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PROBABILITY ON A PARTIALLY ORDERED SET

ADITYA KUMAR MISHRA

ABSTRACT. The paper proposes to introduces the notion of probability on a
poset and discuss some elements properties.

1. INTRODUCTION

One may ask the question why we want to consider non-classical probability
in our study. The answer is that the non-classical comes from the logical point
of view, an essential feature of quantum mechanics or more generally the uncer-
tainty relations we have in quantum mechanics. The model of quantum system
has been investigated by several mathematician and physicist [1-8] and they
have come to an agreement that it is at least an orthomodular poset. Thus our
aim is to study probability on a partial ordered set.

2. PROBABILITY POSET

Definition 2.1. A probability on a poset (P,≤) is a function p of P into the closed
unit interval [0, 1] which satisfies the following properties:

(p1) p(x) ≥ 0,∀x ∈ P ;
(p2) p(x) ≥ p(y), ∀x, y ∈ P ;
(p3) if m is a maximal element of P, then p(m) = 1.
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A probability poset consists of a poset (P,≥) together with a probability p defined
on P and is denoted by (P, p). It should be noted that in a supremum lattice
bounded above. We have p(m) = 1, for m, in this case, is the universal element.

If the following additional property also holds in (P, p) whenever x∨ y and x∧ y
exist in P for every pair of elements x, y ∈ P :

(p4) p(x ∧ y) ≤ p(x) + p(y) ≤ p(x ∨ y),
then we call (P, p) a probability lattice. We are led to the introduction of probability
on a pseudo complemented lattice, which is a new concept, in which probability
satisfies analogous properties to those on a Boolean lattice.

Theorem 2.1. If (P,≤) is a pseudo complemented lattice, then p satisfies the fol-
lowing properties for all x, y ∈ P :

(I) x ≤ y ⇒ p(x?) ≥ p(y?) where x? and y? are pseudo complements of x and
y respectively.

(II) p(x) ≤ p(x??);
(III) p(x?) ≤ 1− p(x);
(IV) p(x ∨ y)? ≤ 1− p(x ∧ y);
(V) p(x) ≤ p(x??) ≤ 1− p(x?) = 1− p(x???);

(VI) p(x ∨ y?) ≥ p(x)− p(y);
(VII) p(n) = 0, where n is the null element of P ;

(VIII) p(x??) + p(y??) ≥ p(x ∨ y)??.

Proof. The proof of (I), (II), (V) and (VIII) are obvious.
(III) We have p4 ⇒

p(x) + p(x?) ≤ p(x ∨ x?) ≤ 1

⇒ p(x?) ≤ 1− p(x).

(IV) This follows from the fact that

p(x ∨ y?) ≤ 1− p(x ∨ y)

≤ 1− p(x) + p(y) from p4

≤ 1− p(x ∧ y).

(VI) Using p4 we find that

p(x ∨ y?) ≥ p(x) + p(y?)
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and
0 ≤ p(y ∨ y?) ≤ p(y) + p(y?)⇒ p(y?) ≥ −p(y).

Thus
p(x ∨ y?) ≥ p(x)− p(y?).

(VII)

p(n?) ≤ 1− p(n)

⇒ p(e) ≤ 1− p(n),

where n? = e is the universal element in P

⇒ 1 ≤ 1− p(n).

But 1− p(n) ≤ 1 Which means that

1− p(n) = 1⇒ p(n) = 0.

�

Remark 2.1.

(i) Probability on a pseudocomplemented lattice is strictly positive, i.e., P (x) ≥
0 and x = n⇔ P (x) = 0, for x ∈ P.

(ii) For all x, y in a pseudocomplemented distributive lattice, we have

(a) p(x ∨ y)? = p(x? ∧ y?), since (x ∨ y)? = x? ∧ y?,

(b) p(x ∧ y)? ≤ p(x ∧ y?), since x ∧ (x ∧ y)? = x ∧ y?,

(c) p(x ∧ y)? ≥ p(x? ∧ y?), since (x ∧ y)? ≥ x? ∧ y?,

(d) p(x ∨ y)? ≤ p(x?) + p(y?) ≤ p(x ∧ y)?,
This follows from (b) and (c) and p4.

(e) p(x ∨ y)?? = p(x?? ∧ y??), since (x ∧ y)?? = x?? ∧ y??.

Theorem 2.2. If (P,→) is a Browerian lattice with null element n and the Browe-
rian complement of an element x ∈ P is the pseudocomplement x?, where z ≤ x→
y if z ∧ x ≤ y,∀x, y, z ∈ P , then P satisfies the following additional properties:

(a) p(x→ y) ≥ p(x ∧ y)− p(x)
(b) p((x→ y) ∧ (x→ z)) > p(x ∧ y ∧ z)− p(x ∧ y)
(c) p((x→ z) ∧ (y → z)) ≥ p(x ∧ z)p(y ∧ z)− p(x ∨ y)
(d) p(x→ (y → z)) ≥ p(x ∧ y ∧ z)− p(x ∧ y).
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Proof.

(a) y ∧ x ≤ y ∧ x

⇒ y ≤ (x→ y) ∧ z

⇒ p(y) ≤ p((x→ y) ∧ x) ≤ p(x→ y) + p(x)

⇒ p(x ∧ y) ≤ p(x→ y) + p(x) (p(x ∧ y) ≤ p(y))

⇒ p(x→ y) ≥ p(x ∧ y)− p(x)

(b) (x→ y) ∧ (x→ z) = x→ (y ∧ z)

p((x→ y) ∧ (x→ z)) = p(x→ (y ∧ z))

and p((x→ (y ∧ z)) ≥ p(x ∧ y ∧ z)− p(x) from Theorem 2.2(a).
(c) (x→ z) ∧ (y → z) = (x ∨ y)→ z, together with p2

p((x→ z) ∧ (y → z)) = p((x ∨ y)→ z)

But p(x ∨ y → z) ≥ p(z)− p(x ∨ y) ≥ p(x ∧ z) + p(y ∧ z)− p(x ∨ y)
{Since (x ∧ z) ∨ (y ∧ z) = (x ∨ y) ∧ z ≥ z}

(d) For, x→ (y → z) = (x ∧ y)→ z.

�

Corollary 2.1.

(a) If x = y, then p(x→ y) = 1, ∀x, y ∈ P.
(b) If x ≤ y, then p(x→ y) = 1,∀x, y ∈ P.

Proof. Proof of (a) is obvious. For (b),we have

x ≤ y ⇒ e ∧ x ≤ y

⇒ e ≤ x→ y

⇒ e = x→ y

⇒ p(e) = p(x→ y)

⇒ p(x→ y) = 1.

�

Definition 2.2. Let (P,≤) be lattice with the universal element e. The pseudodual
complement of an element a ∈ P denoted by a?, is the smallest element x in P, such
that x ∨ a = 1.
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The proof of the following succeeding theorem are obvious dually.

Theorem 2.3. If (P,≤) be a pseudo dual complemented lattice. Then the following
properties hold for all x, y ∈ P :

(a) x ≤ y ⇒ p(x?) ≤ p(y?);
(b) p(x?) ≤ 1− p(x?);
(c) p(x??) ≤ p(x) ≤ 1− p(x?) ≤ 1− p(x??);
(d) p(x ∨ y)? ≤ 1− p(x ∨ y).

Theorem 2.4. If (P,≤) be a pseudo dual complemented distributive lattice, then
p satisfies some more properties than that listed in the previous theorem for all
x, y ∈ P :

(a) If x ≤ y, then p(x ∧ y?) ≤ p(y)− p(x), ∀x, y ∈ P ;
(b) p(x ∧ y)? ≤ p(x ∧ y?);
(c) p(n) = 0, where n is the null element in P.;
(d) p(x ∧ y?) ≤ p(x?) + p(y?) ≤ p(x ∧ y)?;
(e) p(x??) + p(y??) ≤ p(x ∧ y)??.

Theorem 2.5. If (P,≤) be a dual Brouwian lattice with universal element e in
which the operator← in P is defined as follow:

z ≥ x← y iff z ∨ x ≥ y,∀x, y ∈ P

and the dual Brouwian complement of x ∈ P is the pseudodual complement x?.
Then p satisfies again some more properties than listed in the theorems 2.3 and
2.4.

(I) p(x← y) ≤ p(y)− p(x)
(II) p((x← y) ∪ (x← z)) ≤ p(y ∨ z)− p(x)

(III) p((x← z) ∨ (y ← z)) ≤ p(z)− p(x ∧ y)
(IV) p((x← (y ← z)) = p((x ∧ y)← z)) = p(((x ∧ y)← (x← z))

(V) p(x??) ≤ p(x) ≤ p(x??)

(VI) p(x→ y) ≥ p(x← y).

Corollary 2.2.

(a) If x = y, then p(x← y) = 0.

(b) If x ≥ y, then p(x← y) = 0.

Remark 2.2. Let (P,≤) be a probability poset with probability p and P0 is a subset
of P, then the restriction of p to P0 is probability pp0 on P0.
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Definition 2.3. Let P0 be a non-empty subset of a poset (P,≤), then there exists
a smallest subset Ps of (P,≤) containing P0, the probability poset (Ps, pps) is then
called the probability poset generated by P0 is in (P, p).

Definition 2.4. A probability poset (P1, p1) is said to be homometric to (P2, p2) iff
there exists a mappingf : (P1, p1) → (P2, p2) such that f is an order homomor-
phism and p1(x) = p2(f(x)).

Definition 2.5. [1] Let (L, p) be a probability lattice and L0 a subset of L, then we
say that L0 is p−dense in L, iff for every x ∈ L and for every positive real number
ε > 0, there exists an element a = a(x, ε) ∈ L0, such that p(x ∨ a) < ε. A p−lattice
(L, p) is called p−separable iff there exists a countable class C of elements of L,
which is p−dense in L.

Every p−sub lattice of p−separable p−lattice is also p−separable.

Theorem 2.6. [1] The probability interval lattice (L,m) is m−separable.

Proof. Let L0 be a sub lattice of L generated by the class of all intervals Iα for
every α. Then L0 is a countable set and it is m−separable. �

Theorem 2.7. Let (L, p) be pseudo complemented probability lattice. Let ρ be a
real valued function defined on L× L as follows:

ρ(a, b) = p(a ∨ b)

and ρ(a, b) = 0 iff a = b.

Then the following conditions hold for all a, b, c ∈ L
(i) ρ(a, b) ≥ 0 and ρ(a, b) = 0 iff a = b

(ii) ρ(a, b) = ρ(b, a)

(iii) ρ(a, b) ≤ ρ(a, c) + ρ(c, b)

Proof. Here (i) and (ii) are trivially true. We shall prove (iii), We have

ρ(a, b) = p(a ∨ b) ≤ p(a) + p(b)

Also p(a) + p(b) ≤ ρ(a ∨ c) + ρ(c ∨ b)

i.e. ρ(a, b) ≤ ρ(a, c) + ρ(c, b).

Hence (iii) is true. �
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Hence the lattice L can be considered as a metric topological space and the
concept of metric convergence or equivalently p−convergence can be introduced
in the usual way, namely, a sequence av ∈ L, v = 1, 2, ... is said to p−convergent
to an element a if and only if

lim av = a.

A p−convergent sequence av ∈ L, v = 1, 2, ... satisfies the p−cauchy condition
i.e. for every ε > 0, there exists a natural number N(ε) such that

p(av ∨ au) < ε,

for every u, v ≥ N(ε), u = v + p, and p is a positive integer ≥ 1.
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