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OPTIMAL CONTROL FOR THE MODIFIED MINIMAL MODEL OF THE
GLUCOSE-INSULIN DYNAMICS

NATCHAPON LEKDEE1, SANOE KOONPRASERT, AND SEKSON SIRISUBTAWEE

ABSTRACT. This article investigates an optimal control problem for the non-
autonomous modified minimal model of the glucose-insulin kinetics. We at-
tempt to control the blood glucose levels by providing a nutrient control for
increasing the blood insulin concentration. The analysis for the model based
on using Pontryagin’s maximum principle is carried out. The numerical simula-
tions for the optimal control system are graphically shown using the forward-
backward sweep method to see effects of the control on the behavior of the
modified minimal model.

1. INTRODUCTION

Diabetes mellitus is a metabolic disease that causes high blood sugar levels.
The hormone insulin moves sugar from the blood into cells to be stored or used
for energy. Insulin is a hormone produced by the pancreas, that regulates carbo-
hydrate metabolism in the body. If the pancreas produces less insulin or cannot
produce insulin then the residual glucose in the blood stream results in high
blood sugar levels causing diabetes. In 2017 [1], diabetes resulted in approxi-
mately 4.2 million deaths. It is the 7th leading cause of death both globally and
in the United States.
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For a number of years, scientists had attempted to build the relationship be-
tween amounts of glucose and insulin. The metabolism of glucose, involving
the secretion of its controlling hormone insulin by the pancreas, has been mod-
elled mathematically in many studies. Such models have been restricted to or-
dinary differential equations and delay differential equations. The most widely
used model in physiological research on the metabolism of glucose and insulin
is the so called a minimal model which is non-autonomous differential equa-
tions [2]. However, we will involve with the modified minimal model of the
glucose-insulin dynamics [3], which was adapted from the minimal model. The
modified model contains three first order differential equations which can be
written as follows

dG(t)

dt
= −[b1 +X(t)]G(t) + b1Gb

dX(t)

dt
= −b2X(t) + b3[I(t)− Ib](1.1)

dI(t)

dt
= −b6[I(t)− Ib] + b4max(0, G(t)− b5)t,

with the initial conditions G(0) = G0, X(0) = X0, I(0) = I0. The state vari-
ables in the model are the blood glucose concentration at time t denoted by
G(t) [mg/dl], the blood insulin concentration at time t denoted by I(t) [mU/l],
and the auxiliary function representing insulin-excitable tissue glucose uptake
activity denoted by X(t) [min−1], which is proportional to the insulin con-
centration in a distant compartment. The meaning of the positive parameters
b1, b2, b3, b4, b5, b6, Gb, Ib are given in [3]. However, there are drawbacks for min-
imal model as mentioned in [4]. The disadvantages of the system are that it
does not admit an equilibrium point and its solutions may not be bounded.

Recently, ideas of adding a controller into a system have been extensively
applied in many fields. This is because the behaviors of many systems have
some restrictions which can be better described using the controller [7]. In
this paper, we attempt to control the blood glucose levels in diabetic patients
using the optimal control in the modified model (1.1). Here our control u(t)
is some nutrients in order for increasing the blood insulin level. The rest of
the paper is arranged as follows. Section 2 presents the methodology of the
optimal control model. In Section 3, steps of numerical scheme for solving the
optimal control problem are described. In Section 4, numerical simulations for



OPTIMAL CONTROL OF THE GLUCOSE-INSULIN 7441

the optimal control model are given using the certain values of the parameters.
Finally, the conclusions are given in the last section.

2. METHODOLOGY

In this section, we will provide fundamental concepts for solving an optimal
control problem and then apply them to our problem.

2.1. OPTIMAL CONTROL FOR ORDINARY DIFFERENTIAL EQUATIONS. The
concepts for finding an optimal solution of the optimal control problem can be
found in [5]. The description of the idea, which is called Pontryagin’s maximum
principle, is as follows. Consider the following optimal control problem when f
and g are continuously differentiable functions in t, x, u:

(2.1) min
u

J(x, u),

where

(2.2) J(x, u) =

∫ t1

t0

f(t, x(t), u(t))dt,

subject to

x′(t) = g(t, x(t), u(t)),

x(t0) = x0 and x(t1) free.
(2.3)

We want to find a piecewise continuous optimal control u(t) and the associated
state variable x(t) to minimize the objective function J(x, u) in Eq. (2.2) subject
to the constraints in Eq. (2.3). The key technique for above optimal control
problem is to solve a set of necessary conditions that an optimal control and
corresponding state must satisfy. We define the Hamiltonian function H as

H(t, x, u, λ) = f(t, x(t), u(t)) + λg(t, x(t), u(t)),(2.4)

where f is the integrand of J(x, u) and g is the right hand side function of the
differential equation. We are minimizing H with respect to u at u∗ so we have

∂H

∂u
= 0 at u∗ ⇒ fu + λgu = 0 (optimality condition),

−∂H
∂x

= λ′ ⇒ λ′ = −(fx + λgx) (adjoint equation),
(2.5)
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and the transversality condition

λ(t1) = 0.(2.6)

We are given the dynamics of the state equation:

∂H

∂λ
= x′ = g(t, x, u), x(t0) = x0.(2.7)

In addition, the minimization condition

(2.8) H(t, x∗(t), u∗(t), λ∗(t)) = min
0<u≤umax

H(t, x∗(t), u(t), λ∗(t))

must hold for almost all t ∈ [t0, t1].

2.2. OPTIMAL CONTROL FOR THE NON-AUTONOMOUS MODIFIED MIN-
IMAL MODEL. In this section, we will establish the necessary conditions for
our optimal control problem using the idea as described above. We begin with
adding the control u(t) into the third eqaution of the modifeid minimal model
in Eq. (1.1). The control u(t) is some nutrients activating the enlargement of
insulin hormones so that the blood glucose level is reduced. The differential
equations for our optimal control problem become

dG(t)

dt
= −[b1 +X(t)]G(t) + b1Gb,

dX(t)

dt
= −b2X(t) + b3[I(t)− Ib],

dI(t)

dt
= −b6[I(t)− Ib] + b4max(0, G(t)− b5)t+ u(t).

(2.9)

where 0 < u(t) ≤ umax = 1 and the initial conditions are

G(0) = G0, X(0) = X0, I(0) = I0.(2.10)

The goal of the optimal control strategies is to minimize the blood glucose level
G(t). This is done by minimizing the following objective functional J defined by

J(G(t), u(t)) =

∫ T

0

A(G(t)− l)2 + u2(t)dt,(2.11)

where A is a weight parameter and l is a desired glucose level and by depending
on the differential equation system (2.9). In conclusion, we want to obtain the
control u(t) that minimizes the functional J subject to the constraints (2.9),
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(2.10) and free final conditions.
The Hamiltonian of our optimal control problem can be defined as

H = A(G(t)− l)2 + u2(t) + λG(−(b1 +X(t))G(t) + b1Gb),

+ λX(−b2X(t) + b3[I(t)− Ib]),

+ λI(−b6[I(t)− Ib] + b4max(0, G(t)− b5)t+ u(t)),(2.12)

where λG, λX and λI are the adjoint variables. Employing Eq. (2.7), we obtain
the control system or the state equations as

G′ =
∂H

∂λG
= −[b1 +X(t)]G(t) + b1Gb,

X ′ =
∂H

∂λX
= −b2X(t) + b3[I(t)− Ib],

I ′ =
∂H

∂λI
= −b6[I(t)− Ib] + b4max(0, G(t)− b5)t+ u(t).

(2.13)

Next applying the formula (2.5) to the functional H, the adjoint equations are
defined as

λ′G = −∂H
∂G

= −

[
2A(G(t)− l)− λG(b1 +X(t))

+ λImax
(
0,

(G(t)− b5)
|G(t)− b5|

)
b4t

]
,

λ′X = −∂H
∂X

= λGG(t) + λXb2,

λ′I = −
∂H

∂I
= λIb6 − λXb3,

(2.14)

with λG(T ) = 0, λX(T ) = 0, λI(T ) = 0. Solving ∂H
∂u

= 0 for u, we obtain the
optimal control u∗ as follows

∂H

∂u
= 2u∗ + λI = 0⇒ u∗ = −λI

2
.(2.15)

which given u∗ = −λI
2

.
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3. FORWARD AND BACKWARD SWEEP METHOD FOR SOLVING
OPTIMAL CONTROL MODIFIED MINIMAL MODEL

In this section, we apply the FBSM to solve our optimal control problem for
an optimal solution. The method is developed using the Adams type predictor-
corrector scheme (PECE) [6]. The rough outline of the forward and backward
sweep algorithm for our optimal control problem is as follows:

Step 1: Divide the interval [0, T ] into N subintervals of uniform length and set

the stepsize h = T
N

so we have tn = nh, n = 0, 1, ..., N .

Step 2: Choose an initial guess of the control u.

Step 3: Using the initial conditions and the guess value for u, we solve the
control system (2.13) forward in time using the PECE for the state solution
(Gn, Xn, In) computed via the following predictor formulas

GP
n+1 = G0 +

n∑
j=0

(−[b1 +Xj]Gj + b1Gb) ,

XP
n+1 = X0 +

n∑
j=0

(−b2Xj + b3[Ij − Ib]) ,

IPn+1 = I0 +
n∑
j=0

(−b6[Ij − Ib] + b4max(0, Gj − b5)tj + uj) ,

(3.1)

and the corrector formulas for the state variables

Gn+1 = G0 +
h

2

(
−[b1 +XP

n+1]G
P
n+1 + b1Gb

)
+
h

2
(−(b1 +X0)G0 + b1Gb)

+ h[
n∑
j=1

(−(b1 +Xj)Gj + b1Gb)],

Xn+1 = X0 +
h

2

(
−b2XP

n+1 + b3[I
P
n+1 − Ib]

)
+
h

2
(−b2X0 + b3[I0 − Ib]) ,

+ h[
n∑
j=1

(−b2Xj + b3[Ij − Ib])](3.2)
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In+1 = I0 +
h

2
[−b6[IPn+1 − Ib] + b4max(0, GP

n+1 − b5)tn+1

+ un+1] +
h

2
(−b6[I0 − Ib] + b4max(0, G0 − b5)t0 + u0)

+ h
n∑
j=1

(−b6[Ij − Ib] + b4max(0, Gj − b5)tj + uj) .

Step 4: Using the transversality conditions λG(T ) = λX(T ) = λI(T ) = 0 and the

values for u and (Gn, Xn, In), we solve the adjoint system (2.14) backward in
time using the PECE for the adjoint variable (λG,n, λX,n, λI,n) calculated through
the following predictor formulas

λPG,N−n−1 = h
n∑
j=0

[2A(GN−j − l)− λG,N−j(b1 +XN−j)

+ λI,N−jmax(0,
GN−j − b5
|GN−j − b5|

)b4tN−j],

λPX,N−n−1 = h
n∑
j=0

(−λG,N−jGN−j − λX,N−jb2) ,(3.3)

λPI,N−n−1 = h
n∑
j=0

(−λX,N−jb3 − λI,N−jb6) ,

and the corrector formulas

λG,N−n−1 =
h

2
(2A(GN − l)− λG,N(b1 +XN) + λI,Nmax(0,

GN − b5
|GN − b5|

)b4tN)

+ h[
n∑
j=1

(2A(GN−j − l)− λG,N−j(b1 +XN−j)

+ λI,N−jmax(0,
GN−j − b5
|GN−j − b5|

)b4tN−j]

+
h

2
[2A(GN−n−1 − l)− λPG,N−n−1(b1 +XN−j)

+ λPI,N−n−1max(0,
GN−n−1 − b5
|GN−n−1 − b5|

)b4tN−n−1)],
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λX,N−n−1 =
h

2
(−λG,NGN − λX,Nb2) + h[

n∑
j=1

(−λG,N−jGN − λX,N−jb2)(3.4)

+
h

2
[−λpG,N−n−1GN−n−1 − λPX,N−n−1b2)],

λI,N−n−1 =
h

2
(λX,Nb3 − λI,Nb6) + h[

n∑
j=1

(λX,N−jb3 − λI,N−jb6)

+
h

2
(λPX,N−n−1b3 − λPI,N−n−1b6),

where n = 0, 1, 2..N − 1.

Step 5: Update the control u by inserting the new solution (Gn, Xn, In) and
the new adjoint variable (λG,n, λX,n, λI,n) into Eq. (2.15) and then set u∗ =

min(1, −λI
2
).

Step 6: Check convergence for the control u∗, the solution (Gn, Xn, In) and the
adjoint variable (λG,n, λX,n, λI,n). If values of the variables in this iteration and
the last iteration are negligibly close, then the current values are as solutions. If
values are not close enough, return to Step 2.

4. NUMERICAL SIMULATIONS

In this section, we employ the schemes derived in Section 3 to compute nu-
merical solutions of the optimal control problem (2.9)-(2.11). The parame-
ter values [3] and the initial conditions are b1 = 0.1, b2 = 0.0142, b3 = 9.94 ×
10−5, b4 = 0.046, b5 = 82.9370, b6 = 0.2814, Ib = 7, Gb = 70, G0 = 180, X0 =

0, I0 = 60.
Figure 1 shows the numerical optimal solutions G(t), X(t), I(t) for the opti-

mal control problem in Eqs. (2.9)-(2.11), the transversality conditions λG(10) =
λX(10) = λI(10)=0, the weight parameter A = 1 and the desired glucose level
l = 135 (diabetic patient).

Figure 2 demonstrates the numerical optimal solutions G(t), X(t), I(t) for the
optimal control problem in Eqs. (2.9)-(2.11) based on using the parameter
values and initial conditions described in Table 2, the transversality conditions
λG(10) = λX(10) = λI(10)=0, the weight parameter A = 1 and the desired
glucose level l = 70 (normal person).
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FIGURE 1. The numerical solutionsG(t), X(t), I(t) and the control
u(t) of the optimal control problem (2.9)-(2.11) with the terminal
time T = 10 for a diabetic patient.

5. CONCLUSIONS

In this article, we have presented the optimal control problem for non-autono-
mous modified minimal model. The providing nutrients in order for increasing
the insulin level, which is interpreted as our control u(t), is used to control the
blood glucose level G(t). The analytical optimal solutions of the problem have
been obtained using the Pontryagin’s maximum principle. The numerical results
of the optimality system have been numerically simulated using the FBSM to
investigate the effect of the control u(t) and the desired glucose level l on the
behaviors of the optimal state solutions. Finally, the numerical results have been
obtained by following the obtained necessary conditions for the problem.
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FIGURE 2. The numerical solutionsG(t), X(t), I(t) and the control
u(t) of the optimal control problem (2.9)-(2.11) with the terminal
time T = 10 for a normal person.
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