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MODIFIED CYCLE NEIGHBOR POLYNOMIAL OF GRAPHS

ANNIE SABITHA PAUL1 AND RAJI PILAKKAT

ABSTRACT. Let G be a simple graph. The cycle neighbor polynomial of G is
defined as CN [G, z] = c0(G) + Σ

c(G)
k=g(G)ck(G)zk, where c0(G) is the number of

vertices of G which does not belong to any cycle of G and ck(G) is the number
of cycles of length k in G for 3 ≤ g(G) ≤ k ≤ c(G) ≤ n. Here g(G) and
c(G) are respectively the girth and circumference of G. This paper deals with
an improvement of cycle neighbor polynomial and a brief comparitive study of
these two polynomials.

1. INTRODUCTION

Many graph polynomials are introduced and studied in graph theory. Chro-
matic polyomial [9], Tutte polynomial [6], clique polynomial [7], etc., are some
examples. These polynomials are studied because some of them are generating
functions of some graph properties, some count the number of occurrences of
certain graph features and some others make an attempt to find complete graph
invariants and so on. In [2] A S Paul and R Pilakkat introduced one such uni-
variate graph polynomial called cycle neighbor polynomial of a graph. For any
simple graph G, this polynomial is defined as CN [G, z] = c0(G)+Σ

c(G)
k=g(G)ck(G)zk,

where c0(G) is the number vertices which do not belong to any cycle of G called
the cycle neighbor free vertices, and ck(G) is the number of k-cycles of length
k for 3 ≤ g(G) ≤ k ≤ c(G) ≤ n. Here g(G) and c(G) are respectively the girth
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and circumference of G. This cycle generating polynomial reveals many graph
properties like girth [5], circumference [5], hamiltonicity [5], pacyclicity [4],
whether the graph is bipartite or not etc., of a graph.

2. MODIFIED CYCLE NEIGHBOR POLYNOMIAL OF GRAPHS

Motivated from the interpretation of simple cycles of lengths one and two
[10], we improve the definition of cycle neighbor polynomial [2] of a graph
by taking into account the isolated vertices, non isolated cycle neighbor free
vertices and bridges which were not considered in the original cycle neighbor
polynomial.

Definition 2.1. Modified cycle neighbor polynmial (in short MCNP) of a graph is
denoted by CN∗[G; z] and it is defined as CN∗[G; z] = Σ

c(G)
k=0 ck(G)zk, where c0(G)

is the number of isolated vertices, c1(G) is the number of non isolated cycle neighbor
free vertices, c2(G) is the number of bridges and ck(G) is the number of k-cycles in
G for g(G) ≤ k ≤ c(G), where g(G) and c(G) are respectively the girth and the
circumference of G.

The zeros of MCNP of G are the roots of CN∗[G; z]. From the definition of
CN∗[G; z] of G it follows that:

Proposition 2.1.

(1) Consider a simple graph G. Then CN [G; z] = CN∗[G; z] of G if and only
if G contains no non isolated cycle neighbor free vertices.

(2) For a graph G, CN∗[G; z] is a constant polynomial if and only if G ∼= Kn,
the empty graph on n = 1, 2, 3, . . . vertices.

(3) If G is connected and |V (G)| ≥ 3, then CN∗[G; z] contains exactly one
term if and only if G is a cactus graph [3] in which every cycle has the
same length and there are no bridges in G.

(4) Let G(V,E) be an acyclic graph with CN∗[G; z] = a0 + a1z + a2z
2. Then

a0+a1 = |V (G)| and a2 = |E(G)|. Moreover, when G is a connected acyclic
graph, then a0 = 0, a1 = |V (G)| and a2 = a1 − 1.
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Proposition 2.2.

(1) The degree of MCNP of a graph G is two if and only if G is a forest. In
particular, degree of MCNP of a connected graph G is two if and only if G
is a tree.

(2) No polynomial of degree one can be the MCNP of a graph.

Proof.
(1) follows from the fact that trees and forests are acyclic.
(2) Suppose P (z) is a polynomial of degree one say P (z) = a0 + a1z, a1 6= 0,

which is the MCNP of a graph G. Hence there are a0 isolated vertices and a1

non isolated vertices which do not belong to any cycle of G. Since a1 6= 0, the
induced subgraph of these non isolated cycle neighbor free vertices is a non
trivial forest. Hence it contains at least one bridge, a contradiction. �

Corollary 2.1. Let G be an acyclic connected graph of order n. Then the zeros of
MCNP of G are 0 and −n

n−1
.

Corollary 2.2. Let G be a forest of order n, which does not contain any isolated
vertices. Let G1, G2, . . . , Gk be the components of G of order n1, n2, ..., nk respec-
tively. Then the set of zeros of MCNP of G is {0, −n

n−k
}.

Theorem 2.1. Let G be connected and |V (G)| ≥ 4. Then the MCNP of G contains
maximum number of terms if and only if G ∼= Hn−1,1, where Hn−1,1 is a graph
consisting of a pancyclic graph on (n − 1) vertices and a vertex connected to any
one of the vertices of H by a bridge.

Proof. Let the MCNP of G be CN∗[G; z] = a0 + a1z + a2z
2 + · · · + akz

k, where k

is the circumference c(G) of G. Since G is connected, a0 = 0. Also when a1 6= 0,
then an = 0 since circumference of G is less than or equal to n− 1 whenever G
contains cycle neighbor free vertices. Hence the number of terms in CN∗[G; z] is
less than or equal to n−1. Thus for a graph with its MCNP containing maximum
number of terms, we have a1 6= 0, a2 6= 0,. . . , an−1 6= 0, and an = 0. But this
is possible only when a1 = 1 and a2 = 1. Otherwise a1 ≥ 2, a2 ≥ 2 and then
k = c(G) ≤ n− 2, so that an−1 = 0. Hence G contains a subgraph H containing
cycles of all lengths k, for 3 ≤ k ≤ n−1 and a cycle neighbor free vertex attached
to H by a bridge. That is G ∼= Hn−1,1.
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Conversely, when G ∼= Hn−1,1, CN∗[G; z] contains n − 1 terms, which is the
maximum possible number of terms in the MCNP of any graph G. This com-
pletes the proof. �

Note that when G is a connected graph of order n < 3, that is when G is
isomorphic to K1 or K2, the MCNP of G contains exactly n terms. And the
number of terms in the MCNP of a connected graph G is minimum, that is
CN∗[G; z] contains exactly one term that is if and only if G ∼= K1 or G is a cactus
graph [3] in which each edge of G belongs to a k-cycle in G, where 3 ≤ k ≤ n.
Empty graphs and graphs G with all of its components are cactus graphs of the
above type are examples of disconnected graphs whose modified cycle neighbor
polynomial contains exactly one term.

Cycle neighbor equivalence and cycle neighbor uniqueness are introduced in
[1]. A similar concept with respect to MCNP of graphs is defined as follows.

Definition 2.2. Let G and H be any two graphs which are said to be cycle neighbor
equivalent with respect to MCNP if CN∗[G; z] = CN∗[H; z] and G and H are
called cycle neighbor unique with respect to MCNP if CN∗[G; z] = CN∗[H; z] then
G ∼= H.

We use the abbereviations cyn∗-equivalent graphs and cyn∗-unique graphs re-
spectively to denote cycle neighbor equivalence and cycle neighbor uniqueness
of graphs with respect to MCNP.

Theorem 2.2. Let T be a tree of order n and let T denotes its complement. Then
CN∗[T ; z] = CN∗[T ; z] if only if T ∼= Pn where n = 1 or 4.

Proof. Consider a tree T . First let T be a path Pn. Then for n = 2 and 3, P n

contains isolated vertices while Pn does not and P4
∼= P 4. Therefore CN∗[P4; z]

= CN∗[P 4; z]. For n ≥ 5, Pn is acyclic and P n contains cycles. Now let T is
not a path. Then the order of T is greater than or equal to four. Since T is
acyclic and it is not a path, there are more than two pendant vertices in T . In
T the pendant vertices of T forms a cycle. Hence T is not acyclic. Therefore
in this case, CN∗[T ; z] 6= CN∗[T ; z]. Conversely when T ∼= Pn with n = 1 or 4,
CN∗[T ; z] = CN∗[T ; z]. Hence the proof. �

Remark 2.1. The only acyclic graphs G either connected or disconnected such that
CN∗[G, z] = CN∗[G, z] are paths Pn, with n = 1 or 4.
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It is clear from the definitions of CN [G; z] and CN∗[G; z] that for two graphs
G and H, whenever G is cyn∗-equivalent to H, then G is cyn-equivalent to
H. But two cyn-equivalent graphs need not be cyn∗-equivalent. On the other
hand, every cyn-unique graph is cyn∗-unique. But the converse need not be. For
example, the graph G in figure 1 is cyn∗-unique but it is not cyn-unique
.
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Figure 1 - graph G

Theorem 2.3. Let G be any graph with |V (G)| = n. If G is isomorphic to any of
the following graphs,

(1) Cn, a cycle on n vertices.
(2) Kn, empty graph on n vertices.
(3) Pn, a path on n vertices, where n = 1, 2 or 3.
(4) Kn, a complete graph of order n, where n = 1, 2 or 3.
(5) H, where H is a graph containing exactly two cycles joined by a bridge

between them.

then G is cyn∗-unique.

Proof. Let G be any graph which is isomorphic to one of the graphs as in the
statement of the theorem. Let us consider the cases one by one.

Case (1): When G ∼= Cn, G contains no cycle neighbor free vertices or bridges
hence by Proposition 2.1, CN∗[G; z] = CN [G; z] = zk, Where k is the length of
the cycle in G. Hence as in the case of cyn-uniqueness of cycles Cn [1], n ≥ 3, it
follows that cycles Cn, n ≥ 3 are cyn∗-unique.

Case (2): G ∼= Kn. Then CN∗[G; z] = n, a constant polynomial. If H is any
graph other than G with CN∗[H; z] = n, it means that H contains n isolated
vertices and no edges. That is H ∼= G. Therefore Kn is cyn∗-unique.

Case (3): G ∼= Pn, where n = 1, 2 or 3. Then by Proposition 2.2, CN∗[G; z] =

a1z + a2z
2, with a2 = a1 − 1. Since there is a unique non isomorphic tree on

n ≤ 3 vertices, CN∗[G; z] = CN∗[H; z] = a1z + a2z
2 implies that H ∼= G.

Case (4): G ∼= Kn, where n = 1, 2 or 3.
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When n = 1, CN∗[G; z] = 1, hence it is clear from case (2) that K1 is cyn∗-
unique.

The only simple graphs of order two are K2 and K2. K2 contains isolated
vertices while K2 does not. Hence K2 is also cyn∗-unique.

When n = 3, K3
∼= C3 hence by case (1), K3 is cyn∗-unique.

Case (5): G ∼= H. Then CN∗[H; z] = z2 + zk + zm, where k and m are the
lengths of the cycles in G with k ≥ 3, m ≥ 3 and m + k = n. Suppose if
possible, H1 is a graph of order n such that CN∗[H1; z] = CN∗[H; z] but H1 not
isomorphic to H. Therefore H1 contains exactly two cycles of lengths k and m

and these cycles will be disjoint, otherwise they will have a vertex in common
and therefore H1 will contain a cycle neighbor free vertex contradicting our
assumption that CN∗[H1; z] = z2 + zk + zm. By case (1), cycles Cn are cyn∗-
unique and since order of H1 is m + k = n, one end point of the bridge in
H1 should be in the k-cycle and the other end is in the m-cycle of H1. That is
H1
∼= H. Therefore H is cyn∗-unique. �

3. CONCLUSION

The main difference between cycle neighbor polynomial of a graph and its
MCNP is that the cut edges in G are also taken into account in the MCNP of a
graph. A graph polynomial is complete [8] if it distinguishes all non isomorphic
graphs. But a complete graph polynomial which can be easily computed is not
yet succeeded mainly due to two reasons. The first one is there are so many
indistinguishable non isomorphic graphs. And the second reason is that such a
graph polynomial too hard to compute. The two univariate polynomials cycle
neighbor polynomial and MCNP of a graph introduced in [2] and in this paper
respectively can be compared in terms of this ’completeness’ property of graph
polynomials. Every cyn- unique graph is cyn∗- unique. But the converse need
not hold. That is,MCNP of a graph distinguishes more non isomorphic graphs
than that of cycle neighbor polynomial of the graph. As a consequence, MCNP
of a graph can be considered to be stronger than the cycle neighbor polynomial
of the graph in terms of this completeness property of graph polynomials.



MODIFIED CYCLE NEIGHBOR POLYNOMIAL OF GRAPHS 8889

REFERENCES

[1] A. S. PAUL, R. PILAKKAT: Cycle neighbor equivalence and cycle neighbor roots of a graph,
Malaya Journal of Mathematik, S (2020), 27–31.

[2] A. S. PAUL, R. PILAKKAT: Cycle neighbor polynomial of graphs, Communicated.
[3] B. B. MOSHE, M. SEGAL, A. DVIR, A. TAMIR: Centdian Computation in Cactus Graphs,

Journal of Graph Algorithms and Applications, 16 (2012), 199–224.
[4] J. A. BONDY: Pancyclic Graphs I, Annal. Polon. Math., 11 (1971), 80–84.
[5] J. A. BONDY, U. S. R. MURTY: Graph Theory with Applications, 2nd ed., Wiley, New

York, 1989.
[6] H. H. CRAPO: The Tutte polynomial, Aequationes Mathematicae, 3(3) (1969), 211–229.
[7] H. HAJIABOLHASSAN, M. L. MEHRABADI: On clique polynomials, Australasian Journal

of Combinatorics, 18 (1998), 313–316.
[8] J. A. MAKOWSKY, E. V. RAVVE, T. KOTEK: A logicians view of graph polynomials, Annals

of pure and applied logic, 170(9) (2019), 1030–1069.
[9] R. C. READ: An Introduction to Chromatic Polynomials, Journal of Combinatorial theory,

4 (1968), 52–71.
[10] ZH.G. NIKOGHOSYAN: Graph Invariants and Large Cycles: A Survey, International Journal

of Mathematics and Mathematical Sciences, 2001 (2011), 1–11.

DEPARTMENT OF MATHEMATICS

GOVERNMENT COLLEGE OF ENGINEERING

KANNUR, KERALA, INDIA

Email address: anniesabithapaul@gmail.com

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALICUT

THENHIPPALAM, KERALA, INDIA

Email address: rajipilakkat@gmail.com


