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STABILITY OF RADICAL QUADRATIC FUNCTIONAL EQUATION IN
RB-SPACE

E. SATHYA!, M. ARUNKUMAR, AND S. TAMILARASAN

ABSTRACT. The main purpose of this research article is to prove the stability
of radical quadratic functional equation in Random Banach Space using direct
and fixed point methods in sense of "Ulam, Hyers Rassias".

1. INTRODUCTION

The idea of stability of a functional equation stand up when one change a
functional equation by an inequality which acts as a perturbation of the equa-
tion. In 1940, the main stability problem concerning group homomorphisms
was elevated by Ulam [11] and affirmatively solved by Hyers [3] in 1941.
Later the result of Hyers was generalized by several mathematicicans one can
see [1,2,6-8] in countless settings.

Now, we will recall the fundamental result in fixed point theory.

Theorem 1.1. [5] (The alternative of fixed point) Suppose that for a complete
generalized metric space (X,d) and a strictly contractive mapping T' : X — X
with Lipschitz constant L. Then, for each given element x € X, either

(Fy) d(T"z, T"x) = oo, for all n > 0,

or

(F) there exists a natural number ng such that:
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(FPC1) d(T"x, T"'z) < oo for all n > nyg ;

(FPC?2) The sequence (T"x) is convergent to a fixed point y* of T

(FPC3) y* is the umqueﬁxed pointof T'intheset Y = {y € X : d(T™x,y) < oo};
(FPC4) d(y*,y) < 47 d(y,Ty) forally € Y.

In this paper, we establish the generalized Ulam-Hyers stability of radical qua-
dratic functional equation

(1.1) 0 (Vma? £ ny?) =mg (2) +nq (y)

in Random Banach Space using direct and fixed point methods. To prove stabil-
ity results, we assume that (£,R) and (F,R’,T) are linear space and Random
Banach space.

The usual terminology, notations and conventions of the theory of random
normed spaces one can see [9, 10].

From now on, A" is the space of distribution functions, that is, the space of
all mappings F' : RU {—o0,00} — [0,1], such that F' is leftcontinuous and
nondecreasing on R, F(0) = 0 and F(+o00) = 1. D" is a subset of A™ consisting
of all functions F' € A™ for which [~ F(4o00) = 1, where [~ f(z) denotes the left
limit of the function f at the point =, that is, [~ f(z) = lim f(¢). The space A™ is
partially ordered by the usual pointwise ordering of fljl;)lztions, thatis, FF < G if
and only if F(t) < G(t) for all t € R. The maximal element for A" in this order
0, ift<0,

is the distribution function ¢, given by ¢y(t) = { L ift>0
, .

Definition 1.1 ( [10]). A random normed space (briefly, RN-space) is a triple
(X, 1, T), where X is a vector space, T is a continuous t—norm and p is a mapping
from X into D' satisfying the following conditions:

(RN1) p,(t) = eo(t) for all t > 0 if and only if z = 0;

(RN2) pig o(t) = pe(t/|a) for all x € X, and o € R with a # 0;

(RN3) prgry(t+5) > T (p1(t), 1y (s)) forall z,y € X and t, s > 0.

2. RANDOM STABILITY: HYERS METHOD
Theorem 2.1. Let R' : £ — D be a function and p = +1 such that
: T o] D s
(2.1) tli}r& R/\/iprx’\/ipq-y (2p S) =1= TT:[)R/ 5PT a:,\/ipr . (2p )S)
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forall z € £ andall s > 0. Let q : £ — F be a function fulfilling the inequality

/
(22) Rw,y (S) < Rq(«/mx2+ny2>fm q(z)—n q(y) <S)

for all z,y € £ and all s > 0. Then there exists a unique Radical Quadratic
function Q(z) : £ — F which satisfies (1.1) and

(2.3) Troiongipr m,\/ﬁpr = (2P(r+1) -m S) S RQ(m)fq(x) (S)

where RIID,x and Q(z) are defined by

D
R/ 5P I7\/§P x(S) :TQ <Rloy\/§\/§p = <S> s R/ﬂp 2,0 (8),

(2.4)
! /
@ i () Rl
and
(2.5) Row@) (s) = lim R,z (8)
t—o0 2PT

forall x € £ and all s > 0, respectively.

Proof. If we change (z,y) by <\/La, i) in (2.2), we get

n
(26) R e (3) SR (53) m ) a(2) ()
for all z € £ and all s > 0. Replacing (x,y) by (0, /m z) in (2.6), we obtain
@7) Rioym2(5) < Refyma)n oy ) ()
forall x € £ and all s > 0. Setting (z,y) by (v/m z,0) in (2.6), we get
(2.8) Rao(5) SRy (o) o ()

forall x € £ and all s > 0. Combining (2.7) and (2.8) with the help of (RNS3),
we arrive

(2.9) T (R’Q \/gx(S),R'x,o (5)> < R gw)=n o/ ) (23)

forall z € £ and all s > 0. If we set (x,y) by (”y %) in (2.2), we observe

2m’

ﬁ

/
GO R O S R om (i) n o)
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forall z € £ and all s > 0. Combining (2.6) and (2.10) with the help of
(RNS3), we arrive

T

<

R/ z+y z—y (S))
V2m’V/2n

q(ﬁ)%q( )-ma(5:)n o) P
forall € £ and all s > 0. Again set (z,y) by ( /m x,y/m z) in (2.11), we find
212 T (R, o () R a0 0(9) S Ry y(v32) g o/ 2)(25)

forall z € £ and all s > 0. Combining (2.9) and (2.12) with the help of
(RNS3), we realize

(2.11)

ﬁ/\

(213) 7-2 <R O,ﬁ z(s)a R x,O(S), R a:,\/% x(S), R V2, 0(3))
S Rm (1(\/5 m)f2m q(z) (48)
forall z € £ and all s > 0. Using (RNS2) in (2.13), we land

T (72’0’ 5 (8 Ruols) R, ﬁx(s),wm,o@))
4
= Rq(\/i z)—2q(ac) (ES)

for all x € £ and all s > 0. Now, let us decide

@215) T (Rly sz (). Rials) R,z 1(9). Rz ols)) = R, (5)
forall x € £ and all s > 0. It follows from (2.14) and (2.15), it is clear that

(2.14)

, 4s

(2-16) R f,a:(s) < Rq(\/i x)—2q(:ﬂ) (%)

forall x € £ and all s > 0. Using (RNS2) in (2.16), we achieve
’ S

(2.17) Rlpals) S Ro vz ) (m)

forall = € £ and all s > 0. Putting = by \/§ z in (2.17), it earn that

S
1D
. < t
(2.18) R st st o (5) R st q(ﬁ,/x)<2‘m>

forall x € £ and all s > 0. It is easy to verify from (2.18), that

D S
(2.19) ’R’/\/it o3 (S) < Rq(gilm)—q(gtx) <—2t+1 m)
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forall z € £ and all s > 0. Replacing s by 2¢+Y m s in (2.19), one finds that
D
(2.20) R/ﬂt o3 o (2t+1 -m 5) < Rq(@i%)iq(@tm) (s)

forall x € £ and all s > 0. It is easy to see that

aV2w) 5 (V2 "2)  q(v2'a)

(2.21) ot or+1 or

r=0

forall = € £ and all s > 0. From equations (2.20) and (2.21), we gain

_ D r
Tf:éR/\/ET PRV (2( Vem 5) SRt sz ey avams) (s)
(2.22) Zr':O or+1 27

S RQ(\/%TI)_f(x) (S)

2

for all = € £ and all s > 0. Replacing = by 2"z in (2.22) and using (RN S2), we
attain

_ D
(2.23) TR g o QU mis) SR attoy siuaton, () OF
o(t+tg) 2to
(224) Rf(ﬁt+tow) F(v/3404) —1 as to — o0
o(t+tg) — 2to
t
f(V22)

forall z € £andall s >0 and all ¢t > ¢ty > 0, which implies that 5

a Cauchy sequence. Using completeess of F we assume the mapping Q : £ — F
by

(225) RQ(@(S) = lim Rf<\/§tz> (8)

forall = € £ and all s > 0. Letting ¢, = 0 and ¢t — ooin (2.23), we get

[o] D T
TR 5wy o« 2TV m s) < Rowy- s (s) (5)

for all z € £ and all s > 0. To prove Q satisfies the (1.1), replacing (x,y) by
(\/ﬁt 2,2 y) in (2.2), we obtain

1D t
(226) R Nox CB,\/? y (2 S) < Rz%q(ﬁtm)_% q(\/ﬁt x)—ﬂ q(\/ﬁt y) (8)
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forall z,y € £ and all s > 0. Now,

. i
T {RQ<W)_;A(\/§\/W) (4)’
s 5
Romowg o(v2' x) (Z) Reno+g a(v2' ) <4_1> ’
s
(2.27) RQ%q(ﬁt\/m),zmt o(v2' z)- 2% q(V2' y) <Z) }

< Ro(fammrmm) -motw)-nowm (*)

forall z,y € £ and all s > 0. Using (2.25), (2.26) in (2.27), we reach

3 1D t
(228) T {1, ]., ]_,R Nok $7\/§t y (2 S)} < RQ(\/W)*MQ(I)*’RQ(Z/) (8)

for all z,y € £ and all s > 0. Approaching ¢ tends to infinity in (2.28), using
(2.1) and (RNS1), which gives Q (M) = mQ (z) + nQ (y) for all
x,y € £ and all s > 0. Hence Q satisfies the radical quadratic functional
equation (1.1). The existence Q(z) is unique. Indeed, if Q'(x) be another radical
quadratic function satisfying (1.1) and (2.5). Hence,

00 D .
Ro@)-g(x) (s) ZT{THOR/\@rHy’ﬁrHy (2( +t+1)8) 7
o R/P rt+1
TT:OR,\/iT+ty,\/§T+ty (2( )S> }
—lasqg— oo

forall z € £ and all s > 0 which implies Q(x). Therefore Q(z)— Q'(z) is unique.
Hence for p = 1 the theorem holds. Replacing = by 2 in (2.17), we arrive

V2
1D 5
(2.29) Rz 2(s) < Roo)-24(25) (E)

for all x € £ and all s > 0. The rest of proof is similar to that of the case p = 1.
This completes the proof of the theorem. O

Corollary 2.1. If there exist real numbers a and b with q : £ — F be a mapping
satisfying

R, ()
R ey ()
230 afj2lb+lyl* } <
(2.30) Refapryp (5) _Rq<vmz+"y2)*m a(x)=n a(y)
/ .
Reeflaplults {iapsiylt y (5) )
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for all z,y € &, then there exists a unique Radical Quadratic function Q : £ — F
such that

(2.31)
R, (2] ms), ‘
b
M b+ 2;
( = ite2) bk \ |VT -2
2b
V27 8m s o £ 2 < Rytz)-0) (5)
¥ () (e
2b
. ,, V2 8ms 2b8m il TS
¥ wrerrera) e U a) 21
forall x € €.

Theorem 2.2. Let p = £1 and R’ : £ — D™ be a function such that

lim w ((m+n)'s) =1
(232) t—o00 \/(m—&—n) z, \/(m-‘rn) y

- TfioR/D

T e ((m + n)p(r+1)3)

forall x € £ andall s > 0. Let q : £ — F be a function fulfilling the inequality

/
(233) Rm,y (S) < Rq(«/mac2+ny2>—m q(z)—n q(y) <S)

forall x,y € £ and all s > 0. Then there exists a unique Radical Quadratic func-
tion Q(x) : £ — F which satisfies (1.1) and

(2.34) TfioR'a T /oy e ()" Ys) <R g (5)
where Q(z) is defined by

(2.35) Row) (s) = tlgglo R ommts (8)

()Pt
forall z € £ and all s > 0, respectively.
Proof. If we change (z,y) by (z,x) in (2.33), we get

(2.36) R'ya(s) < Rq< (m+n) z)—(m+N)q($)(S)

forall = € £ and all s > 0. The rest of the proof is similar ideas to that of
Theorem 2.1. d
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Corollary 2.2. Let q : £ — F be a mapping. If there exist real numbers a and
b satisfying (2.30) for all x,y € &, then there exists a unique Radical Quadratic
function Q : £ — F such that
/ (m+n) s )

Ra (|<m+n>71|> :

R ofae s ) b# 2
(2.37) ) s < Ry(a)-o(@) (8

R,$2b< VAGES ) 2% £ 2: i(a)-0(@) (5)

I/ (man) —(m-+n)]
R 3‘x|2b ( (m+n ) 2b % 2;

forall x € €.

3. RANDOM STABILITY: FIXED POINT METHOD
Using Theorem 1.1, we obtain the generalized Ulam - Hyers stability of (1.1).

Theorem 3.1. Let ¢ : £ — F be a mapping for which there exist a function
R’ : £ — D™ with the condition

(3.1 hm R, (ﬁts) =1

71957?/

forall z € £ and all s > 0 where

m4n of =0,
(3.2) p=d Vmn =
VW=l
and satisfying the functional inequality
/
(3.3) Rq<\/mr2+ny2) -m q (z)—n q (y) (5) 2 R, y(s)

forall x,y € £ and all s > 0. If there exists L. = L(i) such that the function

R'oa(s) =R'_=_ _=_(s) with the property

(3.4) R! (s77) =R., (Ls),

YiZ, Vil
forall z € £ and all s > 0. Then there exists unique unique quadratic mapping
Q : & — F satisfying the functional equation (1.1) and

Ll—z
(3.5) Ry (@)-0 (@) (1 —7 3) >R (8),

forall x €& andall s > 0.
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Proof. Take the set A = {hy/h; : € — F, h (0) = 0} and introduce the general-
ized metric on A,

(3.6)  d(h1, hy) = inf{p € (0,00) : Ry (2)_haie)(s) > R, (p s),x €& s> 0}

It is easy to see that (3.6) is complete with respect to the defined metric. Define
J:A— Aby Jh(z) = #h(%x), forall x € £. Now, from (3.6) and hy, hy € A, we
arrive d(hy, hy) < pd(Jhy, Jhe) < Lp which gives J is a strictly contractive map-
ping on A with Lipschitz constant L. It follows from (3.6), (2.36) and (3.4) for

the case ¢ = 0, we reach

(3.7) 'qu(m)_q(x) (8) > 'R/I@ (Ll_i S) (ZL’ €&, s> 0).

Again replacing x = \/nfim in (2.36) and (3.4) for the case i = 1, we get

(3.8) Rf(r)_Jf(x) (8) > 'R/Lx (Ll_i S) , (yc €& s> 0).
From (3.7) and (3.8), we arrive
(3.9) Rf(x)_Jf(x) (S) > 'R/x’x (Ll_i S) ,xe & s> 0.

Hence property (FPC1) holds. It follows from property (FPC2) that there exists
a fixed point Q of J in A such that Rg()(s) = limyo0 R 1444 (s) forall z € €.

57 d(
In order to show that Q satisfies (1.1), the proof is sirr:flar to that of Theorem
2.1. By property (FPC3), Q is the unique fixed point of J in the set A = {Q €
A 1 d(q, Q) < oo}, such that Ry;)—o@) (5) > R'zz (ps),x € £,s > 0. Finally, by
property (FPC4), we obtain Ry()— o) (5) = R'q)-Jf() (s) , which gives the the

proof of the theorem. O

Corollary 3.1. Let q : £ — F be a mapping. If there exist real numbers a and b
such that the inequality (2.30) for all x,y € &, then there exists a unique Radical
Quadratic function Q : £ — F such that

/ (m+n) s )
Rq <\(m+n>71|) )
R ( ) » ) b# 2

(3.10) |/ (mtm) —(m-n)|
m—+n) s .
R/HIHQb <‘((—)>, b # 1,

mn)b—(mtn)]

(m+n) s ]
R 3jaf 22 (m) b1

< Ryw)-o) (5)

forall x € £.
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Proof. Let us take R', ,(s) as in (2.30) for all z,y € £. Now its is easy to verify

that R’ ha(rtznt )(s) — 1 ast — oo. Thus, (3.1) holds. By definition and
2 i YT

property (3.4), the inequality (3.5) holds for i = 0, L = 77> 7*?";72"% and

forandi=1,L = 7—1_2; V‘21,17; 7_23%; Vgﬁgb, we arrive our result. O

Theorem 3.2. Let ¢ : £ — F be a mapping for which there exist a function R’ :
&% — D™ with the condition tlim R tnnty (v#s) =1forall x € £ andall s > 0
—00 i

i

5 if i—0
where ~; = {\{_ Z.f Z__ 1’ and satisfying the functional inequality
75 Zf 1 =

Rq(\/m)im o(5)—m ov) (s) > R, (s) forall z,y € £ and all s > 0. If there
exists L = L(i) such that the function R’ﬁx(s) = R’%,%(s) with the property
R.vmia (877) = R, (Ls), forall x € & and all s > 0. Then there exists unique
unique quadratic mapping Q : £ — F satisfying the functional equation (1.1) and

1—4

Ryw)-ow (L7 5) 2 R, () forall 2 & andall s > 0.

Corollary 3.2. Let q : £ — F be a mapping. If there exist real numbers a and b
such that the inequality (2.30) for all x,y € &, then there exists a unique Radical
Quadratic function Q : £ — F such that the inequality (2.31) holds for all = € £.
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