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PROBABILITY ON A PARTIALLY ORDERED SET
ADITYA KUMAR MISHRA

ABSTRACT. The paper proposes to introduces the notion of probability on a
poset and discuss some elements properties.

1. INTRODUCTION

One may ask the question why we want to consider non-classical probability
in our study. The answer is that the non-classical comes from the logical point
of view, an essential feature of quantum mechanics or more generally the uncer-
tainty relations we have in quantum mechanics. The model of quantum system
has been investigated by several mathematician and physicist [1-8] and they
have come to an agreement that it is at least an orthomodular poset. Thus our
aim is to study probability on a partial ordered set.

2. PROBABILITY POSET

Definition 2.1. A probability on a poset (P, <) is a function p of P into the closed
unit interval [0, 1] which satisfies the following properties:

(p1) p(z) > 0,Vx € P;

(p2) p(z) = p(y), Yo,y € P;
(p3) if m is a maximal element of P, then p(m) = 1.
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A probability poset consists of a poset (P, >) together with a probability p defined
on P and is denoted by (P,p). It should be noted that in a supremum lattice
bounded above. We have p(m) = 1, for m, in this case, is the universal element.

If the following additional property also holds in (P, p) whenever xV y and x Ay
exist in P for every pair of elements x,y € P:

(pa) plz Ay) < px) +ply) < pleVy),
then we call (P, p) a probability lattice. We are led to the introduction of probability
on a pseudo complemented lattice, which is a new concept, in which probability
satisfies analogous properties to those on a Boolean lattice.

Theorem 2.1. If (P, <) is a pseudo complemented lattice, then p satisfies the fol-
lowing properties for all x,y € P :

(D z <y = p(x*) > p(y*) where z* and y* are pseudo complements of x and
y respectively.

0, where n is the null element of P;

(
(
(
V) p(x) < p(a*) <1—p(z*) =1—p(x™*);
(
(n) =
(VIID) p(z*) + p(y™) = p(z V y)™.

Proof. The proof of (I), (II), (V) and (VIII) are obvious.
(ITI) We have p, =

plx)+pa*) < plzvar) <1
= p(*) < 1-p().

(IV) This follows from the fact that

IN

L —p(xVy)
1 —p(z) + p(y) from py
< 1—plxzAy).

p(x V yx)

IN

(VD) Using p, we find that

plxVy*) > plx)+py)
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and
0<p(yVvy") <ply) +py)=ply*)>-py)
Thus
p(xVy*) > p(x) — py).
(VID

p(n*) < 1-p(n)
=ple) < 1-p(n),
where n* = e is the universal element in P
=1<1-p(n).
But 1 — p(n) < 1 Which means that

1—pn)=1=pn)=0.

Remark 2.1.

(i) Probability on a pseudocomplemented lattice is strictly positive, i.e., P(x) >
Oand x =n < P(x) =0, forz € P.
(i) For all x,y in a pseudocomplemented distributive lattice, we have
(a) p(z Vy)* =plx* Ay*), since (z V y)* = a* Ny~
() p(w A y)* < pla AyY), since Az Ay)* =z Ay,
(c) p(x Ay)* > p(a™ Ay¥), since (x Ay)" > 2" Ay,
(d) p(z Vy)" < p(z) +py") < plzAy),
This follows from (b) and (c) and p,.
(e) px Vy)™ = p(x™ A y™), since (z ANy)™ = ™™ A y™.

Theorem 2.2. If (P, —) is a Browerian lattice with null element n and the Browe-
rian complement of an element x € P is the pseudocomplement x*, where z < z —
yif zNx <y,Vx,y,z € P, then P satisfies the following additional properties:

@ p(r —y) > plx Ay) — p(r)

®) p((zr = y) A (x = 2)) >plx ANy Az) —plzAy)

© p((x = 2) AN (y = 2)) > plx Az)ply Az) —p(x Vy)
@ plz = (y = 2)) > plxAyAz)—pl@Ay).
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Proof.
@yrz<yAx

b)) (z—=yA(x—2)=2— (yA=2)
p((z = y) A (x = 2)) =plx = (YA 2))
and p((z — (y A z)) > p(z ANy A z) — p(x) from Theorem 2.2(a).
(@ (x = 2)A(y — z) = (v Vy) — z together with p,
p((z = 2) Ay = 2)) = p((& Vy) = 2)

Butp(zVy — 2) 2 p(z) —p(x Vy) = ple A 2) +ply A z) —p(z Vy)
{Since (z A 2)V (yANz)=(xVy) ANz>z}
(d) For,z — (y — 2) = (x ANy) — =.

O
Corollary 2.1.
(@) Ifr =y, then p(x — y) = 1,Vz,y € P.
(b) If z <y, then p(x — y) = 1,Vx,y € P.
Proof. Proof of (a) is obvious. For (b),we have
r<y = eNz <y
= e<z =Y
= e=xr—Yy
= ple) =plz —y)
= plx =y =1
O

Definition 2.2. Let (P, <) be lattice with the universal element e. The pseudodual
complement of an element a € P denoted by a,, is the smallest element x in P, such
that VvV a = 1.
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The proof of the following succeeding theorem are obvious dually.

Theorem 2.3. If (P, <) be a pseudo dual complemented lattice. Then the following
properties hold for all z,y € P :

(@ z <y = plr.) < plys);

(b) p(z.) <1 —p(x,);

(@ p(rs) < p(z) <1 —p(x,) < 1= p(w4);
(d p(zVy) <1—p(xVy).

Theorem 2.4. If (P, <) be a pseudo dual complemented distributive lattice, then
p satisfies some more properties than that listed in the previous theorem for all
x,y € P:

@) Ifz <y, then p(x ANy.) < p(y) —p(x), Yo,y € P;

() p(x Ay)s < plz Ays);
(c) p(n) = 0, where n is the null element in P.;

(D p(r Ay.) <plas) +pys) < pl@ Ay

(@) P(T4x) + P(Yus) < P(T A Y)ss
Theorem 2.5. If (P, <) be a dual Brouwian lattice with universal element e in
which the operator < in P is defined as follow:

z>x+yiffzvVe >y Ve,y e P

and the dual Brouwian complement of x € P is the pseudodual complement z,.
Then p satisfies again some more properties than listed in the theorems 2.3 and
2.4.

Corollary 2.2.

(@) If t =y, then p(z <+ y) = 0.

M) If 2 > y, then p(z + y) = 0.
Remark 2.2. Let (P, <) be a probability poset with probability p and F, is a subset
of P, then the restriction of p to F, is probability p,, on .
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Definition 2.3. Let P, be a non-empty subset of a poset (P, <), then there exists
a smallest subset P, of (P, <) containing P, the probability poset (Ps,p,,) is then
called the probability poset generated by Py is in (P, p).

Definition 2.4. A probability poset (Py, p,) is said to be homometric to (Ps, p2) iff
there exists a mappingf : (Pi,p1) — (P2, p2) such that f is an order homomor-

phism and p:(z) = p2(f(x)).

Definition 2.5. [1] Let (L, p) be a probability lattice and L, a subset of L, then we
say that Lg is p—dense in L, iff for every x € L and for every positive real number
€ > 0, there exists an element a = a(x,€) € Ly, such that p(x V a) < €. A p—lattice
(L,p) is called p—separable iff there exists a countable class C' of elements of L,
which is p—dense in L.

Every p—sub lattice of p—separable p—lattice is also p—separable.
Theorem 2.6. [1] The probability interval lattice (L, m) is m—separable.

Proof. Let Ly be a sub lattice of L generated by the class of all intervals /,, for
every . Then L, is a countable set and it is m—separable. O

Theorem 2.7. Let (L,p) be pseudo complemented probability lattice. Let p be a
real valued function defined on L x L as follows:
pla,b) = p(aVb)
and p(a,b) = 0iffa=0.

Then the following conditions hold for all a,b,c € L

@) p(a,b) > 0and p(a,b) =01iffa=">

(i) pla,b) = p(b,a)

(i) p(a,b) < p(a,c) + p(c, b)

Proof. Here (i) and (i7) are trivially true. We shall prove (iii), We have

pla,b) = plaVb) < pla)+p(b)
Also p(a) +p(b) < plaVe)+ p(cVb)
i.e. p(a,b) < pla,c)+ p(c,b).

Hence (ii1) is true. O



PROBABILITY ON A PARTIALLY ORDERED SET 8777

Hence the lattice L can be considered as a metric topological space and the
concept of metric convergence or equivalently p—convergence can be introduced
in the usual way, namely, a sequence a, € L,v = 1,2, ... is said to p—convergent

to an element « if and only if

lima, = a.

A p—convergent sequence a, € L,v = 1,2, ... satisfies the p—cauchy condition
i.e. for every ¢ > 0, there exists a natural number N (¢) such that

pla, Vay,) <€,

for every u,v > N(€),u = v + p, and p is a positive integer > 1.
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