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STABILITY OF RADICAL QUADRATIC FUNCTIONAL EQUATION IN
RB-SPACE

E. SATHYA1, M. ARUNKUMAR, AND S. TAMILARASAN

ABSTRACT. The main purpose of this research article is to prove the stability
of radical quadratic functional equation in Random Banach Space using direct
and fixed point methods in sense of "Ulam, Hyers Rassias".

1. INTRODUCTION

The idea of stability of a functional equation stand up when one change a
functional equation by an inequality which acts as a perturbation of the equa-
tion. In 1940, the main stability problem concerning group homomorphisms
was elevated by Ulam [11] and affirmatively solved by Hyers [3] in 1941.
Later the result of Hyers was generalized by several mathematicicans one can
see [1,2,6–8] in countless settings.

Now, we will recall the fundamental result in fixed point theory.

Theorem 1.1. [5] (The alternative of fixed point) Suppose that for a complete
generalized metric space (X, d) and a strictly contractive mapping T : X → X

with Lipschitz constant L. Then, for each given element x ∈ X, either
(F1) d(T nx, T n+1x) =∞, for all n ≥ 0,

or
(F2) there exists a natural number n0 such that:
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(FPC1) d(T nx, T n+1x) <∞ for all n ≥ n0 ;
(FPC2) The sequence (T nx) is convergent to a fixed point y∗ of T
(FPC3) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(T n0x, y) <∞};
(FPC4) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ Y.

In this paper, we establish the generalized Ulam-Hyers stability of radical qua-
dratic functional equation

(1.1) q
(√

mx2 + ny2
)

= mq (x) + nq (y)

in Random Banach Space using direct and fixed point methods. To prove stabil-
ity results, we assume that (E ,R) and (F ,R′, T ) are linear space and Random
Banach space.

The usual terminology, notations and conventions of the theory of random
normed spaces one can see [9,10].

From now on, ∆+ is the space of distribution functions, that is, the space of
all mappings F : R ∪ {−∞,∞} −→ [0, 1] , such that F is leftcontinuous and
nondecreasing on R,F (0) = 0 and F (+∞) = 1. D+ is a subset of ∆+ consisting
of all functions F ∈ ∆+ for which l−F (+∞) = 1, where l−f(x) denotes the left
limit of the function f at the point x, that is, l−f(x) = lim

t→x−
f(t). The space ∆+ is

partially ordered by the usual pointwise ordering of functions, that is, F ≤ G if
and only if F (t) ≤ G(t) for all t ∈ R. The maximal element for ∆+ in this order

is the distribution function ε0 given by ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 1.1 ( [10]). A random normed space (briefly, RN-space) is a triple
(X,µ, T ), where X is a vector space, T is a continuous t−norm and µ is a mapping
from X into D+ satisfying the following conditions:

(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(RN2) µα x(t) = µx(t/|α|) for all x ∈ X, and α ∈ R with α 6= 0;
(RN3) µx+y(t+ s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.

2. RANDOM STABILITY: HYERS METHOD

Theorem 2.1. Let R′ : E2 → D+ be a function and p = ±1 such that

(2.1) lim
t→∞
R′√

2
pr
x,
√
2
pr
y

(2prs) = 1 = T∞r=0R′
D√
2
pr

x,
√
2
pr

x

(
2pr)s

)
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for all x ∈ E and all s > 0. Let q : E → F be a function fulfilling the inequality

(2.2) R′x,y (s) ≤ R
q
(√

mx2+ny2
)
−m q(x)−n q(y)

(s)

for all x, y ∈ E and all s > 0. Then there exists a unique Radical Quadratic
function Q(x) : E → F which satisfies (1.1) and

(2.3) T∞r=0R′
D√
2
pr

x,
√
2
pr

x

(
2p(r+1) ·m s

)
≤ RQ(x)−q(x) (s)

where R′Dx,x and Q(x) are defined by

R′D√2p x,√2p x
(
s
)

=T 2
(
R′

0,
√

m
n

√
2
p
x

(
s
)
,R′√2p x,0

(
s
)
,

R′√
2
p
x,
√

m
n

√
2
p
x

(
s
)
,R′√2 √2p x, 0

(
s
))(2.4)

and

(2.5) RQ(x) (s) = lim
t→∞
R q(

√
2
pr
x)

2pr
(s)

for all x ∈ E and all s > 0, respectively.

Proof. If we change (x, y) by
(

x√
m
, y√

n

)
in (2.2), we get

R′ x√
m
, x√
n

(
s
)
≤R

q
(√

x2+y2
)
−m q

(
x√
m

)
−n q

(
y√
n

)(s)(2.6)

for all x ∈ E and all s > 0. Replacing (x, y) by (0,
√
m x) in (2.6), we obtain

R′
0,
√

m
n
x

(
s
)
≤ R

q(
√
m x)−n q(

√
m
n
x)

(
s
)

(2.7)

for all x ∈ E and all s > 0. Setting (x, y) by (
√
m x, 0) in (2.6), we get

R′x,0
(
s
)
≤ R q (

√
m x)−m q(x)

(
s
)

(2.8)

for all x ∈ E and all s > 0. Combining (2.7) and (2.8) with the help of (RNS3),
we arrive

T
(
R′

0,
√

m
n
x

(
s
)
,R′x,0

(
s
))
≤ R

m q(x)−n q(
√

m
n
x)

(
2s
)

(2.9)

for all x ∈ E and all s > 0. If we set (x, y) by
(
x+y√
2m
, x−y√

2n

)
in (2.2), we observe

R′x+y√
2m

, x−y√
2n

(s) ≤ R
q
(√

x2+y2
)
−m q

(
x+y√
2m

)
−n q

(
x−y√
2n

) (s)(2.10)
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for all x ∈ E and all s > 0. Combining (2.6) and (2.10) with the help of
(RNS3), we arrive

T
(
R′ x√

m
, x√
n
(s),R′ x+y√

2m
, x−y√

2n

(s)
)

≤ R
m q

(
x+y√
2m

)
+n q

(
x−y√
2n

)
−m q

(
x√
m

)
−n q

(
y√
n

)(2s)(2.11)

for all x ∈ E and all s > 0. Again set (x, y) by (
√
m x,

√
m x) in (2.11), we find

T
(
R′

x,
√

m
n
x
(s),R′√2 x, 0(s)

)
≤ R

m q(
√
2 x)−m q(x)−n q(

√
m
n
x)(2s)(2.12)

for all x ∈ E and all s > 0. Combining (2.9) and (2.12) with the help of
(RNS3), we realize

T 2
(
R′

0,
√

m
n
x
(s),R′x,0(s),R′x,√m

n
x
(s),R′√2 x, 0(s)

)
≤ Rm q(

√
2 x)−2m q(x)(4s)

(2.13)

for all x ∈ E and all s > 0. Using (RNS2) in (2.13), we land

T 2
(
R′

0,
√

m
n
x
(s),R′x,0(s),R′x,√m

n
x
(s),R′√2 x, 0(s)

)
≤ Rq(

√
2 x)−2q(x)

(
4s

m

)(2.14)

for all x ∈ E and all s > 0. Now, let us decide

T 2
(
R′

0,
√

m
n
x
(s),R′x,0(s),R′x, √ m

n
x
(s),R′√2 x, 0(s)

)
= R′Dx,x(s)(2.15)

for all x ∈ E and all s > 0. It follows from (2.14) and (2.15), it is clear that

R′Dx,x(s) ≤ Rq(
√
2 x)−2q(x)

(
4s

m

)
(2.16)

for all x ∈ E and all s > 0. Using (RNS2) in (2.16), we achieve

R′Dx,x(s) ≤ R q(
√

2 x)
2

−q(x)

( s

2 ·m

)
(2.17)

for all x ∈ E and all s > 0. Putting x by
√

2
t
x in (2.17), it earn that

(2.18) R′D√
2
t
x,
√
2
t
x

(s) ≤ R q(
√

2
t+1

x)
2

−q(
√
2
t
x)

( s

2 ·m

)
for all x ∈ E and all s > 0. It is easy to verify from (2.18), that

(2.19) R′D√
2
t
x,
√
2
t
x

(s) ≤ R q(
√
2
t+1

x)

2t+1 − q(
√
2
t
x)

2t

( s

2t+1 ·m

)
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for all x ∈ E and all s > 0. Replacing s by 2(t+1) m s in (2.19), one finds that

(2.20) R′D√
2
t
x,
√
2
t
x

(
2t+1 ·m s

)
≤ R q(

√
2
t+1

x)

2t+1 − q(
√
2
t
x)

2t

(s)

for all x ∈ E and all s > 0. It is easy to see that

(2.21)
q(
√

2
t
x)

2t
− f(x) =

t−1∑
r=0

[
q(
√

2
r+1

x)

2r+1
− q(
√

2
r
x)

2r

]

for all x ∈ E and all s > 0. From equations (2.20) and (2.21), we gain

T t−1r=0R′
D√
2
r
x,
√
2
r
x

(
2(r+1) ·m s

)
≤ R∑q−1

r=0
q(
√
2
r+1

x)

2r+1 − q(
√
2
r
x)

2r

(s)

≤ R q(
√
2
r
x)

2r
−f(x)

(s)
(2.22)

for all x ∈ E and all s > 0. Replacing x by 2t0x in (2.22) and using (RNS2), we
attain

T t+m−1r=t0
R′D√2r x,√2r x

(
2(r+1) ·m s

)
≤ R f(

√
2
t+t0x)

2(t+t0)
− f(

√
2
t0x)

2t0

(s) or(2.23)

R f(
√
2
t+t0x)

2(t+t0)
− f(

√
2
t0x)

2t0

→ 1 as t0 → ∞(2.24)

for all x ∈ E and all s > 0 and all t > t0 > 0, which implies that

{
f(
√

2
t
x)

2t

}
is

a Cauchy sequence. Using completeess of F we assume the mapping Q : E → F
by

(2.25) RQ(x)(s) = lim
t→∞
R f(

√
2
t
x)

2t

(s)

for all x ∈ E and all s > 0. Letting t0 = 0 and t→∞in (2.23), we get

T∞r=0R′
D√
2
r
x,
√
2
r
x

(
2(r+1) ·m s

)
≤ RQ(x)−f(x)(s) (s)

for all x ∈ E and all s > 0. To prove Q satisfies the (1.1), replacing (x, y) by
(
√

2
t
x,
√

2
t
y) in (2.2), we obtain

(2.26) R′D√
2
t
x,
√
2
t
y

(
2ts
)
≤ R 1

2t
q
(√

2
t
√

(mx2+ny2)
)
−m

2t
q(
√
2
t
x)− n

2t
q(
√
2
t
y)

(s)
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for all x, y ∈ E and all s > 0. Now,

T 3
{
RQ

(√
(mx2+ny2)

)
− 1

2t
q
(√

2
t
√

(mx2+ny2)
) (s

4

)
,

R−mQ(x)+m
2t

q(
√
2
t
x)

(s
4

)
,R−nQ(y)+ n

2t
q(
√
2
t
y)

(s
4

)
,

R 1
2t
q
(√

2
t
√

(mx2+ny2)
)
−m

2t
q(
√
2
t
x)− n

2t
q(
√
2
t
y)

(s
4

)}
(2.27)

≤ RQ
(√

(mx2+ny2)
)
−mQ(x)−nQ(y) (s)

for all x, y ∈ E and all s > 0. Using (2.25), (2.26) in (2.27), we reach

T 3
{

1, 1, 1,R′D√
2
t
x,
√
2
t
y

(
2ts
)}
≤ RQ

(√
(mx2+ny2)

)
−mQ(x)−nQ(y) (s)(2.28)

for all x, y ∈ E and all s > 0. Approaching t tends to infinity in (2.28), using
(2.1) and (RNS1), which gives Q

(√
(mx2 + ny2)

)
= mQ (x) + nQ (y) for all

x, y ∈ E and all s > 0. Hence Q satisfies the radical quadratic functional
equation (1.1). The existenceQ(x) is unique. Indeed, ifQ′(x) be another radical
quadratic function satisfying (1.1) and (2.5). Hence,

RQ(x)−Q′(x) (s) ≥T
{
T∞r=0R′

D√
2
r+t

y,
√
2
r+t

y

(
2(r+t+1)s

)
,

T∞r=0R′
D√
2
r+t

y,
√
2
r+t

y

(
2(r+t+1)s

)}
→1 as q →∞

for all x ∈ E and all s > 0 which impliesQ(x). ThereforeQ(x)−Q′(x) is unique.
Hence for p = 1 the theorem holds. Replacing x by

x√
2

in (2.17), we arrive

R′Dx√
2
, x√

2
(s) ≤ R

q(x)−2q
(
x√
2

) ( s
m

)
(2.29)

for all x ∈ E and all s > 0. The rest of proof is similar to that of the case p = 1.
This completes the proof of the theorem. �

Corollary 2.1. If there exist real numbers a and b with q : E → F be a mapping
satisfying

R′a (s) ;

R′
a{|x|b+|y|b} (s) ;

R′
a|x|b|y|b (s) ;

R′
a{|x|b|y|b+{|x|2b+|y|2b}} (s) ;


≤ R

q
(√

mx2+ny2
)
−m q(x)−n q(y)

(2.30)
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for all x, y ∈ E , then there exists a unique Radical Quadratic function Q : E → F
such that
(2.31)

R′a (|2| ·m s) ,

R′(
2
√

m
n

b
+
√
2
b
+2

)
|x|b

(√
2
b

8m s

|
√

2
b − 2|

)
, b 6= 2;

R′(√
m
n

b
)
|x|2b

(√
2
2b

8m s

|
√

2
2b − 2|

)
, 2b 6= 2;

R′(
2
√

m
n

2b
+
√

m
n

b
+
√
2
2b
+2

)
|x|2b

(√
2
2b

8m s

|
√

2
2b − 2|

)
, 2b 6= 2;


≤ Rq(x)−Q(x) (s)

for all x ∈ E .

Theorem 2.2. Let p = ±1 and R′ : E2 → D+ be a function such that

lim
t→∞
R′√

(m+n)
pt
x,
√

(m+n)
pt
y

(
(m+ n)pts

)
= 1

= T∞r=0R′
D√

(m+n)
pr

x,
√

(m+n)
pr

x

(
(m+ n)p(r+1)s

)(2.32)

for all x ∈ E and all s > 0. Let q : E → F be a function fulfilling the inequality

(2.33) R′x,y (s) ≤ R
q
(√

mx2+ny2
)
−m q(x)−n q(y)

(s)

for all x, y ∈ E and all s > 0. Then there exists a unique Radical Quadratic func-
tion Q(x) : E → F which satisfies (1.1) and

(2.34) T∞r=0R′
D√

(m+n)
pr

x,
√

(m+n)
pr

x

(
(m+ n)p(r+1)s

)
≤ RQ(x)−q(x) (s)

where Q(x) is defined by

(2.35) RQ(x) (s) = lim
t→∞
R

q(
√

(m+n)
pt
x)

(m+n)pt

(s)

for all x ∈ E and all s > 0, respectively.

Proof. If we change (x, y) by (x, x) in (2.33), we get

R′x,x(s) ≤ Rq
(√

(m+n) x
)
−(m+n)q(x)

(s)(2.36)

for all x ∈ E and all s > 0. The rest of the proof is similar ideas to that of
Theorem 2.1. �
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Corollary 2.2. Let q : E → F be a mapping. If there exist real numbers a and
b satisfying (2.30) for all x, y ∈ E , then there exists a unique Radical Quadratic
function Q : E → F such that

(2.37)

R′a
(

(m+n) s
|(m+n)−1|

)
,

R′2|x|b
( √

(m+n) s

|
√

(m+n)
b
−(m+n)|

)
, b 6= 2;

R′|x|2b
( √

(m+n) s

|
√

(m+n)
2b
−(m+n)|

)
, 2b 6= 2;

R′3|x|2b
( √

(m+n) s

|
√

(m+n)
2b
−(m+n)|

)
, 2b 6= 2;


≤ Rq(x)−Q(x) (s)

for all x ∈ E .

3. RANDOM STABILITY: FIXED POINT METHOD

Using Theorem 1.1, we obtain the generalized Ulam - Hyers stability of (1.1).

Theorem 3.1. Let q : E → F be a mapping for which there exist a function
R′ : E2 → D+ with the condition

(3.1) lim
t→∞
R′γtix,γtiy

(
γ2ti s

)
= 1

for all x ∈ E and all s > 0 where

(3.2) γi =

{ √
m+ n if i = 0,
1√
m+n

if i = 1

and satisfying the functional inequality

(3.3) R
q
(√

mx2+ny2
)
−m q (x)−n q (y)

(s) ≥ R′x , y(s)

for all x, y ∈ E and all s > 0. If there exists L = L(i) such that the function
R′x,x(s) = R′ x√

m+n
, x√
m+n

(s) with the property

(3.4) R′γix,γix
(
s γ2i

)
= R′x,x (Ls) ,

for all x ∈ E and all s > 0. Then there exists unique unique quadratic mapping
Q : E → F satisfying the functional equation (1.1) and

(3.5) Rq (x)−Q (x)

(
L1−i

1− L
s

)
≥ R′x,x (s) ,

for all x ∈ E and all s > 0.
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Proof. Take the set Λ = {h1/h1 : E → F , h (0) = 0} and introduce the general-
ized metric on Λ,

(3.6) d(h1, h2) = inf{ρ ∈ (0,∞) : Rh1(x)−h2(x)(s) ≥ R′x,x
(
ρ s
)
, x ∈ E , s > 0}.

It is easy to see that (3.6) is complete with respect to the defined metric. Define
J : Λ→ Λ by Jh(x) = 1

γ2i
h(γix), for all x ∈ E . Now, from (3.6) and h1, h2 ∈ Λ, we

arrive d(h1, h2) ≤ ρd(Jh1, Jh2) ≤ Lρ which gives J is a strictly contractive map-
ping on Λ with Lipschitz constant L. It follows from (3.6), (2.36) and (3.4) for
the case i = 0, we reach

RJq(x)−q(x) (s) ≥ R′x,x
(
L1−i s

)
(x ∈ E , s > 0).(3.7)

Again replacing x = x√
m+n

in (2.36) and (3.4) for the case i = 1, we get

Rf(x)−Jf(x) (s) ≥ R′x,x
(
L1−i s

)
, (x ∈ E , s > 0).(3.8)

From (3.7) and (3.8), we arrive

Rf(x)−Jf(x) (s) ≥ R′x,x
(
L1−i s

)
, x ∈ E , s > 0.(3.9)

Hence property (FPC1) holds. It follows from property (FPC2) that there exists
a fixed point Q of J in Λ such that RQ(x)(s) = limt→∞R 1

γ2t
i

q(γtix)
(s) for all x ∈ E .

In order to show that Q satisfies (1.1), the proof is similar to that of Theorem
2.1. By property (FPC3), Q is the unique fixed point of J in the set ∆ = {Q ∈
Λ : d(q,Q) < ∞}, such that Rq(x)−Q(x) (s) ≥ R′x,x (ρs) , x ∈ E , s > 0. Finally, by
property (FPC4), we obtain Rq(x)−Q(x) (s) ≥ R′q(x)−Jf(x) (s) , which gives the the
proof of the theorem. �

Corollary 3.1. Let q : E → F be a mapping. If there exist real numbers a and b
such that the inequality (2.30) for all x, y ∈ E , then there exists a unique Radical
Quadratic function Q : E → F such that

(3.10)

R′a
(

(m+n) s
|(m+n)−1|

)
,

R′2||x||b
(

(m+n) s

|
√

(m+n)
b
−(m+n)|

)
, b 6= 2;

R′||x||2b
(

(m+n) s
|(m+n)b−(m+n)|

)
, b 6= 1;

R′3||x||2b
(

(m+n) s
|(m+n)b−(m+n)|

)
, b 6= 1;


≤ Rq(x)−Q(x) (s)

for all x ∈ E .



7838 E. SATHYA, M. ARUNKUMAR, AND S. TAMILARASAN

Proof. Let us take R′x,y(s) as in (2.30) for all x, y ∈ E . Now its is easy to verify
that R′ 1

γ2t
i

hd(γ
t
ix,γ

t
ix)

(s) → 1 as t → ∞. Thus, (3.1) holds. By definition and

property (3.4), the inequality (3.5) holds for i = 0, L = γ2i ; γ
2−b
i ; γ2−2bi ; γ2−2bi and

for and i = 1, L = 1
γ2i

; 1

γ2−bi

; 1

γ2−2b
i

; 1

γ2−2b
i

, we arrive our result. �

Theorem 3.2. Let q : E → F be a mapping for which there exist a function R′ :

E2 → D+ with the condition lim
t→∞
R′
γtix,γ

t
iy

(γ2ti s) = 1 for all x ∈ E and all s > 0

where γi =

{ √
2 if i = 0,

1√
2

if i = 1
and satisfying the functional inequality

R
q
(√

mx2+ny2
)
−m q(x)−n q(y)

(s) ≥ R′x,y(s) for all x, y ∈ E and all s > 0. If there

exists L = L(i) such that the function R′Dx,x(s) = R′Dx√
2
, x√

2
(s) with the property

R′γix,γix (s γ2i ) = R′x,x (Ls) , for all x ∈ E and all s > 0. Then there exists unique
unique quadratic mapping Q : E → F satisfying the functional equation (1.1) and
Rf(x)−Q(x)

(
L1−i

1−L s
)
≥ R′x,x (s) , for all x ∈ E and all s > 0.

Corollary 3.2. Let q : E → F be a mapping. If there exist real numbers a and b
such that the inequality (2.30) for all x, y ∈ E , then there exists a unique Radical
Quadratic function Q : E → F such that the inequality (2.31) holds for all x ∈ E .
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