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STABILITY ANALYSIS OF A DENGUE DISEASE TRANSMISSION MODEL
WITH INTRACELLULAR DELAY

B. N. R. KARUNA, K. KONDALA RAO1, K. LAKSHMI NARAYAN, AND B. RAVINDRA REDDY

ABSTRACT. In this paper, an analytical investigation of a dengue disease trans-
mission model with delay effect is studied. We find the basic reproduction
number R̄0 for this model using Next Generation Method. All possible equilib-
rium points are established. The global stability of the viral free equilibrium E1

is studied by constructing a suitable Lyapunov’s function and the infected equi-
librium E2 is studied using Routh-Hurwitz criterion. Numerical simulations are
carried out to illustrate the results.

1. INTRODUCTION

Dengue fever and dengue hemorrhagic fever are the most common mosquito
borne infectious diseases spreading rapidly in tropical regions of the world.
Dengue is transmitted to humans through the bite of infected Aedes mosquito,
principally Aedesaegypti of the genus Flavivirus from the family Flaviviridae.
It is been observed that there are four active antigenically distinct serotypes:
DENV-1, DENV-2, DENV-3 and DENV-4 [1-2] which develop infections of varying
severity in human population. There exists a possibility of some serotypes be-
ing more successful at infecting a host population, or more pathogenic, or both
[3] because of the variations in the susceptibility and transmission of dengue
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infection [4-5]. The dynamics of interaction between the host and vector can be
analysed using compartmental models which are the most commonly used sort
of epidemic models.

A general model with only one virus and the population of susceptible and
infectious humans assumed as a constant was considered by Esteva and Varga
[6]. The authors also studied the models where the human population was
growing exponentially and has constant disease rate [7]; two serotypes of virus
and variable human [8]; the impact of vertical transmission and interrupted
feeding on the dynamics of the disease [9].

Natural delays that arise in the dynamics of vector borne diseases play a
very important role in the study of the dengue dynamics and virus transmis-
sion behaviour. It explains the dynamical behaviour of the susceptible hosts;
the infected hosts and the virus carrying Aedes mosquitoes from the mathemat-
ical view which can help us to understand the model law for the prevalence of
dengue fever. This in turn helps in better controlling of the spread of dengue
virus.

Assume that Ω is a bounded region. Let Nh and Nm represent the human
and vector population respectively. Let Sh, Ih and Rh denote the susceptible
human population, infected population and recovered population respectively.
The mosquito population consists of the number of susceptible mosquitoes Sm
and the number of infectives Im.

It is assumed that the human population has a constant birth and death rate
µh. As only a fraction of eggs and larvae from its large pool develop into adult
mosquitoes, a constant recruitment rate A is considered which is independent
of the actual number of adult mosquitoes. The susceptible hosts have the prob-
ability of getting infected with the dengue virus at a rate βhbIm

Nh
, where βh is the

transmission probability from infectious mosquitoes to susceptible humans; b is
the average number of bites per infected mosquito per day.

The infected host population has a death rate given by µhIh and the recovery
rate of the host population after infection is γhIh. Also with the changing times,
there will be a change in the total recovered host population (Rh). The differ-
ence between the recovered hosts from infection (γhIh) and the total mortality
in healthy host (µhRh) gives the rate changes for a healthy population in the
total time.
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Variations in the group Sm gives the probability of the the susceptible pop-
ulation being bitten by the dengue infected mosquitoes at a rate βmbIh

Nh
, where

βm is the transmission probability from humans to mosquitoes and µm is the per
capita mortality rate of mosquitoes. The mathematical model that defines the
host-vector interaction is given as follows:

dSh
dt

=µh − µhSh(t)−
bβh
Nh

Im(t)Sh(t)

dIh
dt

=e−Qτ
bβh
Nh

Sh(t− τ)Im(t− τ)− (µh + γh)Ih(t)

dRh

dt
=γhIh(t)− µhRh(t).

The mosquito population is given by

dSm
dt

=µmNm −
bβm
Nh

Ih(t)Sm(t)− µmSm(t)

dIm
dt

=
βmb

Nh

Ih(t)Sm(t)− µmIm(t),

with the condition

Sh + Ih +Rh =Nh ⇒ Rh = Nh − Sh − Ih,

Sm + Im = Nm =
A

µm
⇒ Sm = Nm − Im =

A

µm
− Im.

Hence, the model for the human and vector population is given as follows:

dSh
dt

=µhNh −
βhb

Nh

Im(t)Sh(t)− µhSh(t)

dIh
dt

=e−Qτ
βhb

Nh

Im(t− τ)Sh(t− τ)− (µh + γh)Ih(t)

dIm
dt

=
βmb

Nh

Ih(t)Sm(t)− µmIm(t)

Sh =
Sh
Nh

, ih =
Ih
Nh

, im =
Im
Nm

=
Im
A
µm

Thus, the dynamics of dengue transmission is described by the following system
of differential equations:
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(1.1)

dsh
dt

= µh(1− sh(t))− αsh(t)im(t)

dih
dt

= e−Qταsh(t− τ)im(t− τ)− βih(t)

dim
dt

= bβm(1− im(t))ih(t)− µmim(t),

where, α = bβhA
µmNh

, β = (µh + γh), Q = (µm + µh).

2. BASIC PROPERTIES

Let C([−τ, 0], R3
+)denote the Banach space of continuous functions mapping

the interval [−τ, 0] into R3
+ with the topology of uniform convergence, i.e., for

Φ ∈ C+ the norm of Φ is defined as ‖Φ‖ = sup−τ≤θ≤0{|Φ1(θ)|, |Φ2(θ)|, |Φ3(θ)|}.
The initial conditions of the system (1.1) are

(2.1) Sh(θ) = Φ1(θ) ≥ 0, ih(θ) = Φ2(θ) ≥ 0, im(θ) = Φ3(θ) ≥ 0,

where

R3
+ = {(sh, ih, im) ∈ R3 : sh ≥ 0, ih ≥ 0, im ≥ 0},

Φ1 ≥ 0,Φ2 ≥ 0,Φ3 ≥ 0, θ ∈ [−τ, 0],

Φ1(0) ≥ 0,Φ2(0) ≥ 0,Φ3(0) ≥ 0.

From the fundamental theorem of functional differential equations [10], it
can be seen that the system (1.1) has a unique solution(sh(t), ih(t), im(t)) satis-
fying the initial condition (1.2) for all time t ≥ 0.

Theorem 2.1. Consider the initial data sh(θ) = Φ1(θ) ≥ 0, ih(θ) = Φ2(θ) ≥
0, im(θ) = Φ3(θ) ≥ 0 for all θ ∈ [−τ, 0), with Φ1(0) > 0,Φ2(0) > 0 and Φ3(0) > 0.
Then the solutions sh(t), ih(t), im(t) of the system (1.1) are positive for all t ≥ 0.

Proof. First we prove that sh(t) is positive. Let us assume the contrary i.e., let
t1 > 0 be the first time such that sh(t1) = 0. By the first equation of (1.1), we
have s′h(t1) = µh > 0. This means sh(t) < 0 for t ∈ (t1 − ε, t1) where ε is an
arbitrarily small positive constant. This leads to a contradiction. It follows that
sh(t) is always positive.
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Solving ih(t1) > 0, im(t1) > 0 for all time t1 > 0, we have

ih(t1) = exp[−βt1][ih(0) +

∫ t1

0

αsh(θ − τ)im(θ − τ)exp[βθ]dθ] > 0

im(t1) = im(0)exp[−µmt1 −
∫ t1

0

(bβmih(t1))im(θ)dθ]

+ exp[−µmt1 −
∫ t1

0

(bβmih(t1))im(θ)dθ]∫ t1

0

(bβmih(t1)) exp[µmu+

∫ u

0

(bβmih(t1))im(θ)dθ]du > 0.

Let t1 ∈ [0, τ ], we have θ − τ ∈ [0, τ ] for all θ ∈ [0, τ ]. As we have sh(θ) =

Φ1(θ), ih(θ) = Φ2(θ), im(θ) = Φ3(θ) and from (1.5) we deduce that im(t) ≥ 0, t1 ∈
[0, τ ]. From equations (3) and (4), we see that sh(t) and ih(t) are all non -
negaive on the interval [0, τ ].

Next, we consider the arguments for ultimate boundedness. �

Theorem 2.2. Let (sh(t), ih(t), im(t)) be the solution of the system (1.1) satisfying
the conditions (1.2) then (sh(t), ih(t), im(t)) are all bounded for all t > 0, where
the solution exists.

Proof. Let N(t) = sh(t) + ih(t) + im(t). The invariant region where solution exist
is obtained as follows

0 < lim inf N(t) ≤ lim supN(t) ≤ k, (t→∞).

�

Since N(t) > 0 on [−τ, 0], N(t) > 0 for all t ≥ 0. Hence, from the evolution of
the system (1.1) and from the relation N(t) = sh(t) + ih(t) + im(t), N(t) cannot
increase to infinity in the infinite time. The system solutions are bounded and
the solutions exist globally for all t ≥ 0 in the invariant and compact set

Φ = (sh, ih, im) ∈ R3
+; sh + ih + im = N ≤ k.

3. EQUILIBRIUM POINTS AND LOCAL STABILITY ANALYSIS

We now consider the equilibrium points of the system (1.1).
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3.1. Disease free equilibrium E1.

E1 = (ŝh, 0, 0) = (1, 0, 0).

This is used to find the basic reproduction number which is defined as the
average of secondary infections generated by a single infected individual when
it is introduced into a completely susceptible population. The basic reproduction
number R̄0 is obtained by next generation method [11]. The next generation
matrix is obtained from sub system of (1.1) considering the states-at-infection
(ih and im). In matrix form, the dynamical system (1.1) is written as

d

dt
xp = fp(x)− vp(x), p = 1, 2, 3.

Here, the disease compartments are ih and im and

FDFE =

[
0 αe−Qτ

0 0

]
, VDFE =

[
β 0

−bβm µm

]
,

and

V −1 =

[
1
β

0
bβm
β

1
µm

]
.

The next generation matrix is FV −1.The spectral radius of a matrix is repre-
sented by ρ(A). This is the dominant eigen value. So, ρ(FV −1) =

√
R0. The

square root is due to the two generations necessary for an infected vector to
reproduce itself [12].

We can see that the basic reproduction number R̄0 equals the spectral radius
of the following matrix

M0 =

[
0 αe−Qτ

µm
bβm
µh+γh

0

]
,

and hence R0 =
b2βhβm

A
µm

e−Qτ

Nhµm(µh+γh)
. The quantity R̄0 =

√
R0 is called the basic repro-

duction number of the disease.

3.2. The endemic equilibrium E2.

E2 = (ŝh, īh, īm)

E2 =

(
β′e−Qτ +M

β′e−Qτ +MR0

,
(R0 − 1)e−Qτ

β′e−Qτ +MR0

,
β′e−Qτ (R0 − 1)

R0(β′e−Qτ +M)

)
,
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where M = µh+γh
µh

and β′ = bβm
µm

. When R0 ≤ 1,the steady state value E1 lies in
Ω and when R0 > 1, the endemic equilibrium E2 also lies in Ω.

Let E∗(s∗h, i
∗
h, i
∗
m be an arbitrary equilibrium. Then the characteristic equation

about E∗ is given by

(3.1) ∆ =

∣∣∣∣∣∣∣
−µh − αi∗m − λ 0 −αs∗h
αe−Qτ i∗me

−λτ −β − λ αe−Qτs∗he
−λτ

0 bβm − bβmi∗m −bβmi∗h − µm − λ

∣∣∣∣∣∣∣ .
There exist two types of possible non-negative equilibrium points namely
(a) E1 = (s̄h, 0, 0), the disease free equilibrium (DFE).
(b) E2 = (s̄h, īh, īm), the positive or endemic equilibrium.

Theorem 3.1.
(1) If R0 < 1, then the infection free steady state E1 is locally asymptotically

stable for any time delay τ ≥ 0.
(2) If R0 > 1, then E1 is unstable for any time delay τ ≥ 0.

Proof. For E1, equation (1.3) reduces to

−(µh + λ)[λ2 + λ(µh + µm + γh) + µm(µh + γh)− αbβme−Qτs∗he−λτ ] = 0

→ (−µh − λ)(λ2 + p1λ+ p2 + p3e
−λτ ) = 0,

where, p1 = µh + µm + γh, p2 = µm(µh + γh), p3 = −R0µm(µh + γh). It is clear
that equation (7) has the characteristic root λ = −µh < 0.

Next, we consider the transcendental polynomial

(3.2) (λ2 + p1λ+ p2 + p3e
−λτ ) = 0

when R0 < 1 and τ = 0, we have p1 > 0, p2+p3 = (µh+γh)µm(1−R0), for R0 < 1

the infection free steady state E1 of the system (1.1) is locally asymptotically
stable.

If equation (1.4) has pure imaginary root λ = iω, for some ω > 0, τ > 0 we
have from equation (1.4) ω4 + (p2

1 − 2p2)ω2 + (p2
2 − p3

3) = 0. Now, p2
1 − 2p2 =

β2 +µ2
m > 0, p2

2− p2
3 = (µh + γh)

2µ2
m(1−R2

0). Notice that p2
2− p2

3 > 0 when when
R0 < 1. Hence, equation (1.4) contains no purely imaginary roots for all τ > 0.

So, the viral free equilibrium E1 is locally asymptotically stable when R0 < 1

and for any time delay τ ≥ 0.
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Let us denote g by g(λ) = λ2 + p1λ + p2 + p3e
−λτ = 0 where p1 = µh + µm +

γh, p2 = µm(µh+γh), p3 = −R0βµm, when R0 > 1, g(0) = µm(µh+γh)(1−R0) < 0

and limt→∞ g(λ) = +∞.
It follows from the continuity of the function g(λ) on (−∞,+∞) that the equa-

tion g(λ) = 0 has at least one positive root. Hence, the characteristic equation
(1.4) has at least one positive real root. So,E1 is unstable. For R0 > 1 the steady
state E1 becomes unstable and the positive steady state E2 happens to be the
unique equilibrium in the interior of the feasible region. �

3.3. Existence of endemic equilibrium.

Theorem 3.2. If τ = 0 and R0 > 1,then the infected steady state E2 is locally
asymptotically stable.

Proof. The characteristic polynomial from (1.3) is

(3.3) λ3 + a1λ
2 + a2λ+ a3 + e−λτ (b1λ+ b2) = 0,

where

a1 =
µh(β

′e−Qτ +MR0)

β′e−Qτ +M
+Mµh +

µmR0(β′e−Qτ +M)

β′e−Qτ +MR0

a2 =
Mµ2

h(β
′e−Qτ +MR0)

β′e−Qτ +M
+ µhµmR0 +

MµhµmR0(β′e−Qτ +M)

β′e−Qτ +MR0

a3 = Mµ2
hµmR0 and b1 = −Mµmµh, b2 = −Mµ2

hµm.

Equation (1.5) takes the general form

(3.4) P (λ, τ) +Q(λ, τ)e−λτ = 0,

with
P (λ, τ) = λ3 + a1λ

2 + a2λ+ a3, Q(λ, τ) = b1λ+ b2,

when τ = 0, equation (1.3) takes the form λ3 + a1λ
2 + (a2 + b1)λ+ (a3 + b2) = 0

where, a2 + b1 =
Mµ2h(β′e−Qτ+MR0)

β′e−Qτ+M
+ µhµmR0 + MµhµmR0(β′e−Qτ+M)

β′e−Qτ+MR0
−Mµmµh > 0

a3 + b2 = Mµ2
hµm(R0 − 1) > 0.

We see that a1 > 0, a3 + b2 > 0, a1(a2 + b1) − (a3 + b2) > 0. Hence, by Routh-
Hurwitz criterion, it follows that E2 locally asymptotically stable.

In the following when τ > 0, we investigate the existence of purely imaginary
roots λ = iω(ω > 0) to equation (1.3).
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Substituting λ = iω into equation (1.3) and separating the real and imaginary
parts, we get

ω3 − a2ω = b1ω cosωτ − b2 sinωτ,

a1ω
2 − a3 = b1ω sinωτ + b2 cosωτ

Let

F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2

F (ω, τ) = ω6 + c1ω
4 + c2ω

2 + c3,

where

c1 = a2
1 − 2a2 =

µ2
h(β

′e−Qτ +MR0)2

(β′e−Qτ +M)2
+M2µ2

h +
µ2
mR

2
0(β′e−Qτ +M)2

(β′e−Qτ +MR0)2

c2 = a2
2 − 2a1a3 − b2

1 =
µ4
hM

2(β′e−Qτ +MR0)2

(β′e−Qτ +M)2

+ µ2
hµ

2
mR

2
0 +

µ2
mM

2µ2
hR

2
0(β′e−Qτ +M)2

(β′e−Qτ +MR0)2
− µ2

hMµ2
m

c3 = a2
3 − b2

2 = (µ2
hMµm)2(R2

0 − 1).

Then λ = iω is a root of the equation (1.3) if and only if F (ω, τ) = 0. Let z = ω2,
then the polynomial function F can be written as F (ω, τ) = h(ω2, τ) and

(3.5) h(z, τ) = z3 + c1z
2 + c2z + c3 = 0.

Noticing that c1 > 0, c2 > 0, c3 > 0, for all τ > 0, equation (1.7) has no positive
roots, and thus the characteristic equation (1.5) has no purely imaginary roots.
Also, P (0, τ) + Q(0, τ) = a3 + b2 > 0 for all τ > 0 implies that zero is not
the root of equation (1.5). Summarizing the above, we obtain the following
conclusion. �

Theorem 3.3. When R0 > 1, the infected equilibrium E2 of the system (1) is
locally asymptotically stable. From biological point of view, the locally asymptotic
stability characterizes the chronic infection of the infected individuals. The results
prove that the time delay has no effect on the local asymptotic properties of the
endemic equilibrium state E2.
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3.4. Global stability of E1. Suppose R0 ≤ 1, then E1 is globally asymptotically
stable in Ω. Define a Lyapunov funtional V : C × C × C → R:

V =
αe−Qτ

µm
im + ih + αe−Qτ

∫ t

t−τ
sh(θ)im(θ)dθ.

Taking the time derivative of V ,

V ′ =
αe−Qτbβm

µm
(1− im)ih − αe−Qτ im − (µh + γh)ih + αe−Qτsh(t)im(t)

implying
V = −(µh + γh)ih[1−R0(1− im)]− αe−Qτ im(1− sh)

and V ′ ≤ 0 in Ω and (1 − sh)im = 0, ih = 0 for R0 < 1; (1 − sh)im = 0, imih = 0

for R0 = 1.
Hence, from Lyapunov-LaSalle theorem, we see that E1 is globally asymptoti-

cally stable for R0 ≤ 1.

3.5. Permanence. In fact, for the system (1.1) we have

Theorem 3.4. There is anM > 0 such that for any positive solution (sh(t), ih(t), im(t))

of the system (1.1), sh(t) < M, ih(t) < M, im(t) < M for all large t.

Proof. Set V1(t) = e−Qτsh(t − τ) + ih(t). Then V ′1(t) = e−Qτs′h(t − τ) + i′h(t) =

−µe−Qτsh(t− τ)−βih(t) +µhe
−Qτ ≤ −δhV1(t) +µhe

−Qτ , where δh = min{µh, β}.
Hence, we get boundedness V1(t), that is there exists t2 > 0 andM1 > 0 such that
V1(t) < M1 for t > t2. Then ih(t) has an ultimately upper bound. It follows from
the third equation of the system (1.1) that im(t) has an ultimately upper bound,
say, their maximum is an M. Then the assertion of Theorem 1.6 now follows.
This completes the proof. This shows that the system (1.1) is dissipative. �

Definition 3.1. System (1.1) is said to be uniformly persistent if there is an η > 0,
such that lim inft→+∞ sh(t) ≥ η, lim inft→+∞ ih(t) ≥ η, lim inft→+∞ im(t) ≥ η for
any initial conditions of the system satisfying sh(t) > 0, ih(t) > 0, im(t) > 0.

Theorem 3.5. System (1.1) is said to be permanent if R0 > 1. In order to prove
Theorem 1.7, we present he permanence theory for infinite dimensional system as
given by Hale et al. [13]

The semi group Y (t) is said to be point dissipative in X if there is a bounded
non empty set B in X such that, for any x ∈ X, there is a y0 = y0(x,B) such that
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Y (t)x ∈ B for t ≥ t0. Let X be a complete metric space. Suppose that X0 is open
and dense in X,X0 ⊂ X,X0 ⊂ X,X0 ∩ X0 = φ. Assume that Y(t) is C0 - semi
group on X satisfying

(3.6)
Y (t) : X0 → X0

Y (t) : X0 → X0

Let Yb(t) = Y (t)|X0 and Ab be the global attractor for Yb(t).

Lemma 3.1. Suppose that Y(t) satisfies (1.4) and we have the following:
(i) There is a t0 ≥ 0 such that Y(t) is compact for t > t0.
(ii) Y(t)is point dissipative in X.
(iii) Āb = ∪x∈Abω(x) is isolated and has an acyclic covering M̄ , where M̄ =

{M1,M2,M3, ....,Mn}
(iv) W s(Mi) ∩X0 = φ, for i = 1, 2, . . . , n.

Then X0 is a uniform repellor with respect to X0, i.e., there is an ε > 0 such that
for any x ∈ X0, limt→+∞ inf d(Y (t)x,X0) ≥ ε,where is the distance of Y(t)x from
X0.

Proof. We start with proving that the boundary planes of R3
+ repel the positive

solutions of the system (1.1) uniformly. Let us define

C0 = {(φ1, φ2, φ3) ∈ C([−τ, 0], R3
+) : φ1(θ) 6= 0, φ2(θ) = φ3(θ) = 0, (θ ∈ [−τ, 0])}.

If C0 = intC([−τ, 0], R3
+),it suffices to show that there exists an ε0 > 0 such that

for any solution ut of the system (1.1) initiating from C0 lim inft→+∞ d(ut, C
0) ≥

ε0. To this end, we verify below that the conditions of Lemma 1.8 are satisfied. It
is easy to see that C0 and C0 are positive invariant. Moreover, conditions (i) and
(ii) of Lemma 1.8 are clearly satisfied. Thus, we only need to verify conditions
(iii) and (iv). There is a constant solution E1 in C0 to sh(t) = ŝh, ih(t) = im(t) =

0. If (sh(t), ih(t), im(t)) is a solution of the system (1.1) initiating from C0, then
sh(t) → ŝh, ih(t) → 0, im(t) → 0 as t → ∞. It is obvious that E1 is an isolated
invariant.

Now, we show that W s(E1) ∩ C0 = φ.
Assuming the contrary, there exists a positive solution (s̃h(t), ĩh(t), ĩm(t)) of

the system such that (s̃h(t), ĩh(t), ĩm(t))→ (s̃h(t), ih(t), im(t)) as t→ +∞. Let us
choose ε > 0 small enough such that s̃h(t) − ε > s̄h. Let t0 > 0 be sufficiently
large such that s̃h − ε < s̃h(t) < s̃h + ε for t0 − τ .
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Linearising the system (1.1)at the DFE (ŝh, 0, 0), we get the following time-
delayed system for the disease compartments as:

(3.7)
ĩ′m(t) = bβmĩh(t)− µmĩm(t)

ĩ′h(t) = αe−Qτ (ŝh − ε)̃im(t)− βĩh(t),

for ε > 0 small enough, let λ1(ε) be the principle eigen value of the system (1.5).
Since R0 > 1, we can see that λ1(0) > 0 [14, Corrollary 1]. Thus we can restrict
ε small enough so that, λ1(ε) > 0. For this small ε, there exists δ = δ(ε) such that

im
im + ih + sh

> 1− ε

im + ih
im + ih + sh

> ŝh − ε > 0.

We have for t > t0:

ĩ′m(t) ≥ bβmĩh(t)− µmĩm(t)

ĩ′h(t) ≥ αe−Qτ (ŝh − ε)̃im(t)− βĩh(t)

Let us consider v = (v1, v2)T is the positive eigen vector associated with λ1(ε)

for the system (1.5).
Choose l > 0 small enough such that lv1e

λ1(ε)t ≤ īm(t0 + θ) and lv2e
λ1(ε)t <

īh(t0 + θ) for θ ∈ [−τ, 0]. Clearly, leλ1(ε)t(v1, v2)T satisfies (1.5) for t ≥ t0. Then
by comparison principle, we get (im(t), ih(t)) ≥ leλ1(ε)t(v1, v2), for all t ≥ t0 + τ .
Since the semi-flow of the system (1.5) is monotone and λ1(ε) > 0, letting
t→ +∞, we obtain limt→+∞ i

′
m(t) = +∞, limt→+∞ i

′
m(t) = +∞, a contradiction.

Hence, E1 is an isolated invariant set in C0 and W s(E1) ∩ C0 = φ. Moreover
there is no subset of {E1} that forms a cycle in C0, i.e., to say that C0 repels the
positive solutions of the system (1.1) uniformly. By [15, Theorem 3], it then
follows that ∃η > 0 such that lim inft←+∞{sh(t), ih(t), im(t)} ≥ η, which implies
the uniform persistence. Hence, incorporating this in Theorem 1.7, it follows
that the system (1.1) is permanent.

3.6. Global stability of E2. We assume that whenR0 > 1, the endemic-infection
equilibrium E2 is the only equilibrium point in the interior of the feasible region
Ω. We Construct a global Lyapunov functional.
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Let g(z) = z − 1− lnz. Define a Lyapunov functional V : C ×R× C → R:

V (sh(t), ih(t), im(t)) = s̄hg

(
sh(t)

s̄h

)
+ īhg

(
ih(t)

īh

)
+
βeQτ

bβm
īmg

(
im(t)

īm

)
+ αs̄hīm

∫ τ

0

g

(
sh(t− θ)im(t− θ)

s̄hīm

)
dθ.

Calculating the time derivative of along the positive solutions of the system
(1.1), we get

V ′|(1.1) = µh − µh
s̄h
sh
− µhsh + µhs̄h + αs̄him(t)− αīh

sh(t− τ)im(t− τ)

ih(t)

+ βīhe
Qτ − βeQτ

bβm
µmim(t)− βeQτ īm

ih(t)

im(t)
+

(µh + γh)

bβm
µmīm +

β

bβm
µmīm

− [βeQτ im(t)ih(t)− βeQτ ih(t)̄im] + αs̄hīmlnsh(t− τ)im(t− τ)

− αs̄hīmlnsh(t)im(t).

Using µh = µhs̄h + αs̄hīm, αs̄hīm = βeQτ īh, αs̄h = β(µm+bβm īh)eQτ

bβm
we get

µh ≤ µhs̄h

[
2− sh(t)

s̄h
− s̄h
sh(t)

]
− αs̄hīmg

[
īhsh(t− τ)im(t− τ)

s̄hīmih(t)

]
− αs̄hīmg

[
s̄h
sh(t)

]
− αs̄hīm

[
īmih(t)

īhim(t)

]
.

We see that g : R+ → R has the global minimum at z=1 and g(z)=0. Hence
s̄h, īh, īm > 0 ensures that dV

dt
≤ 0 and V=0 if and only if (sh(t), ih(t), im(t)) =

(s̄h, īh, īm). Hence, it also follows from stability theorems [1.16] that the infected
equilibrium E2 is stable for any time delay τ ≥ 0 under the condition R0 > 1

i.e., all positive solutions in Ω converge toE2. From Lyapunov LaSalle invariance
principle, it shows that E2 is globally stable when R0 > 1.

�

4. NUMERICAL SIMULATIONS

In this section, we have carried out numerical simulations to illustrate the
analytical results for disease free equilibrium and endemic equilibrium points.
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4.1. Population dynamics when R̄0 < 1. For the condition R̄0 < 1, we fix the
parameter values as µh = 0.098; βm = 0.98; βh = 0.075; b = 0.9; γh = 0.143;µm =

0.35;N = 2300;A = 282;Q = µh + µm; τ = 1.60; the basic reproduction number
R̄0 = 0.6566. The disease - free equilibrium E1 is globally asymptotically stable
as illustrate in Figure 1.

TABLE 1. Value of R̄0 with µm parameter and the other parameters
remain the same for E1.

S.No. γh µm R̄0

1 0.143 0.35 0.6566
2 0.143 0.55 0.4464
3 0.143 0.75 0.3257
4 0.143 0.95 0.2465

When mortality rate of the mosquitoes increases, the basic reproduction num-
ber will decrease. Thus the rate of spread of disease in the population can be
achieved by the decrease in basic reproduction number as mentioned in Table
1 for R̄0 < 1. Figure 2 shows the effects that occur in each population if the
mosquito death rate increases.

4.2. Population dynamics when R̄0 > 1. : For R̄0 > 1, we fix the parameter
values as µh = 0.0098; βm = 0.98; βh = 0.075; b = 0.9; γh = 0.43;µm = 0.9;

N = 2300;A = 982;Q = µh + µm; τ = 160; the basic reproduction number R̄0 =

1.2361. The endemic equilibrium is globally asymptotically stable as illustrated
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in Figure 3.

TABLE 2. Value of R̄0 with µm parameter and the other parameters
remain the same for E2.

S.No. γh µm R̄0

1 0.43 0.29 3.5479
2 0.43 0.4 2.7664
3 0.43 0.6 1.9248
4 0.43 0.9 1.2361

The increased mortality rate of mosquitoes decreases the basic reproduction
number as mentioned in Table 2 for R̄0 > 1. Figure 4 shows the changes in each
populations of the system (1.1) if the mosquito death rate increases.
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5. CONCLUSION

In this chapter, we proposed and investigated a dynamic model for dengue
disease transmission, where we have also included the time delay that stands
for the fixed latent periods of mosquitoes. For the model system (1), we found
the basic reproduction ratio R̄0, which is determined as the spectral radius of the
next generation operator. Analytical results are derived which are supported by
the numerical simulations. The occurrence of infection in vectors and hosts
depends directly on the basic reproduction number and the relationship is non-
linear. The model has a stable positive equilibrium when the basic reproduction
number is greater than one.
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