
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.10, 8861–8868
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.10.109

SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC POLYNOMIALS
IN TWO VARIABLES

V. S. BHAGAVAN 1 AND P. L. RAMA KAMESWARI

ABSTRACT. An attempt has been made to derive certain classical properties of
two variable generalized hypergeometric polynomials (2VGHP) In (α;β : x, y),
namely, recurrence relations of ascending, descending type , ordinary differ-
ential equation and linear generating relation, which are needed in order to
obtain many other properties of In (α;β : x, y) . Furthermore, two variable La-
guerre polynomials are deduced from In (α;β : x, y) as a special case, which
are of great importance in the basic quantum analysis of hydrogen atoms.

1. INTRODUCTION

Hypergeometric polynomials in one or more variables arise frequently in a
wide variety of problems in theoretical physics, applied mathematics, engineer-
ing sciences,statistics and operational research. It is then obvious that a datailed
study of the analytical behaviour of such polynomials will be of great impor-
tance. There are many directions to study such polynomials but the theory of
generating functions has been developed into various directions and found wide
applications ([1-20]).
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2. DEFINITION

The polynomial set {In (α; β : x, y)}n=0,1,2... is defined as

In (α; β : x, y) =(xy)n 2F1

[
−n, α; β; x

y

]
=

n∑
k=0

(−n)k(α)kxn+kyn−k

k!(β)k

=
n∑
k=0

(−1)kn!(α)kxn+kyn−k

(n− k)!k!(β)k
,

which is valid under the following conditions:

(i) α is a real number,
(ii) β is neither zero nor a negative integer,
(iii) n is a non-negative integer,
(iv) α and β are independent of n, because for the polynomial so many prop-

erties which are valid for α, β independent of n fail to be valid for α , β
dependent upon n,

(v) x is any finite complex variable such that x 6= 1.

Deduction
The following special case of In (α; β : x, y) has been obtained:

lim
α→∞

{
α−nIn

(
α; 1 + γ;x;

α

y

){
=

n!

(1 + γ)n
xnL(γ)

n (x, y),

where L(γ)
n (x, y) is the Laguerre polynomial.

3. SIMPLE GENERATING RELATIONS

Theorem 3.1. The following relation holds:
∞∑
n=0

In(α; β;x, y)t
n

n!
= exyt 1F1

[
α; β;−x2t

]
.

Proof. Consider the series

∞∑
n=0

In(α; β;x, y)t
n

n!
=
∞∑
n=0

n∑
k=0

(−n)k(α)kxn+kyn−ktn

n!k!(β)k
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=
∞∑
n=0

n∑
k=0

(−1)k(α)kxn+kyn−ktn

(n− k)!k!(β)k

=
∞∑
n=0

∞∑
k=0

(−1)k(α)kxn+2kyntn+k

n!k!(β)k

=
∞∑
n=0

xnyntn

n!

∞∑
k=0

(−1)k(α)k(x2t)k

k!(β)k

= exp(xyt)1F1

[
α; β;−x2t

]
.

Hence the proof.
�

Application
One can derived the linear generating function for the two variable Laguerre
polynomial from the above generating relation:

∞∑
n=0

xnL
(γ)
n (x, y)zn

(1 + γ)n
= exp(xyz) 0F1

[
−; 1 + γ;

x

y

]
,

which is equivalent to

∞∑
n=0

L
(γ)
n (x, y)tn

(1 + γ)n
= exp(yt) 0F1

[
−; 1 + γ;

t

zy

]
.

Theorem 3.2. The following relation holds:
∞∑
n=0

(γ)nIn(α; β;x, y)t
n

n!
= (1− xyt)−γ2 F1

[
γ, α; β;

−tx2

1− xyt

]
.

Proof. Consider the series
∞∑
n=0

(γ)nIn(α; β;x, y)t
n

n!
=
∞∑
n=0

n∑
k=0

(−n)k(α)k(γ)nxn+kyn−ktn

n!k!(β)k

=
∞∑
n=0

∞∑
k=0

(−1)k(α)k(γ)n+kxn+2kyntn+k

n!k!(β)k

=
∞∑
k=0

[
∞∑
n=0

(γ + k)n(xyt)
n

n!

]
(γ)k(α)k(−x2t)k

k!(β)k
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= (1− xyt)−γ 2F1

[
γ, α; β;

−x2t
1− xyt

]
.

Hence the proof. �

Corollary 3.1. If γ = β, then
∞∑
n=0

(β)nIn(α; β;x, y)t
n

n!
=(1− xyt)−β1 F0

[
α;−; −x

2t

1− xyt

]
=(1− xyt)α−β(1− xyt+ x2t)−α.

Therefore

(3.1)
∞∑
n=0

(β)nIn(α; β;x, y)t
n

n!
= (1− xyt)α−β(1− xyt+ x2t)−α.

4. RECURRENCE RELATIONS

(i) Let

G =
∞∑
n=0

(β)nIn(α; β;x, y)t
n

n!
.

Then from (3.1)
G = (1− xyt)α−β(1− xyt+ x2t)−α.

Differentiating partially w.r.t. y and t respectively, we have

(4.1)
∂G

∂y
= −(α− β)xt(1− xyt)−1G+ αxt(1− yt+ x2t)−1G

and

(4.2)
∂G

∂t
= −xy(α− β)(1− xyt)−1G− αx(x− y)(1− xyt+ x2t)−1G.

This implies

y
∂G

∂y
− t∂G

∂t
= αtx2(1− xyt+ x2t)−1G

=y
∞∑
n=0

(β)nIn(α; β;x, y)t
n

n!
+ xy(x− y)

∞∑
n=0

(β)nI
′
n(α; β;x, y)t

n+1

n!

−
∞∑
n=1

(β)nIn(α; β;x, y)t
n

(n− 1)!
− x(x− y)

∞∑
n=1

(β)nI
′
n(α; β;x, y)t

n+1

(n− 1)!

=αx2
∞∑
n=0

(β)nIn(α; β;x, y)t
n+1

n!
,
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on comparing the comparing coefficient of tn,we finally have

(β + n− 1)yI ′n(α; β;x, y) + nxy(x− y)I ′n−1(α; β;x, y)

−(β + n− 1)nIn(α; β;x, y)− nx[(n− 1)(x− y)− αx]In−1 = 0.
(4.3)

(ii) Further, from (4.1) and (4.2), we have

(x− y)∂G
∂y

+ t
∂G

∂t
= −x2t(α− β)1− xyt)−1G

or,

(x− y)
∞∑
n=0

(β)nIn(α; β;x, y)t
n

n!
− xy(x− y)

∞∑
n=0

(β)nI
′
n(α; β;x, y)t

n+1

n!

+
∞∑
n=1

(β)nIn(α; β;x, y)t
n

(n− 1)!
− xy

∞∑
n=1

(β)nIn(α; β;x, y)t
n+1

(n− 1)!

=− x2(α− β)
∞∑
n=0

(β)nIn(α; β;x, y)t
n+1

n!
.

Now, comparing the coefficient of tn, then

(x− y)(β + n− 1)I ′n(α; β;x, y)− nxy(x− y)I ′n−1(α; β;x, y)

+n(β + n− 1)In(α; β;x, y)− nx[y(n− 1)− x(α− β)]In−1(α; β;x, y) = 0.
(4.4)

Eliminating I ′n(α; β;x, y) and I ′n−1(α; β;x, y) respectively from (4.3) and (4.4),we
have the following recurrence relations.

DIn(α; β;x, y) =
1

xy(x− y)
[(β + n)In+1(α; β;x, y)

+ (n+ α)x2 − (β + 2n)xy]
]
In(α; β;x, y),

(4.5)

(4.6) DIn(α; β;x, y) = nxIn−1(α; β;x, y).

Therefore (4.5) and (4.6) are two independent differential recurrence relations.
From these equations we can determine the following linear ordinary differen-
tial equation {

y(x− y)D2 − [(n+ α− 1)x− (β + 2n− 2)y]D

−n(β + n− 1)} In(α; β;x, y) = 0

where D ≡ d

dy
.
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Mixed Recurrence Relation
(a) We know that

In(α; β;x, y) = (xy)n 2F1

[
−n, α; β; x

y

]
.

Differentiating the above equation with respect to y, we have

d

dy
In(α; β;x, y) =nx

nyn−12 F1

[
−n, α; β; x

y

]
+
nαx2

βy
(xy)n−1 2F1

[
−(n− 1), α+ 1; β + 1;

x

y

]
or

d

dy
In(α; β;x, y) =

n

y
In(α; β;x, y) +

nαx2

βy
In−1(α + 1; β + 1;x, y),

which is a mixed recurrence relation for In(α; β;x, y).

(b) Differentiating the recurrence relation with respect to y , we get

I ′′n(α; β;x, y) =
n

y
I ′n(α; β;x, y)−

n

y2
In(α; β;x, y)

+
nαx2

βy
I ′n−1(α + 1; β + 1;x, y)

−nαx
2

βy2
In−1(α + 1; β + 1;x, y).

(4.7)

The differential equation for In(α; β;x, y) is

y(x− y) d
2

dy2
In(α; β;x, y)− [(n+ α− 1)x− (β + 2n− 2)y]

d

dy
In(α; β;x, y)

− n(β + n− 1)In(α; β;x, y) = 0.

(4.8)

Eliminating I ′′n(α; β;x, y) from the equations (4.7) and (4.8) and replacing n by
n+ 1, α by α− 1 and β by β − 1, we have

d

dy
In(α; β;x, y) =

(α− 1)x2 − (β + n− 1)xy

xy(x− y)
In(α; β;x, y)

+
(β − 1)

xy(x− y)
In+1(α− 1; β − 1;x, y).
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5. CONCLUSION

In this paper, certain classical properties for the two variable generalized
hypergeometric polynomials have derived successfully by series manipulation
method.
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