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EXTREMAL STABILIZATION ALGORITHM OF A COOPERATIVE GAME

MOHAMMED EL KAMLI1 AND ABDELLAH OULD KHAL

ABSTRACT. The analysis of the core of a cooperative game V is classically linked
to linear programming (see [8]). However, the natural structure of a coopera-
tive game is the disjoint over-additive, so an internal probability if we normalize
(V (Ω) = 1), and the elements of the core then appear as increasing probabili-
ties are given a probability internal.

Led A. Fougers, al. (see [5]) to introduce the notion of stability. The goal
of this article is to establish a significant improvement of the algorithm, so it
will be limited to the eligible “candidate” points and we will play a relatively
“time efficient” first generation algorithm when it succeeds, which happens in
in most cases. A more precise analysis of the critical experimental cases will
undoubtedly lead to combine it with other methods being processed, to end up
with a “second generation” algorithm, which always converges in the case with
a non-empty core.

1. INTRODUCTION

The analysis of the heart of a cooperative game V is classically linked to lin-
ear programming (see [8]). However, the natural structure of a cooperative
game is disjoint over-additivity, therefore an internal probability if we normal-
ize (V (Ω) = 1), and the elements of the heart then appear as the probabilities
increasing a given internal probability.
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This is what led A. Fougeres and his Perpignan team “JADE” to introduce the
notion of stability (V is said to be “stable” if its dual game V × is sub-additive,
therefore an external probability in the normalized case), as well as its algo-
rithmic approach, stabilization. The elements of the heart are then stable self-
dualgames. Stabilization is a necessary condition for the emptiness of the heart;
unfortunately, it is not “completely” sufficient.

One of the ways to algorithmically reach an element of the heart is to add
additional nodes to the initial game (that is to say to search for elements of the
heart passing through its points) then to stabilize it; in most cases, we thus very
quickly arrive at an element of the heart which, if we have respected linear in-
dependence with the previous nodes (notion of “admissible point”), is extreme.
Hence the name of the extreme stabilization algorithm given to the method.

The difficulty of the initial algorithm stems from the fact that when we “force”
a node to the value of V , we are not sure that stabilization is possible (notion
of “regular point”, which prefigures a point of contact between V and the final
extremal element).

Thus, a significant improvement in the algorithm is to be limited to the “candi-
date” admissible points, that is to say, verifying a family of inequalities necessary
for the emptiness of the heart.

This gives a relatively “time-efficient” first generation algorithm when it suc-
ceeds, which happens in most cases. A more precise analysis of critical exper-
imental cases will undoubtedly lead to combining it with other methods being
processed, to arrive at a “second generation”algorithm, which always converges
in the case with a non-empty heart (an empty heart must be detected quickly).

For a fairly low cardinality of Ω, all the methods (linear programming, nodes
with average values) give results quickly.

On the other hand, when the cardinality of Ω increases, we quickly come up
against a problem of memory size for linear programming methods. This is the
field of the future for stabilization algorithms, of which the present algorithm is
only a first step.

Other useful references are [1,2,4,6,7,9].
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2. NOTES, DEFINITIONS, REMINDERS AND RESULTS

We call “cooperative play” the data of a defined function V of the set of parts
of a set Ω of finite cardinal N with positive values verifying the property of over-
additivity, that is to say:V (AB) ≥ V (A) +V (B) ∀ (A,B) ∈ (P (Ω))2 such that
A ∩B = ∅.

Here AB designates the disjoint meeting of A and B.

Remark 2.1.

(i) V is an increasing function on P (Ω);
(ii) V (∅) = 0;

(iii) Since Ω is a set of finite cardinalities and V is increased by a positive real
number V (Ω); to make the analogy with probability theory, we will assume
that: V (Ω) = 1.

Definition 2.1. Let V a cooperative game, the function defined on P (Ω) with
positive values denoted by V × such that,

V × (A) := V (Ω)− V (Ac) = 1− V (Ac) for allA ∈ P (Ω) ,

a cooperative game V is said to be "self-dual" if V × (A) = V (A) for allA ∈ P (Ω).
Note that for any cooperative game V1 increasing V , if V (Ω) = V1 (Ω), we have,

V ≤ V1 =⇒ V ≤ V1 ≤ V ≤ V ×1 ≤ V1,

which implies the immediate (but important) property V ≤ V ×.

Definition 2.2. Let V be a cooperative game,

(i) The set CV := {Wprobability such thatV ≤ W} is called the heart of game
V .

(ii) The cooperative game V is said to be stable if its dual game V × is sub-
additive on P (Ω) (i.e. V × (AB) ≤ V × (A) + V × (B)) for all A,B in P (Ω)

such that A ∩B = ∅.

Remark 2.2.

(i) V × is an increasing function, but in general is not sub-additive.
(ii) The probabilities are therefore the stable self-dual cooperative games, and

the elements of the core of V are the stable self-dual majorants of V .

Definition 2.3. We call stability or “stabilized” closure of V , the smallest stable
cooperative game increasing V if it exists, which it is denoted by V̂ .
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Lemma 2.1. If CV is non-empty then the stability closure of V exists and has the
same heart as V .

Proof. There is an element W of the heart of V such that V ≤ W ≤ V ×. The
set S of stable upper bound cooperative games S of V is therefore not empty
(because it contains W ) and it is inf-complete, because, V̂ = infS∈S S is over-
additive and for dual V̂ × = infS∈S S

× which is sub-additive. On the other hand,
V0 = infW∈CV

W is the largest stable cooperative game increasing V by the same
heart. �

Lemma 2.2. (Lemma of the measure theory (see [3])) Any set function µ admits
a lower bound µ sub-additive and an upper bound µ super-additive given by,

µ (A) = inf
A=A1A2..Ak

k∑
i=1

µ (Ai) and µ (A) = sup
A=A1A2..Ak

k∑
i=1

µ (Ai) .

So µ is sub-additive (respectively over-additive) if and only if µ = µ (respectively
µ = µ).

Definition 2.4. We call “ polar V ∗ of V ” the sub–additive lower bound of V ×

(i.e.V ∗ = V ×).
If V ∗ (Ω) = 1, we define “the bipolarity V ∗∗ of V ” as the supper-additive upper

bound of V ∗×, and "the bipolarity V ∗∗ of V " the supper-additive upper bound of
V ∗×

(
i.e., V ∗× = V ∗×

)
and by recurrence, if, V (2k)∗ (Ω) = 1, for any integer p ≤ k,

we have,
V (2p+1)∗ :=

(
V (2p)∗

)∗
= V (2p)∗× .

On the other hand, if V (2p+1)∗ (Ω) = 1, we have, V (2p+2)∗ :=
(
V (2p+1)∗

)∗
=

V (2p+1)∗×.

The introduction of these concepts is natural for the following reasons.
Let V be a cooperative game with a non-empty core then for all probability

W in CV , we have, V ≤ W ≤ V×. Say that V is not stable, that is to say that V ×

is not a sub-additive function on P (Ω) then we will have, V ≤ W ≤ V ∗ ≤ V ×,
with the polar V ∗ of V is different from the dual V × of V .

In the same way, we have, V ≤ V ∗× ≤ W = W ∗ = W× ≤ V ∗ ≤ V × with
V 6= V ∗×. If V ∗× is an over-additive function on P (Ω), then the cooperative
game V has for stabilized,

V̂ = V ∗× because V̂ × = V ∗×× = V ∗.
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If not, we have V ≤ V ∗× ≤ V ∗∗ ≤ W = W ∗ = W× ≤ V ∗ ≤ V ×, with V 6= V ∗× 6=
V ∗∗ and V ∗ 6= V × where V ∗∗ is the upper-additive upper bound of V ∗× (because
V ∗∗ ≤ V ∗). By recurrence, we will have the same,

V ≤ V ∗∗ ≤ ... ≤ V (2p)∗ ≤ W ≤ V (2p+1)∗ ≤ · · · ≤ V ∗ ≤ V ×.

Definition 2.5. We call “stabilization of V ”, the operation of calculating V (2p)∗

until the sequence becomes stationary. We have reached stabilized V .

Proposition 2.1. (see [5]) The stabilization of V is a necessary condition of non-
emptiness of the heart in the case where V is with rational values.

Let’s start with the following technical lemma.

Lemma 2.3. If V is integer then V (2p)∗ is a stationary series.

Proof. (proof of Lemma 2.3) We consider the general term series,

αk =
∑

A∈P(Ω)

(V (2k+2)∗ (A)− V (2k)∗ (A)) with V 0∗ = V.

So αk ≥ 2 for all k such that V (2k+2)∗ 6= V (2k)∗. Or for all p, we have,
p∑

k=1

αk =
∑

A∈P(Ω)

(
V (2p+2)∗ (A)− V (A)

)
≤

∑
A∈P(Ω)

(
V × (A)− V (A)

)
.

Then αk are therefore zero from a rank p0. �

Proof. (proof of Proposition 2.1) First, note that any game with rational values
is reduced by homothetic to a game with whole values. The proposition will
therefore be a consequence of Lemma 2, since, V (2p0)∗ = V 2(p0+1)∗ = V (2p0+1)∗×

it is therefore stable since, V (2p0)∗× = V (2p0+1)∗. �

Lemma 2.4. (CN)1. V ≤ V ∗ if only if V (Ω) = V ∗ (Ω).

Proof. The condition is obviously necessary, since,

V (Ω) ≤ V ∗ (Ω) ≤ V × (Ω) ≤ V (Ω) .

Conversely, the existence of a part A of Ω satisfying, V (A) > V ∗ (A)

Is from, V (Ω) > V ∗ (Ω) since

V (Ω) = 1 = V (A) + V × (Ac) > V ∗ (A) + V × (Ac) ≥ V ∗ (A) + V ∗ (Ac) ≥ V ∗ (Ω) .

�
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We establish in the same way the following Lemma.

Lemma 2.5. (CN)2 V∗∗ ≤ V ∗ if only if V (Ω) = V ∗∗ (Ω).

So, V ≤ V ∗× ≤ V ∗∗ ≤ V ∗ ≤ V ×.

In the same way, we get (CN2k−1) and (CN2k).

Remark 2.3. In practice, we calculate the successive polar of V , as long as

V (2p)∗ 6= V (2p−1)∗ with V (2p)∗ (Ω) = V (Ω) .

If there exist a q such as we have V q∗ (Ω) 6= V (Ω), then the heart is empty.

3. ROLE OF THE NODES OF A STABLE COOPERATIVE GAME

Definition 3.1. We call“node” of a stable cooperative game V any element A0 of
P (Ω) if we have that V (A0) = V × (A0).

3.1. Characterization of a Node of a stable cooperative game.
Let’s start by recalling the following elementary lemma which will be useful for
deducing the characteristic properties of the nodes of a cooperative game (the
equivalence of properties (b), (c) and (d) of Proposition 2.2).

Lemma 3.1. (see [5])

(i) V is a super-additive if only if two element A and B of P (Ω), we have,

V (A) + V × (B) ≤ V × (AB) ,

(ii) is a sub–additive if only if for two A and B two disjoint element of P (Ω),we
have,

V (AB) ≤ V (A) + V × (B) .

Using Lemma 3.1 it is easy to verify the following proposition.

Proposition 3.1. Let V be a stable cooperative game and A0 an element of P (Ω),
the following properties are equivalent,

a) A0 is a node of V ;
b) V (A0) + V (Ac

0) = 1;
c) For all B ∈ P (Ω), A ∩B = ∅ we have V (A0B) = V (A0) + V (B).
d) For all B ∈ P (Ω), A ∩B = ∅ we have V × (A0B) = V × (A0) + V × (B).
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Remark 3.1. According to the property (b), the complementary of a node is also a
node, and any element W of the heart of V passes by the value “forced” W (A0) =

V (A0) which justifies the name of “knot”.

Let V be a stable cooperative game and A0 a non-empty element of P (Ω).

Definition 3.2. Let V ′ be a cooperative game such that V ≤ V ′, we say that V ′ is
an exact major in “A0” if we have V (A0) = V ′ (A0). In addition, we say that A0 is
the contact point of V ′ with V .

Remark 3.2. Ω is always a point of contact.

Proposition 3.2. The function VA0 defined by,

VA0 =

V × (Ac
0) + V (A ∩ A0) ifA ∪ A0 = Ω

V (A) ifA ∪ A0 6= Ω.

is the smallest upper bound V ′ of exact over-additive V in A0 admitting a node in
A0.

Proof.

a) To prove the following inequality, VA0 ≥ V , from Lemma 5 (ii) with,
(B = A ∩ A0 andC = Ac

0) where (A = BC withB = A ∩ A0 andC = Ac
0).

b) VA0 (A0) = V (A0) since A0∪A0 6= Ω (Clearly, we have the equality where
A = Ω).

c) Let A and B be two disjoint elements of P (Ω), two cases arise.
i) If neither A, nor B contain Ac

0 then,
VA0 (A) + VA0 (B) = V (A) + V (B) ≤ sdV (AB) ≤ VA0 (AB).

ii) if A = Ac
0C then,

VA0 (A) + VA0 (B) = V × (Ac
0) + V (B) + V (C)

≤V × (Ac
0) + V (BC) = VA0 (AB) .

d) If V ′ is an over-additive upper bound of V equal toA0 such that, V ′ (A0) =

V ′
×

(A0). We have, V ′ (A) ≥ VAn (A) for all A ∈ P (Ω), such that
A ∪ A0 6= Ω,and if A = Ac

0B, we have, V ′ (Ac
0) := 1 − V ′ (A0) =

1 − V (A0) = V × (A0). So, we have, V ′ (A) ≥ V ′ (Ac
0) + V ′ (B) ≥

V × (Ac
0) + V (B) = VA0 (A).
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Definition 3.3. Any point C where VC stabilizes is called a “regular point” of V .

We will note VĈ his stabilized.

Lemma 3.2. Let V be a stable cooperative game, NV is the set of its nodes, if C
is a regular point of V , then, NV ⊆ NVC

⊆ NV
Ĉ

. And for S in NV , we have,
V (S) = VC (S) + VĈ (S).

Proof. Based on the following equivalence, S ∈ NV ⇔ V (S) + V (Sc) = 1, we
have, 1 ≤ VĈ (S) + VĈ (Sc) ≤ VĈ (Ω). Then, V (S) ≤ VC (S) ≤ VĈ (S) and
V (Sc) ≤ VC (Sc) ≤ VĈ (Sc). So, we have, V (S) = VC (S) = VĈ (S). �

Lemma 3.3. Let C be a regular point of V , and VĈ the stability of node C, the
heart of VĈ is the set of elements of the heart of V exact in C.

Proof. Any element W of VĈ(C) goes through VĈ (C) = V (C). Since C is a node
of VĈ .

Conversely, if W is an element of CV such that W (C) = V (C) and W (Cc) =

V × (Cc) and for all B such that B ∩ Cc = ∅, we have, V (B) + V × (Cc) =

VC (BCc) ≤ W (BCc) = W (B) +W (Cc), it follows that VĈ ≤ W . �

3.2. Vector representation.
In all that follows, we will use the classical vector representation of the parts

A of Ω by the vertices ~A of the cube [0, 1]N of RN where N is the cardinal of Ω,
defined as,

~A = (ai)1≤i≤N where ai =

1 if i ∈ A
0 if i 6∈ A.

We will therefore say that k parts (A1, A2, . . . , Ak) are linearly independent when
the family

(
~A1, ~A2, . . . , ~Ak

)
of the associated vectors is independent.

Similarly, we recall that the set of real measurements on P (Ω) is identified
with

(
RN
)∗ by,

M−→
←−
M = (M (1) ,M (2) , . . . ,M (N))

we will have for any real measurement M and any element A of P (Ω),

M (A) =
〈←−
M, ~A

〉
.



EXTREMAL STABILIZATION ALGORITHM OF A COOPERATIVE GAME 8905

Definition 3.4. The “extremal element” of the heart of V is any point W of CV

which cannot be expressed as a convex combination of other points of CV .

Under these conditions, we can adapt the classic linear programming results
as follows,

Lemma 3.4. An element W of the heart of V is extremal if and if the set of its
points of contact with V is of rank N .

The proof of Lemma 3.4 is a direct consequence of Theorem B (see [10])
(because W is extremal of the heart implies that W is an extremal point in the
classical sense of the term).

Remark 3.3.

i) All the contact points between V and an extremal of the heart are regular
points.

ii) The progressive formation of an admissible base within the meaning of
linear programming justifies the following designation.

Definition 3.5. The “admissible point” of V is any part A of Ω which is linearly
independent of the nodes of V .

4. EXTREMAL STABILIZATION ALGORITHM

4.1. Initial diagram.
Let V be a stable cooperative game. The algorithm consists in determining an

extremal element of the heart of V (supposed not empty) by forming successive
nodes in admissible points of V expected regular.

Step 1. Let C1 be an admissible point for V , we calculate VC1 and we analyze
the regularity of C by calculating the stability fence VĈ1

of VC1 if it exists, we
have the following equality,

VĈ1
(C1) = V (C1)

and we go to the second step (by replacing the cooperative game V by the
cooperative game VĈ1

).
Otherwise, you change the eligible point until you get a regular point.
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Step 2. Let C2 be an admissible point for VĈ1
, we calculate VĈ1C2

and stabilize
it, if C2 is regular, even if it means changing the admissible point, we will have,

VĈ1Ĉ2
(Ci) = V (Ci) for all i = 1, 2.

In a recurring way, for all p ≥ 3, we have:

Step (p-1). Let C(p−1) an admissible point for VĈ1Ĉ2...Ĉ(p−2)
, we calculate

VĈ1Ĉ2...ĈpC(p−1)
and we stabilize it if C(p−1) is regular, even if it means changing

the admissible point, we will have,

VĈ1Ĉ2...ĈpĈ(p−1)
(Ci) = V (Ci) for i = 1, 2, . . . , (p− 1) .

Step p. Let Cp an admissible point for VĈ1Ĉ2..Ĉ(p−1)
, we calculate VĈ1Ĉ2..ĈpCp

and
we stabilize it if Cp is regular, even if it means changing the admissible point,
we will have,

VĈ1Ĉ2..ĈpĈp
(Ci) = V (Ci) for all i = 1, 2, . . . , p.

Step (p+1). Let C(p+1) an admissible point for VĈ1Ĉ2..Ĉp
, we calculate VĈ1Ĉ2..ĈpC(p+1)

and we stabilize it if C(p+1) is regular, even if it means changing the admissible
point, we will have,

VĈ1Ĉ2..ĈpĈ(p+1)
(Ci) = V (Ci) for all i = 1, 2, . . . , (p+ 1) .

And so on.
See the algorithm on the next page.

Note: This method is an algorithm because it ends in a finite number of steps
(less than or equal to 2N where N =| Ω |). Indeed, at each iteration as long as,
the cardinality ofA drops by at least 1 (if V C stabilizes, C is no longer admissible
for V Ĉ ).

Proposition 4.1. When the algorithm ends, we have | CV̂ |≤ 1.

Proof.
Case 1. If the cardinality of F is strictly less than N then it is clear that in this
case the heart of V is empty.

Case 2 If the cardinality of F is equal to N then the only “probability” W candi-
date checks,

W (A) = V (A) for all A ∈ F ,
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Algorithm 1 Extremal stabilization algorithm.
Beginning
F ← Base (V nodes)
V ← V

A← {A/A admissible forV }
while A 6= ∅ and | F |< N do

Make C choose from A
if V C then stabilizes,
F ← Base (Nodes of V Ĉ)
A←

{
A/A admissible forV Ĉ (A) = V (A)

}
V ← V Ĉ

else
A← A \ {C}

end if
end while
End

and we have the following equivalence, CV 6= ∅⇔ W ∈ CV . �

Corollary 4.1. If the algorithm gives a solution W of the heart of V , W is an
extremal element of CV .

Proof. To have a solution is to have, |F| = N. W belongs to CV since V ≤ V ≤ W

and W is extremal since we have a base of points of contact (i.e. the elements
of F ). �

4.2. Improvement of the Algorithm.
The efficiency of the algorithm is reduced by the fact that the regular points

are only known after stabilization, it is therefore important to limit as much as
possible the set of admissible points to be analyzed. We will highlight a family
of simple inequalities necessary for the emptiness of the heart.Indeed, for all
points C and D and any additive W , we will have,

W (C) +W (D) = W ((C ∩D) ∪ A) +W ((C ∩D) ∪B)

for any by-partition (A,B) ofC4D.
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Therefore, ifW increases a cooperative game V with two contact points C and
D, we will necessarily have, V (C)+V (D) ≥ V ((C ∩D) ∪ A)+V ((C ∩D) ∪B).
If we apply this to a cooperative game V ,

i) The preceding inequalities are always checked for any couple of nodes.
ii) A non-node point C which does not check with the nodes D of V of an

element W of the heart, candidates eligible for additional nodes must
therefore check all these inequalities with any node of V . Hence the
following definition.

Definition 4.1. On will say that a point is “candidate” of the contact if it checks
with all the nodes of V the previous inequalities.

Algorithm 2 Improvement of the algorithm.
Beginning
F ← Base (V nodes)
V ← V

A′ ← {A/A admissible forV }
while A′ 6= ∅ and | F |< N do

Make C choose from A′

if V C then stabilizes,
F ← Base (Nodes of V Ĉ)
A′ ←

{
A/A admissible forV Ĉ (A) = V (A)

}
else

A′ ← A′ \ {C}
end if

end while
End

Remark on the efficiency of the algorithm. We can solve the problem of the
emptiness of the heart (and obtain an extremal element), using for example
phase 1 of the 2-phase method. This is equivalent to solving the following prob-
lem: 

MaxW (Ω) ,

W (S) ≤ V X (S) for allS ∈ P (Ω) ,

W ≥ 0.
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The heart is not empty if and only if: MaxW (Ω) = V (Ω). W will be an extremal
element of the heart. The comparison of the execution times here is made with
the dual of the initial problem, that is to say the dual of,

MinW (Ω)

W (S) ≥ V (S) for allS ∈ P (Ω) ,

W ≥ 0.

Where we choose as a feasible starting base a base which (if the core is not
empty) is optimal that is to say the base B1 composed of the parts: B1 =

({N} , {N − 1, N} , {N − 2, N − 1, N} , . . . , {Ω}) or the base B2 composed of B2 =

({2} , {3} , . . . , {N} , {Ω}). We have seen that on non-trivial examples, times be-
come prohibitive.

The interest of the algorithms of the type that we have developed (in so far as
the execution time is not too large) is to occupy a memory space of the order 2N ,
while that used by the simplex is N.2N . The extremal stabilization algorithm in
its current version can be improved; its effectiveness depends on the right choice
of eligible candidates.
Any refinement of the candidate concept will bring an improvement in this fact.
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