ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.10, 7711–7717 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.10.1 Spec. Issue on ACMAMP-2020

MULTI GRANULATION ON NANO SOFT TOPOLOGICAL SPACE

S.P.R. PRIYALATHA¹ AND WADEI. F. AL-OMERI

ABSTRACT. In this paper, we explore a nano soft topological space with a multi granulation is known as "Multi-Nano Soft Topological Space (MNSTS)". We study the characterization and properties of soft approximation space in MN-STS. Further, we define multi-nano soft interior and multi-nano soft closure an investigation is done on properties with a model.

1. INTRODUCTION

Molodtsov [5], in 1999, introduced the concept of soft set theory as a mathematical model for handling ambiguities that a known mathematical model can't hold. He has indicated a few applications of soft set theory for discovering answers for some practical problems, for example, financial matters, sociology, designing, clinical science, and so forth. In 1998, Lin [4] considered granular computing utilizing neighbourhood frameworks for the understanding of granules. Lellis Thivagar et.al [3] introduced a nano topological space. The notion of soft topological space which was formulated by Shabir and Naz [7], which is defined over an initial universe with a fixed set of parameters. Recently, the author has studied the soft set and nano topology [2]. The soft set relation was developed by Babitha.et.al. [1] and authors are studied and developed by the concept [8]. This paper we define nano soft topological space using a soft

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 54A05,68R10.

Key words and phrases. Multi-soft lower approximation, Multi-soft upper approximation, Multi-soft boundary region, Multi-soft nano interior, Multi-soft nano closure.

set based on multi granulation. We also derive the soft approximation space (\mathcal{U}, F_A) in multi-nano soft topological space. The properties of multi-soft lower and multi-soft upper approximations are discussed with an example. Further, we discuss the properties of multi-nano soft interior and multi-nano soft closure based on MNSTS with examples are given.

2. Preliminaries

In the current section, we recollect the some basic definitions of nano topology and soft set.

Definition 2.1. [5], [6] A soft set (F, A) denoted by F_A on the universe \mathcal{U} is defined by the set of ordered pairs $F_A = \{(e, F(e)) : e \in E, F(e) \in P(\mathcal{U})\}$, where $F : E \rightarrow P(\mathcal{U})$ such that $F(e) = \emptyset$ if $e \notin A$. Here, F is called an approximate function of the soft set F_A . The set F(e) is called e-approximate value set or e-approximate set which consists of related objects of the parameter $e \in E$.

Definition 2.2. [1] Let F_A and G_B be two soft sets over \mathcal{U} , then the Cartesian product of F_A and G_B is defined as, $F_A \times G_B = (H, A \times B)$, where $H : A \times B \rightarrow P(\mathcal{U} \times \mathcal{U})$ and $H(a, b) = F(a) \times G(b)$, where $\forall (a, b) \in A \times B$, i.e., $H(a, b) = \{(h_i, h_j) : h_i \in F(a) \text{ and } h_j \in G(b)\}$.

Definition 2.3. [8] Let R be a soft equivalence relation on F_A , then

- (i) soft reflexive if $F(a) \times F(a) \in R, \forall a \in A$.
- (*ii*) soft symmetric if $F(a) \times F(b) \in R \Rightarrow F(b) \times F(a) \in R, \forall a, b \in A$.
- (iii) soft transitive if $F(a) \times F(b) \in R, F(b) \times F(c) \in R \Rightarrow F(a) \times F(c) \in R, \forall a, b, c \in A.$

Definition 2.4. [1], [8] Let F_A be a soft set, then soft equivalence class of F(a) denoted by [F(a)] is defined as $[F(a)] = \{F(b) : F(a) \times F(b) \in R, \forall a, b \in A\}.$

Definition 2.5. [3] Let \mathcal{U} be a non-empty finite set of objects called the universe, \mathcal{R} be an equivalence relation on \mathcal{U} named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (\mathcal{U}, R) is said to be approximation space. Let $X \subseteq \mathcal{U}$.

(1) The Lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and it is denoted by

 $L_R(X)$. That is, $L_R(X) = \left\{ \bigcup_{x \in \mathcal{U}} \{R(x) : R(x) \subseteq X\} \right\}$, where R(x) denotes the equivalence class determined by x.

- (2) The Upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by $U_R(X) = \left\{ \bigcup_{X \in \mathcal{U}} \{R(x) : R(x) \cap X \neq \emptyset\} \right\}.$
- (3) The Boundary region of X with respect to R is the set of all objects which can be classified neither as X nor as not -X with respect to R and it is denoted by $B_R(X) = U_R(X) - L_R(X)$.

Definition 2.6. [3] Let \mathcal{U} be the universe, R be an equivalence relation on \mathcal{U} and $\tau_R(X) = {\mathcal{U}, \emptyset, L_R(X), U_R(X), B_R(X)}$ where $X \subseteq \mathcal{U}$. $\tau_R(X)$ satisfies the following axioms:

- (1) \mathcal{U} and $\emptyset \in \tau_R(X)$
- (2) The union of elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$.
- (3) The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

That is, $\tau_R(X)$ forms a topology on \mathcal{U} called as the nano topology on \mathcal{U} with respect to X. We call $\{\mathcal{U}, \tau_R(X)\}$ as the nano topological space.

3. BI-GRANULARITY SOFT APPROXIMATION SPACE BASED ON NANO SOFT TOPOLOGY

In this section, we define the nano soft topological space induced by multigranulation is said to be "Multi-Nano Soft Topological Space(MNSTS)" and their characterization are investigated.

Definition 3.1. Let \mathcal{U} be non-empty finite universe, F_A be a soft set over \mathcal{U} .Let M, N be a soft equivalence relation on $F_A \subseteq F_E$. Elements belonging to the soft equivalence class of F(a) denoted by [F(a)] are said to be soft indiscernible with one another. The ordered pair (\mathcal{U}, F_A) is said to be soft approximation space .Let $G_B \subseteq F_A$.

(i) If $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B) = \bigcup_{a \in A} \{ [F(a)] : [F(a)]_M \subseteq G_B \text{ or } [F(a)]_N \subseteq G_B \}$ is a multisoft lower approximation of F_A with respect to G_B .

S.P.R. PRIYALATHA¹ AND WADEI. F. AL-OMERI

- (*ii*) If $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B) = \bigcup_{a \in A} \{ [F(a)] : [F(a)]_M \cap G_B \neq \tilde{\emptyset} \}$ and $[F(a)]_N \cap G_B \neq \tilde{\emptyset} \}$ is a multi-soft upper approximation of F_A with respect to G_B .
- (*iii*) If $\mathcal{B}_{\mathcal{M}+\mathcal{N}}(G_B) = \mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B) \mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B)$ is a multi-soft boundary region of F_A with respect to G_B .

Definition 3.2. Let \mathcal{U} be a non empty finite set of objects called the universe, $F_A \subseteq F_E$ is an soft set over \mathcal{U} . Then (\mathcal{U}, F_A) is an ordered pair of soft approximation space and $\tilde{\tau}_{M+N}(G_B) = {\tilde{\mathcal{U}}, \tilde{\phi}, \mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B), \mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B), \mathcal{B}_{\mathcal{M}+\mathcal{N}}(G_B)}})$, where $G_B \subseteq F_A$. That is, $\tilde{\tau}_{M+N}(G_B)$ forms a multi-nano soft topology on \mathcal{U} having the at most five elements of soft set and triple ordered pair of $(\mathcal{U}, \tilde{\tau}_{M+N}, E)$ is called a multi-nano soft topological space over \mathcal{U} with respect to G_B , then the members of $\tilde{\tau}_{M+N}$ are said to be multi-nano soft open sets in \mathcal{U} .

Example 1. Let $\mathcal{U} = \{k_1, k_2, k_3, k_4, k_5, k_6\}$ be the universe, $E = \{d_1, d_2, d_3, d_4, d_5\}$ and $A = \{d_1, d_2, d_3, d_4\}$ be a set of parameters. Also, let $F_A = \{(d_1, \{k_1, k_2\}), (d_2, \{k_2, k_3\}), (d_3, \{k_2, k_3\}), (d_4, \{k_4, k_5\})\}$ and $G_B \subseteq F_A$, where $G_B = \{(d_1, \{k_1, k_2\}), (d_2, \{k_3\}), (d_3, \{k_2, k_3\})\}$ such that $F(d_1) = \{k_1, k_2\}, F(d_2) = \{k_3\}, F(d_3) = \{k_2, k_4\}, F(d_4) = \{k_4, k_5\}$ is a soft set over \mathcal{U} and $M = \{F(d_1) \times F(d_1), F(d_2) \times F(d_2), F(d_3) \times F(d_3), F(d_4) \times F(d_4), F(d_1) \times F(d_2), F(d_2) \times F(d_1)\}$ and $N = \{F(d_1) \times F(d_1), F(d_2) \times F(d_2), F(d_3) \times F(d_3), F(d_4) \times F(d_3), F(d_4) \times F(d_4), F(d_2) \times F(d_4), F(d_2) \times F(d_3), F(d_3) \times F(d_3), F(d_3) \times F(d_3), F(d_3) \times F(d_3), F(d_4) \times F(d_3), F(d_4) \times F(d_4), F(d_2) \times F(d_4), F(d_2) \times F(d_3), F(d_3) \times F(d_3), F(d_4) \times F(d_4), F(d_4) \times F(d_4), F(d_2) \times F(d_3), F(d_3) \times F(d_3), F(d_3) \times F(d_3), F(d_4) \times F(d_4), F(d_4) \times F(d_4), F(d_2) \times F(d_3), F(d_3) \times F(d_3), F(d_3) \times F(d_3), F(d_3) \times F(d_3), F(d_3) \times F(d_3), F(d_4) \times F(d_4), F(d_4) \times F(d_4), F(d_2) \times F(d_3), F(d_3) \times F(d_3) \times F(d_3), F(d_4) \times F(d_4), F(d_5) \times F(d_5)$ is a two soft equivalence relation.

Then $[F(d_1)]_M = \{F(d_1), F(d_2)\}, [F(d_2)]_M = \{F(d_1), F(d_2)\}, [F(d_3)]_M = \{F(d_3)\}, [F(d_4)]_M = \{F(d_4)\} \text{ and } [F(d_1)]_N = \{F(d_1)\}, [F(d_2)]_N = \{F(d_2), F(d_3)\}, [F(d_4)]_N = \{F(d_4)\}.$

So, we have $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B) = \{(d_1, \{k_1, k_2\}), (d_2, \{k_2, k_3\})\}$ and $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B) = \{\{(d_1, \{k_1, k_2\}), (d_2, \{k_2, k_3\})\}, (d_2, \{k_2, k_3\})\}, (d_3, \{k_2, k_3\})\}, \{(d_2, \{k_2, k_3\}), (d_3, \{k_2, k_3\})\}$ and $\mathcal{B}_{\mathcal{R}}(G_B) = \{(d_1, \{k_1, k_2\}), (d_2, \{k_2, k_3\})\}, (d_3, \{k_2, k_3\})\}, (d_3, \{k_2, k_3\})\}, \{(d_2, \{k_2, k_3\}), (d_3, \{k_2, k_3\})\}.$ Hence

$$\begin{split} \tilde{\tau}_{M+N}(G_B) &= \{\mathcal{U}, \phi, \{(d_1, \{k_1, k_2\}), (d_2, \{k_2, k_3\})\}, \{\{(d_1, \{k_1, k_2\}), (d_2, \{k_2, k_3\})\}, \\ &\{(d_1, \{k_1, k_2\}), (d_2, \{k_2, k_3\}), (d_3, \{k_2, k_3\})\}, \{(d_2, \{k_2, k_3\})\}, \\ &(d_3, \{k_2, k_3\})\}, \{(d_1, \{k_1, k_2\}), (d_2, \{k_2, k_3\}), (d_3, \{k_2, k_3\})\}, \\ &\{(d_2, \{k_2, k_3\}), (d_3, \{k_2, k_3\})\}\} \end{split}$$

is a multi-nano soft topological space.

7714

Definition 3.3. Let $F_A \subseteq F_E$ be a soft set over \mathcal{U} and (\mathcal{U}, F_A) be a soft approximation space and $G_B \subseteq F_A$. We define the characterization of five basic types of multi-nano soft topological space as follows as:

- (i) If $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B) = \tilde{\phi}$ and $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B) = \tilde{\mathcal{U}}$, then $\tilde{\tau}_{M+N}(G_B) = {\tilde{\mathcal{U}}, \tilde{\phi}}$ is called as multi-nano indiscrete soft topology on \mathcal{U} .
- (*ii*) If $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B) = \mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B) = \hat{\mathcal{U}}$, then the multi-nano soft topology $\tilde{\tau}_{\mathcal{M}+\mathcal{N}}(G_B) = \{\tilde{\mathcal{U}}, \tilde{\phi}, \mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B)\}.$
- (*iii*) If $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B) = \tilde{\phi}$ and $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B) \neq \tilde{\mathcal{U}}$, then multi-nano soft topology $\tilde{\tau}_{\mathcal{M}+\mathcal{N}}(G_B) = \{\tilde{\mathcal{U}}, \tilde{\emptyset}, \mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B)\}.$
- (iv) If $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B) \neq \tilde{\emptyset}$ and $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B) = \tilde{\mathcal{U}}$, then multi-nano soft topology $\tilde{\tau}_{M+\mathcal{N}}(G_B) = \{\tilde{\mathcal{U}}, \tilde{\emptyset}, \mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B), \mathcal{B}_{\mathcal{M}+\mathcal{N}}(G_B)\}.$
- (v) If $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B) \neq \mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B)$, where $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B) \neq \tilde{\emptyset}$ and $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B) \neq \tilde{\mathcal{U}}$, then multi-nano discrete soft topology on $\tilde{\tau}_{M+N}(G_B) = \{\tilde{\mathcal{U}}, \tilde{\emptyset}, \mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B), \mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B), \mathcal{B}_{\mathcal{M}+\mathcal{N}}(G_B)\}$.

Proposition 3.1. Let (\mathcal{U}, F_A) be a soft approximation space and let $G_B, H_C \in F_A$ and $M, N \in R$. Then

(i) $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(F_{\phi}) = F_{\phi}$ and $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(F_{\phi}) = F_{\phi}$. (ii) $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(F_{A}) = F_{A}$ and $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(F_{A}) = F_{A}$. (iii) If $G_{B} \subseteq H_{C}$ then $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_{B}) \subseteq \mathcal{L}_{\mathcal{M}+\mathcal{N}}(H_{C})$ and $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_{B}) \subseteq \mathcal{U}_{\mathcal{M}+\mathcal{N}}(H_{C})$. (iv) $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_{B}) \subseteq [\mathcal{U}_{\mathcal{M}+\mathcal{N}}(H_{C})^{c}]^{c}$. (v) $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_{B} \cap H_{C}) = \mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_{B}) \cap \mathcal{L}_{\mathcal{M}+\mathcal{N}}(H_{C})$. (vi) $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_{B} \cap H_{C}) = \mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_{B}) \cap \mathcal{L}_{\mathcal{M}+\mathcal{N}}(H_{C})$. (vii) $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_{B} \cup H_{C}) = \mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_{B}) \cup \mathcal{U}_{\mathcal{M}+\mathcal{N}}(H_{C})$. (ix) $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_{B} \cap H_{C}) \subseteq \mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_{B}) \cap \mathcal{U}_{\mathcal{M}+\mathcal{N}}(H_{C})$.

Proposition 3.2. Let $(\mathcal{U}, \tilde{\tau}_{M+N}, E)$ be a multi-nano soft topological space and let $G_B \in F_A$ and $M, N \in R$. Then

(i)
$$G_B \subseteq \mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B)$$

(ii) $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B) \subseteq G_B$
(iii) $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(\mathcal{L}_{\mathcal{M}+\mathcal{N}})(G_B) \subseteq G_B$.
(iv) $G_B \subseteq \mathcal{L}_{\mathcal{M}+\mathcal{N}}(\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B))$.
(v) $\mathcal{U}_{\mathcal{M}+\mathcal{N}}(\mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B)) \subseteq \mathcal{U}_{\mathcal{M}+\mathcal{N}}(G_B)$.
(vi) $\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B) \subseteq \mathcal{L}_{\mathcal{M}+\mathcal{N}}(\mathcal{L}_{\mathcal{M}+\mathcal{N}}(G_B))$

Definition 3.4. Let $(\mathcal{U}, \tilde{\tau}_{M+N}, E)$ be a multi- nano soft topological space over \mathcal{U} . Then multi-nano soft interior of soft set $H_C \subseteq F_A$ over \mathcal{U} is denoted by H_C° . Thus H_C° is the largest multi nano soft open set contained in H_C and is defined as the union of all multi-nano soft open sets contained in H_C .

Example 2. From Example 3.4 Let $H_C = \{(d_3, \{k_2, k_3\})\}$, then multi-nano soft interior $H_C^{\circ} = \{(d_3, \{k_2, k_3\}), (d_2, \{k_2, k_3\})\}$.

Theorem 3.1. Let $(\mathcal{U}, \tau_{M+N}, E)$ be a multi-nano soft topological space over \mathcal{U} and $H_C \subseteq F_A$ and H_C is an multi-nano soft open set if and only if $H_C = H_C^{\circ}$.

Proof. If H_C is an multi-nano soft open set, then the largest multi-nano soft open set that is contained by H_C is equal to H_C . Therefore $H_C = H_C^{\circ}$. Conversely, It is know that H_C° is a multi-nano soft open set, and if $H_C^{\circ} = H_C$, then H_C is an multi-nano soft open set.

Theorem 3.2. Let $(\mathcal{U}, \tau_{M+N}, E)$ be a multi-nano soft topological space and $H_C, I_D \subseteq F_A$. Then

- (a) $[H_C^{\circ}]^{\circ} = H_C^{\circ}$. (b) $H_C \subseteq I_D \Rightarrow H_C^{\circ} \subseteq I_D^{\circ}$. (c) $H_C^{\circ} \cap I_D^{\circ} = [H_C \cap I_D]^{\circ}$.
- $(d) \quad H^{\circ} \mapsto H^{\circ} \subset [H \cap L]^{\circ}$

(d) $H_C^{\circ} \cup I_D^{\circ} \subseteq [H_C \cap I_D]^{\circ}$.

Definition 3.5. Let $(\mathcal{U}, \tau_{M+N}, E)$ be a multi-nano soft topological space over \mathcal{U} . Then multi-nano soft closure of soft set $H_C \subseteq F_A$ over \mathcal{U} is denoted by \overline{H}_C . Thus \overline{H}_C is the smallest multi-nano soft closed set which containing H_C and is defined as the intersection of all multi-nano soft closed supersets of H_C .

Example 3. By example 3.4 and the complement of multi-nano soft topological space

$$\begin{split} &[\tilde{\tau}_{M+N}(G_B)]^c = \{\tilde{\mathcal{U}}, \tilde{\phi}, \{(d_1, \{k_3, k_4, k_5, k_6\}), (d_2, \{k_1, k_4, k_5, k_6\})\}, \\ &\{\{(d_1, \{k_3, k_4, k_5, k_6\}), (d_2, \{k_1, k_4, k_5, k_6\})\}, \{(d_1, \{k_3, k_4, k_5, k_6\}), \\ &(d_2, \{k_1, k_4, k_5, k_6\}), (d_3, \{k_1, k_4, k_5, k_6\})\}, \{(d_2, \{k_1, k_4, k_5, k_6\}), \\ &(d_3, \{k_1, k_4, k_5, k_6\})\}, \{(d_1, \{k_3, k_4, k_5, k_6\}), (d_2, \{k_1, k_4, k_5, k_6\}), \\ &(d_3, \{k_1, k_4, k_5, k_6\})\}, \{(d_2, \{k_1, k_4, k_5, k_6\}), (d_3, \{k_1, k_4, k_5, k_6\})\}, \\ \end{split}$$

Let $H_C = \{(d_2, \{k_1, k_4, k_5, k_6\})\}$ is a nano multi-soft closed set, then multi-nano soft closure $\overline{H_C} = \{(d_2, \{k_1, k_4, k_5, k_6\})\} = H_C$.

Theorem 3.3. Let $(\mathcal{U}, \tau_{M+N}, E)$ be a multi-nano soft topological space over $\mathcal{U}, H_C, I_D \subseteq F_A$. Then

- (a) $\overline{\phi} = \phi$ and $\overline{\mathcal{U}} = \mathcal{U}$.
- (b) $H_C \subseteq \overline{H_C}$.
- (c) H_C is a multi-nano soft closed set if and only if $H_C = \overline{H_C}$.
- (d) $\overline{H_C} = \overline{H_C}$.

(e)
$$I_D \subseteq H_C \Rightarrow \overline{I}_D \subseteq \overline{H}_C$$

- (f) $\overline{H}_C \cap \overline{I}_D \subseteq \overline{[H_C \cap I_D]}.$
- (g) $\overline{H}_C \cup \overline{I}_D = \overline{[H_C \cup I_D]}.$

REFERENCES

- [1] K.V. BABITHA, J.J. SUNIL: *Soft set relations and functions*, Computers and Mathematics with Applications, **60** (2010), 1840–1849.
- [2] M. LELLIS THIVAGAR, S.P.R.PRIYALATHA: An innovative approach on nano soft topological space, South East Asian Journal of Mathematics and Mathematical Sciences, 13(2) (2017), 47–62.
- [3] M. LELLIS THIVAGAR, C. RICHARD: On Nano Forms of Weakly Open sets, Internat. J. Math. and Stat. Inv., 1(1) (2013), 31–37.
- [4] T.Y. LIN: *Granular computing on binary relation, I: Data mining and neighborhood systems,* In: Rough Sets in Knowledge Discovery Physica-Verlag, (1998), 107–121.
- [5] D.A. MOLODTSOV : Soft Set Theory First Result, Computers and Mathematics with Applications. 37 (1999), 19–31.
- [6] P.K. MAJI, R. BISWAS, R. ROY: *Soft set theory*, Computers and Mathematics with Applications., **45** (2003), 555–562.
- [7] M.SHABIR, M.NAZ: On Soft topological spaces, Computers and Mathematics with Applications, 61 (2011), 1786–1799.
- [8] H.L. YANG, Z.L. GUO : Kernels and Closures of soft set relations and soft set relation mappings, Computers and Mathematics with Applications, **61** (2011), 651–662.

DEPARTMENT OF MATHEMATICS KONGUNADU ARTS AND SCIENCE COLLEGE COIMBATORE-641 029,TAMIL NADU,INDIA. *Email address*: spr.priyalatha@gmail.com

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE AL-BALQA APPLIED UNIVERSITY SALT 19117, JORDAN. *Email address*: wadeialomeri@bau.edu.jo 7717