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A NOTE ON PRIME GRAPH OF A SEMIRING

NABANITA GOSWAMI1 AND HELEN K. SAIKIA

ABSTRACT. Let S be a semiring (not necessarily commutative). In this paper,
we define the prime graph PG(S) of S and study some fundamental properties
of this graph. Also we study the interplay between some graph theoretic prop-
erties of PG(S) and algebraic properties of the semiring S. We prove that S is
a prime semiring if and only if the graph PG(S) is a tree.

1. INTRODUCTION

Semiring theory, which is a generalization of ring theory and the theory of dis-
tributive lattices has become an interesting branch for study in last few years.
The theory of semiring is applied in various areas of science like combinatorics
and graph theory, Euclidean geometry and topology, functional analysis, au-
tomata and formal language, mathematical modelling of quantum physics, prob-
ability theory etc, which is why it has achieved an importance in recent devel-
opment of theory. As semirings are generalizations of rings, it is very natural to
generalize different concepts of rings to semirings and many classical notions of
ring theory have been generalized to semiring.

In recent years, the investigation of graphs related to various algebraic struc-
tures like rings, semirings, modules etc. has emerged as an interesting area of
research. In 1988, I. Beck first introduced the notion of zero divisor graph of a
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commutative ring in [10]. Later on, in 1999 Anderson et al. [4] slightly modi-
fied this concept and defined the widely used definition of zero divisor graph of
a commutative ring and the various properties of this graph is extensively stud-
ied by many authors in the following years. Many researchers got motivated
by the notion of zero divisor graph of a commutative ring and they associated
graph with ring in various ways [1–3,12] different from the one in [4].

The study of zero-divisor graph and some of the other variants of graphs
related to ring has been extended to semiring and this area of research has also
grown rapidly in recent years. S.E. Atani [5,6] has studied the zero divisor graph
of a commutative semiring and some other graphs related to semiring have been
investigated in [8,9]. In the literature, we get many papers on assigning a graph
to different algebraic structures, for example see [7,14,15].

In 2010, Bhavanari et al. [11] introduced another interesting way to relate a
graph to a ring. They defined the prime graph of a ring R. It is defined as the
undirected graph PG(R) with all elements of R as vertices and any two distinct
vertices x and y are adjacent if and only if either xRy = 0 or yRx = 0. In
this paper, we generalize the notion of prime graph of a ring to semiring. For a
semiring S, we define the prime graph of S as the undirected graph PG(S) with
all elements of S as vertices and any two distinct vertices x and y are adjacent if
and only if either xSy = 0 or ySx = 0. We investigate various properties of this
graph and also study some interrelation between the graph theoretic properties
of PG(S) and algebraic properties of S.

2. PRELIMINARIES

In this section, we provide some definitions and notations that will be used
throughout the paper. For the basics of semiring and graph theory we follow the
books by Golan [13] and Harary [16] respectively.

Let G be a simple graph. A walk of G is an alternating sequence of vertices
and lines v0, e1, v1, · · · , vn−1, en, vn, beginning and ending with vertices, in which
each line is incident with the two vertices immediately preceding and following
it. It is said to be closed if v0 = vn. A closed walk is said to be a cycle provided
all of its n vertices are distinct and n ≥ 3. A cycle of length 3 is called as a
triangle. The graph G is called connected if every pair of distinct vertices are
joined by a path. G is said to be disconnected if it is not connected. The graph
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G is complete if every pair of distinct vertices are adjacent. The complete graph
with n vertices is denoted by Kn. If the vertex set V of the graph G can be
partitioned into two subsets V1 and V2 in such a way that every line of G joins
V1 with V2, then G is called a bipartite graph. A bipartite graph is said to be
complete if its vertex set V can be partitioned into two subsets V1 and V2 such
that each vertex of V1 is adjacent to each vertex of V2. Km,n is the notation used
to denote a complete bipartite graph, where m and n are the number of vertices
in V1 and V2 respectively. A star graph is a complete bipartite graph K1,n. A star
graph with n vertices is called a n-star graph. The graph G is said to be acyclic
if it has no cycles. If G is a connected acyclic graph then it is called a tree.
The distance d(x, y) between two distinct vertices x and y of G is the length of
a shortest path joining x and y, if any. Otherwise d(x, y) = ∞. The diameter
diam(G) of G is sup{d(x, y) | x and y are vertices of G}. Girth of the graph G

denoted by gr(G) is the length of a shortest cycle of G, if G contains a cycle;
otherwise gr(G) =∞.

Let G be a graph. If there exists a walk in G that traverses each line exactly
once, goes through all the vertices, and ends at the starting vertex, then G is
called Eulerian. In G a subset S of the vertex set of G is said to be a dominating
set for G if every vertex not in S is adjacent to atleast one member of S. The
domination number is defined as min{|S| : S is a dominating set in G}.

A non-empty set S is called a semiring if it is equipped with two binary opera-
tions + and ·, called addition and multiplication respectively such that (S,+) is
a commutative monoid and (S, ·) is a monoid with respective identity elements 0
and 1; moreover multiplication distributes over addition from either side and 0

is multiplicatively absorbing. If S commutes with respect to multiplication then
it is said to be a commutative semiring.

A left ideal of a semiring S is a non-empty subset I of S such that for a, b ∈
I, s ∈ S, a + b ∈ I and sa ∈ I; also I 6= S. A right ideal is defined in a similar
manner. A non-empty subset of a semiring S is said to be an ideal if it is both
left and right ideal. The ideals of a semiring are proper, namely S is not an ideal
of itself. An ideal I of a semiring S is called a subtractive ideal or a k−ideal if
and only if x ∈ I and x+ y ∈ I imply y ∈ I. An ideal P of a semiring S is called
prime if and only if whenever AB ⊆ P , for any ideals A,B of S, then either
A ⊆ P or B ⊆ P . The semiring S is said to be a prime semiring if 0 is a prime
ideal.
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3. ON THE PRIME GRAPH OF A SEMIRING

Throughout this section S will represent a semiring (not necessarily commuta-
tive), unless otherwise mentioned. Here, we study some fundamental properties
like connectedness, diameter, girth of the prime graph PG(S) of S.

Definition 3.1. The prime graph of a semiring S is defined as the undirected graph
PG(S) with all elements of S as vertices and any two distinct vertices x and y are
adjacent if and only if either xSy = 0 or ySx = 0.

Example 1. Let us consider the semiring B(n, i) = {0, 1, 2, · · · , (n − 1)} where
2 ≤ n is an integer and 0 ≤ i < n. The operations ⊕ and � on B(n, i) are defined
as follows: for x, y ∈ B(n, i), x ⊕ y = x + y if x + y ≤ n − 1 and, otherwise,
x⊕y = l where l ≡ (x+y)(mod(n− i)) and i ≤ l ≤ n−1. In a similar manner the
operation � is defined on B(n, i). If we take n = 3 and i = 1 then S = B(3, 1) is a
semiring with the operations as defined above. The graph PG(S) of S is as given
in Figure 1.

1

0

2

FIGURE 1. PG(S)

Theorem 3.1. The graph PG(S) is connected and diam(PG(S)) ≤ 2.

Proof. We have 0Sx = 0 for all non-zero x ∈ S and so in the graph PG(S) there
is an edge from the vertex 0 to all the other vertices of the graph. Now, if we
consider any two non-zero elements x, y of S, each of x and y will be connected
to the vertex 0 and hence x and y are also connected. Thus the graph PG(S) is
connected.

Moreover, we get that the degree of the 0 vertex is |S| − 1 and also d(0, x) = 1

and d(x, y) ≤ 2 for any two non-zero elements x, y in S. This implies that
diam(PG(S)) ≤ 2. �

Theorem 3.2. gr(PG(S)) = 3, if PG(S) contains a cycle.
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Proof. Suppose the graph PG(S) contains a cycle. We already have any non
zero vertex of the graph is adjacent to the vertex 0. Now if PG(S) contains a
cycle then we must have two non-zero vertices x, y which are adjacent. But the
vertices x and y are adjacent to the 0 vertex. Thus we get a 3-cycle and hence
gr(PG(S)) = 3. �

Theorem 3.3. For any two vertex x, y in S, xSy = 0 or ySx = 0 if and only if
d(x, y) = 1 or x = 0 or y = 0.

Proof. First we suppose that xSy = 0 and x 6= 0 6= y . Then x and y are adjacent
in PG(S) and so d(x, y) = 1.

For the converse part, we suppose d(x, y) = 1 or x = 0 or y = 0. If x = 0 or
y = 0, then clearly xSy = 0 (or ySx = 0). If d(x, y) = 1, and x 6= 0 6= y, then x

and y are adjacent in PG(S) which implies xSy = 0 or ySx = 0. �

Theorem 3.4. Let PG(S) be the prime graph of S. Then xSy 6= 0 if and only if
d(x, y) = 2.

Proof. First we suppose that for x, y in S, xSy 6= 0. Then x and y are not adjacent
in the graph PG(S) and so d(x, y) > 1. We know that every non-zero vertex of
a prime graph is adjacent to the vertex 0 and so both x and y are adjacent to 0

and hence d(x, y) = 2.
Conversely, we suppose that d(x, y) = 2. Then clearly there is no edge be-

tween x and y in PG(S) and hence xSy 6= 0. �

Theorem 3.5. If S is a commutative semiring with non-zero identity 1, then there
exists an edge between any two vertices x and y in PG(S) if and only if xy = 0.

Proof. First we suppose that there exists an edge between any two vertices x
and y in PG(S). Then by the definition of PG(S) we have xSy = 0. Since S is
commutative, xyS = 0 and as 1 ∈ S, xy = 0.

Conversely, suppose xy = 0. This implies xyS = 0 and as S is commutative,
we have xSy = 0. Thus there exists an edge between the two vertices x and y

in PG(S). �

Some Observations:

Let S be a semiring and PG(S) be its prime graph.

(i) The graph PG(S) is a simple graph, i.e. it does not contain any self
loops or multiple edges.
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(ii) If u, v are two non-zero elements in S such that uSv = 0, then the
subgraph generated by {0, u, v} is a triangle graph.

(iii) For the graph PG(S) the set {0} is a dominating set. This implies that
the domination number of PG(S) is 1.

(iv) Since 0 is adjacent to all the other vertices of PG(S), so n-star graph is
a subgraph of PG(S).

4. PRIME SEMIRINGS AND PRIME GRAPHS

Theorem 4.1. For a semiring S, following conditions are equivalent:

(i) S is a prime semiring.
(ii) PG(S) is a star graph.

(iii) PG(S) is a tree.

Proof. (i)⇒ (ii)

Let x and y be two elements of S such that they are adjacent in PG(S). Then by
the definition of the graph PG(S), x 6= y and either xSy = 0 or ySx = 0. Which
implies that either x = 0 or y = 0, as S is a prime semiring. This shows that 0 is
an endpoint of every edge of the graph PG(S) and hence PG(S) is a star graph.
(ii)⇒ (iii)

Follows obviously as every star graph is a tree.
(iii)⇒ (i)

Given that the graph PG(S) is a tree. To show that S is a prime semiring. If
possible we suppose that S is not a prime semiring. Then we have xSy = 0,
for two non-zero elements x, y in S. This implies that x and y are adjacent in
PG(S). Also we know that any non-zero element of S is adjacent to 0 in PG(S)
and so x and y are adjacent to 0. Thus it follows that {0, x, y} forms a cycle in
PG(S). This contradicts the fact that PG(S) is a tree and hence we get that S is
a prime semiring. �

Corollary 4.1. Let S be a semiring with |S| ≥ 2. Then S is prime if and only if the
diameter of the graph PG(S) is 2.

Corollary 4.2. Let S be a semiring. Then the following conditions are equivalent:

(i) S is not prime.
(ii) PG(S) is not a tree.
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(iii) PG(S) is not a star graph.
(iv) triangle is a subgraph of PG(S).
(v) there exists a chain of length greater than 2 in PG(S).

Proof. (i)⇔ (ii)⇔ (iii) follows from Theorem 4.1.
(iii)⇒ (iv)

Suppose that PG(S) is not a star graph. In the graph PG(S), the vertex 0 is
adjacent to all the other vertices and so PG(S) has a n-star graph as subgraph,
where n = |S|. As PG(S) is not a star graph there is an edge in the graph PG(S)
which is not in the n-star subgraph of PG(S). Let x and y be the two non-zero
vertices which forms this edge, i.e. they are adjacent in PG(S) and so {0, x, y}
forms a triangle. Hence triangle is a subgraph of PG(S).

(iv)⇒ (v)

Suppose triangle is a subgraph of PG(S). Let {0, x, y} forms a triangle in the
graph PG(S). Then clearly the edges connecting the vertices 0 and x, x and y,
y and 0 forms a chain of length 3 in PG(S).

(v)⇒ (ii)

Suppose there exists a chain of length greater than 2 in PG(S). Let p− q− r− s
be a chain of length 3 in PG(S). Then clearly p 6= q, q 6= r, r 6= s. Also p 6= r

and q 6= s, otherwise the chain will not be of length 3.
To show that PG(S) is not tree, we will show that PG(S) contains a triangle.
Case I: If all of p, q, r, s are non-zero, then clearly {p, q, 0} forms a triangle.
Case II: If p = 0. Then q 6= 0 as r 6= 0 and so {p, q, r} forms a triangle.
Case III: If q = 0. Then r 6= 0 as s 6= 0 and so {q, r, s} forms a triangle.
Case IV: If r = 0. Then p 6= 0 as q 6= 0 and so {r, p, q} forms a triangle.
Case V: If s = 0. Then q 6= 0 as r 6= 0 and so {s, q, r} forms a triangle.
Thus PG(S) is not a tree. �

Theorem 4.2. For a prime semiring S, PG(S) is not an Eulerian graph.

Proof. Let S be a prime semiring. Then PG(S) is a star graph centred at 0, by
Theorem 4.1. So the degree of any non-zero vertex x of PG(S) is 1, which an
odd number. But we know that the degree of each vertex of an Eulerian graph
is even and so PG(S) can not be an Eulerian graph. �

Notation: B(S) = {(x, y) | x 6= y, x 6= 0 6= y, xSy = 0 or ySx = 0} ⊆ S × S,
where S is a semiring.
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Corollary 4.3. (i) S is a prime semiring if and only if B(S) = φ.
(ii) The number of elements in B(S) is less than or equal to the number of

triangles in PG(S).
(iii) If B(S) 6= φ, then the length of the longest walk is ≥ 3.
(iv) B(S) 6= S × S.

Proof. (i) Let S be a prime semiring. Then PG(S) is a tree. So for any two
non-zero x, y ∈ S, xSy 6= 0. Thus B(S) = φ.

Conversely, if B(S) = φ, then clearly PG(S) is a tree and so it follows
from theorem 4.1 that S is prime.

(ii) Let (x, y) ∈ B(S). Then {0, x, y} form a triangle in PG(S). If (x, y), (u, v) ∈
B(S) such that (x, y) 6= (u, v), then x 6= u or y 6= v and so the triangle
{0, x, y} and {0, u, v} (in PG(S)) are distinct. This shows that the num-
ber of elements in B(S) is less than the number of triangles in PG(S).

(iii) Let (x, y) ∈ B(S). Then 0x, xy, y0 is a triangle. This walk is of length 3.
Hence the length of the longest walk is greater than or equal to 3.

(iv) Clearly B(S) ⊆ S×S. Also (x, x) ∈ S×S but it does not belong to B(S)

and so B(S) 6= S × S.
�
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