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RAYLEIGH WAVE PROPAGATION IN TWO-TEMPERATURE DUAL PHASE
LAG MODEL WITH IMPEDANCE BOUNDARY CONDITIONS

SONU SHARMA, S. KUMARI1, AND M. SINGH

ABSTRACT. In the research article, we discuss the propagation of Rayleigh wave
in two temperature with dual phase lag thermo-elasticity with impedance bound-
ary conditions. The governing equations are computed for the wave solutions
and satisfy the relevant boundary condition. The frequency equation is cal-
culated for thermally insulated and isothermal case and approximated for cal-
culating the numerical results for the dimensionless speed of Rayleigh wave.
The dimensionless velocity plotted against frequency and initial stress graph-
ically. The impact of various parameters in presence of Impedance Boundary
condition are shown graphically.

1. INTRODUCTION

Biot [1] introduced the classical dynamical coupled theory of thermo-elasticity
and extended to generalized theory of thermo-elasticity by Green and Lindsay
[2] and Lord and Shulman [3]. Later on, Ignaczak and Ostoja- Starzewski [4]
and Hetnarski and Ignaczak [5] was reviewed these theories in detailed and con-
clude that wave Speeds is to finite. Tzou [6-8] introduced the modern theory
known as dual phase lag thermo-elastic model, where the phonon-electron in-
teraction on microscopic level consider as retarding source of delayed response
on the macroscopic. The second law of thermo-dynamics for continuous bodies
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was proposed Gurtin and Williams [9]. Chen and Gurtin [10] introduced the
thermo-elasticity theory with two different temperatures i.e. as the conductive
temperature and T as thermodynamic temperature, where material parameter
.Warren and Chen [11] observed that the two temperatures and T are differ-
ent when the problem of wave propagation is involved. Puri and Jorden [12]
discussed the Harmonic plane wave propagation with the two-temperature the-
ory. Youssef [13] studied the generalized two-temperature thermo-elasticity.
Chandrasekhraiah and Srikantaiah [14] discussed the Rayleigh wave in temper-
ature rate dependent thermoelasticity. Ahmed and Abouelregal [15] discussed
the Rayleigh wave propagation under the dual phase lag thermo-elasticity in
an isotropic half space. The dual phase lag delay with two-temperature theory
delay was studied by Quintanilla et al. [16]. Singh et al. [17] investigated
the Rayleigh wave propagation in a two-temperature generalized thermoelas-
tic solid half–plane. The impedance boundary conditions with Rayleigh waves
are expressing in many fields of science and technology. We use Impedance
boundary conditions in the field of electro-magnetism and acoustics. The wave
propagation in an isotropic elastic solid covered with thin film of different ma-
terial which encountered impedance boundary conditions was studied by Tier-
sten [18]. The Rayleigh waves in an orthotropic and monoclinic half space
by boundary conditions was investigated by Vinh and Hue [19].The extended
Eringen’s theory of nonlocal elasticity to generalized thermoelasticity with dual
phase lag and voids introduced by Mondal et. al. [20]. In the present paper,
Rayleigh wave studied in context of dual phase lag thermo-elasticity under the
initial stress, two temperature and Impedance boundary conditions. The fre-
quency equation obtained from the governing equation by using the Surface
wave solution and satisfy the relevant boundary conditions. Rayleigh wave fre-
quency equation evaluated numerically to explore the influence of initial stress,
Impedance Boundary and two temperature parameters.

2. BASIC EQUATIONS

Following Singh et al. [17] the basic equations of transversely isotropic dual–
phase–lag thermo-elastic model in the absence of body forces and heat sources
are:
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(i) The equation of motion:

(2.1) σji,j + ρFi = ρüi,

(ii) The relationship between strain-stress-temperature:

(2.2) σij = (cijkl + δklpij)eklΘ,

(iii) The energy equation:

(2.3) −qi,j = ρT0Ṡ,

(iv)The relation of strain and displacement:

(2.4) eij =
1

2
(ui,j + uj,i),

(v) The modified Fourier’s law:

(2.5) −Kij(Θ,j + τθΘ̇,j) = qi + τ q̇i,

(vi)Relationship between Entropy-strain-temperature:

(2.6) ρS =
ρcE
T0

Θ− aijeij,

Using equation (5) and (6) in equation (3) we obtain

(2.7) (1 + τθ
∂1

∂t
)Kij(Φ11 + Φ33) = (1 + τθ

∂1

∂t
)(ρcE

∂Θ

∂t
+ T0βij

∂eij
∂t

)

The two-temperature relation:

(2.8) Φ−Θ = a?Φii

where ρ is the mass density, ui is the components of the displacement vector,
Kij are the components of the thermal conductivity component, σij is the stress
component, cijkl is the components of elastic constants, qi is component of heat
conduction, S is the entropy per unit mass, cE is the component of specific heat,
aij is the constitutive coefficients, pij is the initial stress component, Θ = T − T0

is small increment, a∗ is two temperature parameter, T is absolute temperature,
T0 is uniform temperature chosen such that | Θ

T0
≤ 1|, Φ is the conductive tem-

perature, τq is the phase-lag heat flux and τθ is the phase-lag of the gradient of
the temperature where 0 ≤ τθ ≤ τq. If we replace τθ = 0, τq = 0 then the dual
phase lag model is reduced to classical theory of thermo-elasticity. If we replace
τθ = 0 and τq by τθ then the dual phase lag thermo-elasticity is reduced to the
Lord Shulman theory of thermo-elasticity.
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3. FORMULATION OF PROBLEM AND SOLUTION

Consider a dual phase lag with initial stress and two-temperature thermo-
elastic solid half-space in transversely isotropic homogeneous medium and tak-
ing the x-z plane with (u1, 0, u3). Using equations (2.1) to (2.7) we get,

(c11 + p11)u1,11 + (c13 + c44 + p11)u3,13 + (c44 + p11)u1,33 − β1Θ,1 = ρü1(3.1)

(c44 + p11)u3,11 + (c13 + c44 + p11)u1,13 + (c33 + p33)u3,33 − β3Θ,3 = ρü3(3.2)

(1 + τθ
∂

∂t
)[K11Φ11 +K33Φ33] = (1 + τq

∂

∂t
)[ρcEΘ̇ + β1T0u̇1,1 + β3T0u̇3,3] .(3.3)

In this case of thermo-elastic Rayleigh wave half space is propagating in x-
direction, the function (u1, u3,Φ) are considered as follows:

(3.4) (u1, u3, Φ) = (φ1(z), φ3(z), ψ(z)) exp ιk(x− ct)

By using equation (2.8) into equations (3.1)-(3.3) and then using equation
(3.4), we obtain the three homogeneous equations in φ1, φ2 and ψ are as fol-
lows:
(3.5)

[k2(D2+
ρc2

c44 + p11

−c11 + p11

c44 + p11

)]φ1+ιk(
c13

c44 + p11

+1)Dφ3−
β1

c44 + p11

ιk[1−a∗(−k2+D2)]ψ = 0

(3.6)

ιk(
c13

c44 + p11

+1)Dφ1+[k2(
ρc2

c44 + p11

−1)+(
c33 + p33

c44 + p11

)D2]φ3−
β3

c44 + p11

[1−a∗(−k2+D2)]ψ = 0

(3.7)

ιk3ε
ρc2

c44 + p11

φ1+β̄εk2 ρc2

c44 + p11

Dφ3+[k2 ρc2

c44 + p11

(1− a∗(−k2 +D2))−K1
∗+K3

∗D2]ψ = 0

ε =
β1

2

ρ2cEc1
2
, τ ∗ =

τq + ι
w

1− ιwτθ
, K1

∗ =
K11

cE(c44 + p11)τ ∗
, K2

∗ =
K33

cE(c44 + p11)τ ∗
, β̄ =

β3

β1

.

The following auxiliary equation is the result of equations (3.5) to (3.7), as
given below:

(3.8) (D6 − PD4 +QD2 −R)(φ1, φ3, ψ) = 0 .
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The general solutions of equation (3.8) are as follows:

u1(z) = [
3∑
i=1

Pi exp−miz +Pi expmiz] expik(x−ct)(3.9)

u3(z) = [
3∑
i=1

Qi exp−miz +Qi expmiz] expik(x−ct)(3.10)

ψ(z) = [
3∑
i=1

Ri exp−miz +Ri expmiz] expik(x−ct) ,(3.11)

where Pi, Qi, Ri are the arbitrary constants, the roots of the equation are mi :

(3.12) m6 − Pm4 +Qm2 −R = 0.

The Equation (3.12) is cubic in m2 and its roots m1
2,m2

2,m3
2 are related as:

m1
2 +m2

2 +m3
2 = P

m1
2m2

2 +m2
2m3

2 +m3
2m1

2 = Q

m1
2m2

2m3
2 = R .

The roots are complex in general and here we have considered the surface
waves, W.L.O.G., we can assume that Re(mi) > 0 We choose only that form of
mi, which satisfies the radiation condition:

(3.13) u1(z), u3(z), φ(z)→ 0 as z →∞ .

With the help of condition (3.13), the solutions (3.9) to (3.11) reduces to
specific solutions in half plane z ≥ 0 as:

u1(z) = [
3∑
i=1

Pi exp−miz] expik(x−ct)(3.14)

u3(z) = [
3∑
i=1

Qi exp−miz] expik(x−ct)(3.15)

ψ(z) = [
3∑
i=1

Ri exp−miz] expik(x−ct) ,(3.16)

where Qi = FiPi and Ri = Fi
∗Pi

Fi =
−ιmi

k
[
β̄ρc2 − (c11 + p11) +

m2
i

k
(c44 + p11) + (c13 + c44 + p11)

β̄
m2

i

k2
(c13 + c44 + p11)− ρc2 − (c11 + p11) +

m2
i

k2
(c33 + p11)

]
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Fi
∗ =

−ιkε
β1

c44+p11

[
β̄ρc2 − (c11 + p11) +

m2
i

k
(c44 + p11) + (c13 + c44 + p11)

(1− a∗(−k2 +m2
i ))(εβ̄(c44 + p11) + c13) + (c13 + c44 + p11)(−K2

1

ρc2
+

m2
iK

∗
3

k2ρc2
)
] ,

where i = (1, 2, 3).

4. IMPEDANCE BOUNDARY CONDITION

The thermal and mechanical conditions at free surface z = 0 by using impedance
boundary conditions are:

σzz + wz2u3 = o(4.1)

σzx + wz1u1 = 0(4.2)
∂Θ

∂z
+ hΘ = 0 ,(4.3)

where h→ 0 correlate with the thermally insulated surface and h→∞ correlate
with the isothermal surface,

σ33 = (c33 + p33u3,3 + c13u1,1 − β1[Φ− a∗(Φ11 + Φ33)]

σ31 = c44(u1,3 + u3,1) .

Making use of solutions (3.14) to (3.16) in impedance boundary conditions
(4.1) to (4.3), we find the system of three homogeneous equations in P1, P2

and P3. The determinant of the co-efficient must vanish for the solution of the
homogeneous equation.

(4.4)
1− a∗(k2 −m2

1)m1F
∗
1 (X2Y3 −X3Y2)− 1− a∗(k2 −m2

2)m2F
∗
2 (X1Y3 −X3Y1)

+ 1− a∗(k2 −m2
3)m3F

∗
3 (X1Y2 −X2Y1)

= hm1F
∗
1P1(X2Y3 −X3Y2)−m2F

∗
2P2(X1Y3 −X3Y1) +m3F

∗
3P3(X1Y2 −X2Y1) ,

where

Xi = (c33 + p33)miFi − ιkc13 + β31− a∗(−k2 +m2
i )F

∗
i + wz2u3

Yi = (mi − ιkFi + wz1u1) ,

where (i = 1, 2, 3). The equation (4.4) is the required frequency equation of the
Rayleigh wave in two-temperature, dual phase lag with impedance boundary
condition of transversely isotropic thermo-elastic model.
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Particular cases
(a) The thermally insulated case h→ 0 the frequency equation (4.4) reduces to

1− a∗(−k2 −m1
2)m1Fi

∗(X2Y3−X3Y2)−1− a∗(k2 −m2
2)m2F2

∗(X1Y3−X3Y1)+

1− a∗(k2 −m3
2)m3F3

∗(X1Y2 −X2Y1) = 0 .

(b) For isothermal case h→ 0 the frequency equation (4.4) reduces to

m1F
∗
1 (X2Y3 −X3Y2)−m2F

∗
2 (X1Y3 −X3Y1) +m3F

∗
3 (X1Y2 −X2Y1) = 0 .

Special Cases
Case 1. In absence of two-temperature, impedance boundary parameter and
initial stress the frequency equation for the isotropic dual phase lag and initial
stress thermo-elastic half space (4.4) takes the form,

m1F1
∗(X2Y3 −X3Y2)−m2F2

∗(X1Y3 −X3Y1) +m3F3
∗(X1Y2 −X2Y1) = 0 ,

where Xi, Yi, Fi, Fi
∗ and mi calculated accordingly, the obtained equation is

same as the frequency equation of the Singh et. al. [17].
Case 2. In absence of dual phase lag, two temperature, Impedance bound-

ary parameter, initial stress for thermally insulated case the frequency equation
(4.4) reduces to frequency equation of Rayleigh wave.

(2− c2

c2
2
)2 =

√
4(1− c2

c2
2
)(1− c2

c2
2
) .

5. NUMERICAL RESULTS AND DISCUSSION

Following Chadwick and Sheet the Zinc parameter are considered for numer-
ical calculation as
C11 = 1.628∗1011Nm−2, C33 = 1.562∗1011Nm−2, C13 = 0.508∗1011Nm−2, C44 =

0.385∗1011Nm−2, K1 = 1.24∗102Wm−1deg−1, K3 = 1.34∗102Wm−1deg−1, β1 =

5.75∗106Nm−2deg−1, β1 = 5.17∗106Nm−2deg−1, cE = 3.9∗102JKg−1deg−1, ρ =

7.14 ∗ 103Kgm−3τq = 0.005s, τθ = 0.0005s, T0 = 296K

The non dimensional speed
ρc2

c11 + p11

is plotted against the frequency for the

various values of the two-temperature parameter a∗ = 0, 0.5, 1 in presence of



7532 S. SHARMA, S. KUMARI, AND M. SINGH

FIGURE 1

initial stress and impedance parameter. When a∗ = 0, 0.5 the speed slowly in-
creases as increase of the velocity. When a∗ = 1 the speed sharply increases with
increase of the frequency.

FIGURE 2

The non dimensional speed
ρc2

c11 + p11

is plotted against the initial stress pa-

rameter for the various values of two-temperature parameter a∗ = 0.02, 0.5 and
1.0 in presence of impedance parameter and frequency. Its shows that when
a∗ = 1 the non dimensional speed increase with increase of the initial stress and
a∗ = 0.5 it increases slowly with increase of initial stress and when a∗ = 0.02

speed decrease slowly and then slowly increase with increasing the initial stress
parameter.

6. CONCLUSION

The governing equation of Rayleigh wave lag with initial stress, two tempera-
ture thermo-elasticity with impedance boundary condition are specified in con-
text of dual phase lag model, Lord-Shulman and Green-Lindsay theory. These
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governing equation solved by the surface wave solution and satisfied the re-
quired boundary condition and frequency equation obtained.

(i) It has been observed that for the different values of two-temperature
the non dimensional speed increases with increase of the frequency in
presence of impedance boundary condition.

(ii) It has been observed that for different values of two temperature the non
dimensional speed against the initial stress in presence of impedance
boundary condition. For a∗ = 1, 0.5 the non dimensional speed increases
with increase of initial stress. For a∗ = 0.02, the non dimensional speed
decrease and then increases with increase of initial stress.
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