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PROJECTIVE SYNCHRONIZATION IN HYPERCHAOTIC SYSTEMS USING
ADAPTIVE CONTROL METHOD

TAQSEER KHAN AND HARINDRI CHAUDHARY1

ABSTRACT. In this manuscript, a systematic procedure has been designed for
investigating the projective synchronization (PS) technique between two iden-
tical hyperchaotic systems. Based on Lyapunov stability theory (LST) and adap-
tive control method (ACM), PS has been achieved. The discussed method deter-
mines asymptotic stability of the error dynamics globally along with identifica-
tion of parameters. To illustrate our results, numerical simulations in MATLAB
are performed to visualize and validate the effectiveness and superiority of the
discussed technique.

1. INTRODUCTION

Chaos theory is a fascinating and an intriguing field of applied mathemat-
ics that deals with the behavioural analysis of nonlinear dynamical systems.
This field is applicable in several branches of applied science and engineering,
including meteorology, cryptography, physics, computer science, environmen-
tal science, biomedical engineering, chemistry and so on. As a result, chaos
synchronization and control have acquired a significant attention in numerous
research fields. An interesting characteristic of chaotic systems, known as “but-
terfly Effect”, is basically the sensitivity dependency on initial conditions and is
firstly introduced by E.N. Lorenz [8] in 1963 while studying weather prediction
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model. Synchronization in chaotic systems was first described by Pecora and
Caroll [10] in 1990 using master-slave configuration. In chaos synchronization,
the state trajectories of two or more chaotic systems (identical or nonidenti-
cal) are made to follow similar dynamics. Currently, chaos synchronization and
chaos control of chaotic systems have been an active area of study. Various tech-
niques have been introduced for synchronization and control [1, 3–5, 7, 11] of
chaos phenomenon.

A hyperchaotic system is defined as a chaotic system having at least two pos-
itive Lyapunov exponents. In the year 1979, Rossler advocated the first classic
hyperchaotic system. During the last decades, various typical hyperchaotic sys-
tems have been reported, namely, Lorenz system, Nikolov system, Chen system,
Liu system, Qi system, Lu systems etc. Interestingly, Hubler in 1989 introduced
adaptive control technique to synchronize chaotic systems. In 1999, Mainieri
and Rehacek [9] initiated the idea of projective synchronization in chaotic sys-
tems. Since then, researchers analyzed numerous control techniques in detail
among chaotic/hyperchaotic systems.

Considering the above literature review and discussions, our primal goal here
is to investigate projective synchronization (PS) between two identical hyper-
chaotic systems using adaptive control technique. The paper is organized as:
Section 2 consists of some preliminaries to be used within the paper. Section 3
describes the basic features of the considered system. Section 4 investigates the
projective synchronization via ACM by designing proper controllers along with
a parameter estimation update laws. Section 5 contains the numerical simula-
tions which verify our theoretical results. Further, a comparative analysis is also
done. Finally, Section 6 concludes the paper.

2. PRELIMINARIES

Considering the master system and the corresponding slave system as:

u̇m = f(um)(2.1)

u̇s = g(us) +W,(2.2)

where um = (um1, um2, . . . , umn)
T , us = (us1, us2, . . . , usn)

T are the state vectors
of (2.1) and (2.2) respectively, f, g : Rn → Rn are two nonlinear continuous
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vector functions and W = (W1,W2, . . . ,W3) ∈ Rn is the proper controller to be
designed.

Definition 2.1. The master system (2.1) and slave system (2.2) achieve projective
synchronization (PS) if

lim
t→∞
‖e(t)‖ = lim

t→∞
‖us(t)− Aum(t)‖ = 0(2.3)

for some A = diag(β, β, . . . , β) and ‖ · ‖ represents vector norm.

Remark 2.1. For β=1, complete synchronization among systems (2.1) and (2.2)
is achieved.

Remark 2.2. For β=−1, anti-synchronization among systems (2.1) and (2.2) is
attained.

3. SYSTEM DESCRIPTION

Introduced by Dong et al. [2], the discussed hyperchaotic system has been
described as: 

u̇m1 = p1um1 − q1um2um3

u̇m2 = −r1um2 + um1um3

u̇m3 = l1um1 − a1um3 + um1um2

u̇m4 = n1um4 + um1um2,

(3.1)

where (um1, um2, um3, um4)
T ∈ R4 is the state vector and p1, q1, r1, a1, l1 and n1

are positive parameters. For p1 = 4.55, q1 = 1.532, r1 = 10.1, a1 = 5.5, l1 = 3.5

and n1 = 0.04, the given system (3.1) displays hyperchaos. Also, Figure 1(a-c)
exhibits the phase diagrams of (3.1). For more details, one may refers [6].
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FIGURE 1. Phase diagrams of hyperchaotic system in (A) um1−um2

plane, (B) um2 − um3 − um4 space, (C) um1 − um3 − um4 space
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4. ILLUSTRATIVE EXAMPLE

Conveniently, the system (3.1) has been considered as master system and the
corresponding slave system is defined as:

u̇s1 = p1us1 − q1us2us3 +W1

u̇s2 = −r1us2 + us1us3 +W2

u̇s3 = l1us1 − a1us3 + us1us2 +W3

u̇s4 = n1us4 + us1us2 +W4,

(4.1)

where W1, W2, W3 and W4 are adaptive controllers that are to be designed.
State errors are defined as:

E11 = us1 − β1um1

E12 = us2 − β1um2

E13 = us3 − β1um3

E14 = us4 − β1um4.

(4.2)

The primary aim here is to design controllers Wi, (i = 1, 2, 3, 4) so that the state
errors given in (4.2) must satisfy

lim
t→∞

E1i(t) = 0 for (i = 1, 2, 3, 4).

Then, error dynamics takes the form
Ė11 = p1E11 − q1(us2us3 − β1um2um3) +W1

Ė12 = −r1E12 + us1us3 − β1um1um3 +W2

Ė13 = l1E11 − a1E13 + us1us2 − β1um1um2 +W3

Ė14 = n1E14 + us1us2 − β1um1um2 +W4,

(4.3)

Next, we describe the adaptive controllers by the rule:
W1 = −p̂1E11 + q̂1(us2us3 − β1um1um3)−K1E11

W2 = r̂1E12 − us1us3 + β1um1um3 −K2E12

W3 = −l̂1E11 + â1E13 − (us1us2 − β1um1um2)−K3E13

W4 = −n̂1E14 − us1us2 + β1um1um2 −K4E14,

(4.4)

where K1, K2, K3, K4 are positive gain constants.
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By putting the expressions of controllers (4.4) in error dynamics (4.3), we
obtain 

Ė11 = (p1 − p̂1)E11 − (q1 − q̂1)(us2us3 − β1um2um3)−K1E11

Ė12 = −(r1 − r̂1)E12 −K2E12

Ė13 = (l1 − l̂1)E11 − (a1 − â1)E13 −K3E13

Ė14 = (n1 − n̂1)E14 −K4E14,

(4.5)

where p̂1, q̂1, r̂1, â1, n̂1, l̂1 are estimation values for unknown parameter p1, q1,
r1, a1, n1, l1 respectively.

Parameter estimation error is defined as:

p̃1=p1 − p̂1, q̃1=q1 − q̂1, r̃1=r1 − r̂1, ã1=a1 − â1, ñ1=n1 − n̂1, l̃1= l1 − l̂1(4.6)

Using (4.6), the error dynamics (4.5) turns into
Ė11 = p̃1E11 − q̃1(us2us3 − β1um1um3)−K1E11

Ė12 = −r̃1E12 −K2E12

Ė13 = l̃1E11 − ã1E13 −K3E13

Ė14 = ñ1E14 −K4E14.

(4.7)

The derivative of parameter estimation error (4.6) with respect to time is given by

˙̃p1 = − ˙̂p1, ˙̃q1 = − ˙̂q1, ˙̃r1 = − ˙̂r1, ˙̃a1 = − ˙̂a1, ˙̃n1 = − ˙̂n1,
˙̃l1 = − ˙̂

l1(4.8)

Define the Lyapunov function as:

V =
1

2
[E2

11 + E2
12 + E2

13 + E2
14 + p̃21 + q̃21 + r̃21 + ã21 + ñ2

1 + l̃21](4.9)

which show that V is positive definite.
Derivative of Lyapunov function V can be written as:

V̇ = E11Ė11 + E12Ė12 + E13Ė13 + E14Ė14 − p̃1 ˙̂p1(4.10)

− q̃1 ˙̂q1 − r̃1 ˙̂r1 − ã1 ˙̂a1 − ñ1
˙̂n1 − l̃1 ˙̂l1.
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In view of (4.10), we prescribe parameter estimates laws as:

˙̂p1 = (us1 − β1um1)E11 +K5(p1 − p̂1)
˙̂q1 = −(us2us3 − β1um2um3)E11 +K6(q1 − q̂1)
˙̂r1 = −(us2 − β1um2)E12 +K7(r1 − r̂1)
˙̂a1 = −(us3 − β1um3)E13 +K8(a1 − â1)
˙̂n1 = (us4 − β1um4)E14 +K9(n1 − n̂1)
˙̂
l1 = (us1 − β1um1)E13 +K10(l1 − l̂1),

(4.11)

where K5, K6, K7, K8, K9 and K10 are positive gain constants.

Theorem 4.1. The hyperchaotic systems (3.1)-(4.1) are asymptotically projec-
tive synchronized for all initial states (um1(0), um2(0), um3(0), um4(0)) ∈ R4 by the
adaptive controller (4.4) and the parameter updating law (4.11).

Proof. The Lyapunov function V as defined in (4.9) is a positive definite func-
tion. By solving equations (4.7), (4.10) and (4.11), one finds that

V̇ = −K1E
2
11−K2E

2
12−K3E

2
13−K4E

2
14−K5p̃

2
1−K6q̃

2
1−K7r̃

2
1

−K8ã
2
1−K9ñ

2
1−K10l̃

2
1 < 0

ensuring that V̇ is negative definite.
Now, by using Lyapunov stability theory, we find that the projective synchro-

nization error e(t) → 0 exponentially as t → ∞ for each initial conditions
e(0) ∈ R4. The proof is now complete. �

5. NUMERICAL SIMULATION

This section performs some simulation results to illustrate the effectiveness
and feasibility of the proposed PS scheme via ACM. The initial states of the
systems (3.1) and (4.1) are (−2, 4, 2,−3) and (−3, 5, 3,−4) respectively. When
the scaling matrix A is chosen as β1 = 2. In this case, we achieved complete
synchronization in master (3.1) and slave (4.1) systems. Control gains are taken
as Ki = 4, i = 1, 2, . . . , 10. The Figure 2(a-d) display trajectories systems (3.1)
and (4.1) and Figure 2(e) shows the synchronization error (E11, E12, E13, E14) =

(1,−3,−1, 2) tending to zero for t tends to infinity. Further, Figure 2(f) displays
the estimated values (p̂1, q̂1, r̂1, â1, n̂1, l̂1) of unknown parameters converging to
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their real values asymptotically with time. Thus, the proposed PS scheme among
master and slave system has been attained computationally. The figure (a-e)
shows that projective anti-synchronization in systems (3.1) and (4.1) is achieved
numerically if we choose the scaling matrix A with β1 = −3.
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FIGURE 2. Projective complete synchronization of hyperchaotic
system (A) between um1(t) − us1(t), (B) between um2(t) − us2(t),
(C) between um3(t)− us3(t), (D) between um4(t)− us4(t), (E) syn-
chronization error, (F) Parameter estimation
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FIGURE 3. Projective anti-synchronization of hyperchaotic system
(A) between um1(t) − us1(t), (B) between um2(t) − us2(t), (C) be-
tween um3(t) − us3(t), (D) between um4(t) − us4(t), (E) synchro-
nization error, (F) Parameter estimation

6. CONCLUSION

In this manuscript, we have investigated the projective synchronization among
identical hyperchaotic systems using adaptive control method. By defining proper
controllers based on Lyapunov stability theory, the discussed PS scheme has
been achieved. The effectiveness of the theoretical results are verified through
simulations conducted in MATLAB. Remarkably, the theoretic study and numer-
ical outcomes both are in excellent agreement. In addition, the considered PS
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technique is very effective since it has various applications in encryption and
secure communication.
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