck

n∑
j=1

(1 + Ck)n−jwj ≤ C‖θ0‖2 + Ck

n∑
j=1

wj.(4.3)

We need to estimate wj which includes three terms. Now from Lemma 3.1, we
obtain

‖ρj‖ ≤ C(u)h2β,

‖∂̄ρj‖ = ‖ρ
j − ρj−1

k
‖ = ‖k−1

∫ tj

tj−1

ρt ds‖ ≤ C(u)h2β,
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and

‖∂̄uj − ujt‖ = ‖k−1(uj − uj−1 − kujt)‖

= ‖k−1

∫ tj

tj−1

(s− tj−1)utt(s) ds‖ ≤ C(u)k.

Altogether these estimates, we have

wj = ‖∂̄ρj‖2 + ‖ρj‖2 + ‖∂̄uj − ujt‖2 ≤ C(u)(h2β + k)2,

with this and the estimate for θ0 in (3.6), we obtain from (4.3)

‖θn‖ ≤ C‖vh − v‖+ C(u)(h2β + k).

Hence the proof is complete. �

5. CONCLUSIONS

In this article, we have presented the finite element method for nonlinear
parabolic problems in nonconvex polygonal domains. A priori error bounds in
the L2-norm has been derived for both spatially semidiscrete and fully discrete
methods. The fully discrete scheme is based on the backward Euler method. The
derivation gives the convergence rate of order O(h2β) for β < s ≤ 1 with respect
to the space discretization and O(k) with respect to the time discretization.
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