ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.10, 7851–7857 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.10.17 Spec. Issue on ACMAMP-2020

A NEW CLASS OF IDEAL BINARY TOPOLOGICAL SPACES

S. MEENA PRIYADARSHINI¹ AND V. KOKILAVANI

ABSTRACT. The notion of mildly α generalized (m α g) binary closed sets is introduced in ideal binary topological spaces. Characterizations and properties of m α Ig closed sets are given.

1. INTRODUCTION

Nithyanantha jothi and Thangavelu [6] introduced the concept of binary topology and discussed some of its basic properties in 2011. In 2018 [10], a new notion of generalized binary closed sets in binary topological space was studied by Santhini and Dhivya. In 2018, Shymapada modak and Al.omari [2] introduced generalized closed sets in binary ideal topological spaces.

2. Preliminaries

In this section, basics of binary topology and of binary ideal topological spaces are given. Throughout the paper mildly α generalized binary closed sets is denoted as m α g binary closed sets.

Definition 2.1 ([2]). Let X and Y be two nonempty sets and let $(A, B) \in \wp(X) \times \wp(Y)$ and $(C,D) \in \wp(X) \times \wp(Y)$ respectively. Then:

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A99.

Key words and phrases. binary α -open set, α Ig binary closed set, m α Ig binary closed set.

- (*i*) (A,B) \subseteq (C,D) if and only if $A \subseteq C$ and $B \subseteq D$.
- (*ii*) A, B) = (C,D) if and only if A=C and B=D.
- (*iii*) $(A,B)\cup(C,D) = (H,K)$ if and only if $(A\cup C) = H$ and $(B\cup D) = K$.
- (iv) $(A,B)\cap(C,D) = (H,K)$ if and only if $(A\cap C) = H$ and $(B\cap D) = K$.
- $(v) (A,B)^c = (X \setminus A, Y \setminus B).$
- $(vi) (A,B) \setminus (C,D) = (A,B) \cap (C,D)^c.$

Definition 2.2. [2] Let X and Y be any two nonempty sets . A binary topology from X to Y is a binary structure $M \subseteq \wp(X) \times \wp(Y)$ that satisfies the axioms namely

- (i) (ϕ, ϕ) and $(X, Y) \in M$;
- (ii) (A∩B, C∩D) ∈ M whenever (A, C) ∈ M and (B, D) ∈M;
- (*iii*) If (A α , B α): $\alpha \in \Delta$ is a family of members of M, then α , A, $B \in M$.

If M is a binary topology from X to Y then the triplet (X, Y, M) is called a binary topological space and the members of M are called the binary open subsets of the binary topological space (X,Y, M).

The elements of $X \times Y$ are called the binary points of the binary topological space(X, Y, M).

If Y=X then M is called a binary topology on X in which case we write (X, M) as a binary topological space. The examples of binary topological spaces are given in [2].

Definition 2.3. Let (X, Y,M) be a binary topological space. Let $(A, B) \subseteq (X, Y)$. Then(A, B) is called

- (i) ([10]) binary semi open if there exists a binary open set (U, V) such that $(U,V) \subseteq (A, B) \subseteq b cl(U, V)$.
- (*ii*) ([5]) binary α closed if b-cl(b-int(b-cl(A, B)) \subseteq (A, B) and binary α open if b-int(b-cl(b-int(A, B)) \subseteq (A, B).
- (*iii*) ([8]) generalized binary closed set, if b-cl(A,B) \subseteq (U,V) whenever (A,B) \subseteq (U,V) and (U,V) is binary open in(X, Y, M).
- (*iv*) ([5]) α generalized binary closed sets, if b- α cl(A,B) \subseteq (U,V) whenever (A,B) \subseteq (U,V) and (U,V) is binary open.
- (v) ([5]) mildly α generalized(m α g) binary closed sets, if b-cl(b-int(A, B)) \subseteq (U,V) whenever (A,B) \subseteq (U,V) and (U,V) is α g binary open.

Definition 2.4. [2] Let X and Y be any two non empty sets. A binary ideal from X to Y is a binary structure $I \subseteq \wp(X) \times \wp(Y)$ that satisfies the following axioms:

7852

(i)
$$(A,B) \in I$$
 and $(C,D) \subseteq (A,B)$ implies $(C,D) \in I$ (hereditary).

(*ii*) (A, B) \in I and (C, D) \in I implies (A \cup C, B \cup D) \in I (finite additivity).

Definition 2.5. [2] Let (X,Y,M) be a binary topological space with an binary ideal I on $\wp(X) \times \wp(Y)$ is called ideal binary topological space and it is denoted as (X,Y,M,I).

For a binary subset (A,B) of $X \times Y$, we define the following set operator: (,)*: $\wp(X) \times \wp(Y) \longrightarrow \wp(X) \times \wp(Y)$, is called a binary local function with respect to M and I is defined as follows: for (A,B) \subseteq (X,Y),(A,B)*(I,M) = (x,y) \subseteq (X,Y) \(U \cap A, V \cap B) \notin I for every (U,V) \in M(x,y) where M(x,y) = (U,V) \in M: (x,y) \in (U,V).

Here $(A,B)^*$ (I,M) is briefly denoted by $(A,B)^*$ and is called Binary local function of (A,B) with respect to I and M. From [2] we have C^* : $\wp(X) \times \wp(Y) \longrightarrow \wp(X) \times \wp(Y)$ is a Kuratowski closure operator.

Therefore $(U,V) \subseteq (X,Y) : C^* [(X,Y) \setminus (U,V)] = (X,Y) \setminus (U,V)$, forms a binary topology on $X \times Y$, and it is denoted as M^* .

Lemma 2.1. [2] Let (X, Y, M, I) be an ideal binary topological space. Then β $(M, I) = (V_1, V_2) \setminus I: (V_1, V_2)$ is a binary open set of $(X, Y, M, I) \in I$ is a basis for M.

Definition 2.6. [2] Let (X, Y, M) be a binary topological space. Then the generalized kernel of $(A,B) \subseteq (X,Y)$ is denoted by g-ker(A,B) and defined as g-ker $(A,B) = \cap(U,V) \in M : (A,B) \subseteq (U,V)$.

Definition 2.7. [2] Let (X, Y, M) be a binary topological space and $(A, B) \subseteq (X, Y)$. Then g-ker $(A,B) = (x,y) \in X \times Y$: b-Cl $((x,y)) \cup (A,B) \neq (\phi,\phi)$.

Definition 2.8. [2] A subset (A,B) of an ideal binary topological space (X,Y,M,I) is called I_g -closed if (A,B)* \subseteq (U,V) whenever (U,V) is binary open and (A,B) \subseteq (U,V). A subset (A,B) of a binary ideal topological space (X,Y, M,I) is called I_g -open if (X,Y)\(A,B) is I_g closed.

Definition 2.9. [2] Let (X, Y, M, I) be an ideal binary topological space. Then the subset (A,B) of $X \times Y$ is said to be *-dense in itself if $(A,B)^* = (A,B)$.

Lemma 2.2. [2] Let (X, Y, M, I) be an ideal binary topological space and $(A, B) \subseteq X \times Y$. If (A, B) is *-dense in itself, then $(A, B)^* = b$ -Cl $((A, B)^*) = b$ -Cl $(A,B) = C^*(A,B)$.

3. $m_{\alpha}I_{q}$ BINARY CLOSED SETS

In this section we introduce ${}_{m\alpha}I_g$ binary generalized closed sets and study some of their properties.

Definition 3.1. A subset (A, B) of an ideal binary topological space (X, Y,M,I) is said to be $_{\alpha}I_{g}$ binary closed if (A,B)* \subseteq (U,V) whenever (A,B) \subseteq (U,V) and (U,V) is binary α -open.

Definition 3.2. A subset (A,B) of an ideal binary topological space (X,Y, M,I) is called $_{m\alpha}I_g$ -closed if (A,B)* \subseteq (U,V) whenever (U,V) is αg binary open and (A,B) \subseteq (U,V). A subset (A,B) of a binary ideal topological space (X,Y, M,I) is called $_{m\alpha}I_g$ -open if (X,Y)\(A,B) is $_{m\alpha}I_g$ closed.

Definition 3.3. *Let*(*X*, *Y*,*M*) *be a binary topological space and* (*A*, *B*) \subseteq (*X*, *Y*). *Then* αg -*ker*(*A*,*B*) = (*x*,*y*) \in *X*×*Y* : *b*- αg *Cl*((*x*,*y*)) \cap (*A*,*B*) \neq (ϕ , ϕ).

Theorem 3.1. If (X, Y, M,I) is any ideal binary topological space, then the following are equivalent

- (*i*) (A, B) is $_{m\alpha}I_g$ closed.
- (*ii*) $C^*(A,B) \subseteq (U,V)$ whenever $(A,B) \subseteq (U,V)$ and (U,V) is αg binary open in $X \times Y$.
- (*iii*) for all $(x,y) \in C^*(A,B)$, $b \circ \alpha gCl((x,y)) \cap (A,B) \neq (\phi,\phi)$.
- (*iv*) C^* (A, B)\(A,B) contain no nonempty αg binary -closed set.
- (v) $(A, B)^* \setminus (A, B)$ contains no nonempty αg binary-closed set.

Proof.

(i) \Rightarrow (ii): If (A,B) is $_{m\alpha}I_g$ -closed, then (A,B) * \subseteq (U,V) whenever (A,B) \subseteq (U,V) and (U,V) is α g binary open in X×Y and so C * (A,B) = (A,B) \cup (A,B)* \subseteq (U,V) whenever (A,B) \subseteq (U,V) and (U,V) is α g binary open in X × Y.

(ii) \Rightarrow (iii): Suppose (x,y) \in C*(A,B) and (x,y) $\notin \alpha g$ -ker(A,B). Then b- $\alpha gCl((x,y)) \cap (A,B) = (\phi,\phi)$ (from definition 3.8) implies that (A,B) \subseteq (X,Y)\b- $\alpha gCl((x,y))$). By (ii), a contradiction, since (x,y) \in C* (A,B).

(iii) \Rightarrow (iv): Suppose (G,H) \subseteq C*(A,B) \setminus (A,B), (G,H) is α g binary closed and (x,y) \in (G,H). Since (G,H) \subseteq C* (A,B) \setminus (A,B), (G,H) \cap (A,B) = (ϕ , ϕ). We have b-Cl((x,y)) \cap (A,B) = (ϕ , ϕ) because (G,H) is α g binary closed and (x,y) \in (G,H).It is a contradiction.

7854

(iv) \Rightarrow (v): Since C * (A,B)\ (A,B) = (A,B) \cup (A,B)*\ (A,B)= (A,B) \cup (A,B) * \cap (A,B)^c = ((A,B) \cap (A,B)^c)) \cup (A,B) * \cap (A,B)^c = (A,B) * \cap (A,B)^c = (A,B)*\(A,B). Therefore (A, B) * \ (A, B) contains no nonempty α g binary-closed set.

(v)⇒(i): Let (A,B) ⊆ (U,V) where (U,V) be α g binary open subset containing (A,B). Therefore ((X,Y)\(U,V)) ⊆ ((X,Y)\(A,B)) and so (A,B)*∩((X,Y)\(U,V)) ⊆ (A,B)* ∩((X,Y)\(A,B)) = (A,B) * \(A,B). Therefore (A,B)*∩((X,Y)\(U,V)) ⊆ (A,B)* \(A,B). Since (A, B)* is always α g binary closed set. (A, B)*∩((X,Y)\(U,V)) is a α g binary closed set contained in (A,B)* \(A,B). By assumption, (A, B) * ∩ ((X,Y) \ (U,V)) = (ϕ , ϕ). Hence we have (A,B*) ⊆ (U,V). Therefore (A, B) is $_{m\alpha}$ I_g closed.

Theorem 3.2. Let (X,Y, M,I) be an ideal binary topological space, for every (A,B) $\in I_{\mathcal{A}}(A,B)$ is $_{m\alpha}I_{g}$ binary closed.

Proof. Let (A,B) \subseteq (U,V) where (U,V) is αg binary open set.since (A,B)* = (ϕ , ϕ) for every (A,B) \in I,Then C*(A,B) = (A,B) \cup (A,B)* \subseteq (A,B) \subseteq (U,V).Therefore by theorem 4.1, (A,B) is $_{m\alpha}I_g$ binary closed.

Theorem 3.3. Let (X,Y, M,I) be an ideal binary topological space, for every ${}_{m\alpha}I_g$ binary closed, αg binary open set is C *closed set.

Proof. Since (A,B) is $_{m\alpha}I_g$ binary closed, αg binary open. Then (A,B)* \subseteq (A,B) whenever (A,B) \subseteq (A,B) and (A,B) is αg binary open. Hence (A,B) isC * closed set.

Theorem 3.4. Every I_g binary closed is ${}_{\alpha}I_g$ binary closed

Proof. Let (A, B) \subseteq (U,V) and (U,V) is binary α open. Clearly every binary open set is binary α open. Since (A,B) is I_g binary closed set (A,B)* \subseteq (U,V) which implies that (A,B) is an ${}_{\alpha}I_g$ binary closed set. The converse of the theorem need not be true as seen from the following example.

Example 1. Let $X = \{0,1\}, Y = \{a,b,c\}, M = \{(\phi, \phi), (\{0\}, \{a\}), (\{1\}, \{b\}), (X, \{a,b\}), (X,Y)\}$ is a binary topology from X to Y, let $I = \{(\{0\}, \{a\}), (\{1\}, \{b\}), (\{1\}, \phi), (\phi, \{a,c\}), (\phi, \phi)\}$ Clearly the set $(A,B) = (X,\phi)$ is ${}_{\alpha}I_{g}s$ binary closed but not an I_{g} binary closed set.

Theorem 3.5. Every ${}_{\alpha}I_{q}$ binary closed is a ${}_{m\alpha}I_{q}$ binary closed.

7856 S. MEENA PRIYADARSHINI AND V. KOKILAVANI

Proof. Let (A,B) \subseteq (U,V) and (U,V) is m α g binary open. Clearly by [5] every α g binary open set is m α g binary open. Since (A,B) is $_{\alpha}I_{g}$ binary closed set (A,B)* \subseteq (U,V) which implies that (A,B) is an $_{m\alpha}I_{g}$ binary closed set. The converse of the theorem need not be true as seen from the following example

Example 2. Let $X = \{0,1\}, Y = \{a,b,c\}, M = \{(\phi, \phi), (\{0\}, \{a\}), (\{1\}, \{b\}), (X, \{a,b\}), (X,Y)\}$ is a binary topology from X to Y, let $I = \{(\{0\}, \{a\}), (\{1\}, \{b\}), (\{1\}, \phi), (\phi, \{a,c\}), (\phi, \phi)\}$ Clearly the set $(A,B) = (X, \{a,b\})$ is $_{m\alpha}I_g$ binary closed but not an $_{\alpha}I_g$ binary closed set.

Theorem 3.6. Let (X, Y, M, I) be an ideal binary topological space and $(A, B) \subseteq X \times Y$. If (A, B) is a $_{m\alpha}I_g$ -closed set, then the following are equivalent

- (i) (A, B) is a C^* -closed set.
- (*ii*) C^* (A, B) (A,B) is a αg binary closed set.
- (*iii*) (A,B) $* \setminus$ (A,B) is a α g binary closed set.

Proof.

(i) \Rightarrow (ii): If (A,B) is C*-closed, then(A,B) * \subseteq (A,B).So C * (A,B)\(A,B) = (A,B) \cup (A,B)*\ (A,B) = (ϕ , ϕ) and so C * (A,B)\(A,B) is α g binary closed.

(ii) \Rightarrow (iii): This follows from the fact that C * (A,B)\(A,B) = (A,B)^{*b**} \(A,B) is α g binary closed

(iii) \Rightarrow (i): If (A,B) * \(A,B) is α g binary closed closed and (A,B) is $_{m\alpha}I_g$ closed and α g binary open then (A,B) is C*-closed set.-closed, from Theorem 2.4[4], (A,B)* \(A,B) = (ϕ , ϕ) and so (A,B) is C*-closed.

Theorem 3.7. Let (X,Y, M,I) be an ideal binary topological space. Then every subset of $X \times Y$ is ${}_{m\alpha}I_g$ -closed if and only if every M - αg open set is C^* -closed.

Proof. Suppose every subset of X ×Y is ${}_{m\alpha}I_g$ -closed. If (U,V) is $M - \alpha g$ open, then (U,V) is ${}_{m\alpha}I_g$ -closed and so (U,V)* \subseteq (U,V). Hence (U,V) is C *-closed. Conversely, suppose that every M- αg set is C *-closed. If (A,B) \subseteq X × Y and (U,V) is a M - αg set such that (A,B) \subseteq (U,V), then(A,B) * \subseteq (U,V) * \subseteq (U,V) and so (A,B) is ${}_{m\alpha}I_g$ -closed.

Lemma 3.1. Let (X,Y,M,I) be an ideal binary topological spaceand $(A,B) \subseteq X \times Y$. If (A,B) is *-dense in itself, then $(A,B)^* = b \cdot \alpha gCl((A,B)^*) = b \cdot \alpha gCl(A,B) = C^*(A,B)$. *Proof.* Let (A,B) be*-dense in itself. Then we have $(A,B) \subseteq (A,B)^*$ and hence $b \cdot \alpha gCl(A,B) \subseteq b \cdot \alpha gCl((A,B)^*)$. We know that $(A,B)^* = b \cdot \alpha gCl((A,B)^*) \subseteq b \cdot \alpha gCl(A,B)$ from Theorem 2.4 [3]. In this case $b \cdot \alpha gCl(A,B) = b \cdot \alpha gCl((A,B)^*) = (A,B)^*$. Since $(A,B)^* = b \cdot \alpha gCl(A,B)$, we have $C^*(A,B) = b \cdot \alpha gCl(A,B)$ \Box

Theorem 3.8. If (X,Y,M,I) is an ideal binary topological space and (A,B) is *-dense in itself, ${}_{m\alpha}I_{q}$ -closed subset of X×Y, then (A,B) is $m\alpha g$ binary closed

Proof. Suppose (A,B) is a b*-dense in itself, m α Ig-closed subset of X×Y.If (U,V) is any α g binary open set containing (A,B), then by Theorem 4.1 ,C *(A,B) ⊂ (U,V). Since (A,B) is *-dense in itself, by above lemma 3.1 ,b- α gCl(A,B)⊆(U,V) and so (A,B) is m α g binary closed.

REFERENCES

- [1] A. AL-OMARI, S. MODAK: Binary ideal on binary topological spaces, submitted.
- [2] A. ABDULLAH AL-OMARI, S. MODAK: Generalized closed sets in binary ideal topological spaces, 5(2) (2011), 133-138.
- [3] K. KURATOWSKI: Topology, Vol. I, Academic Press, New York, 1966.
- [4] M. LELLIS THIVAGAR, J. KAVITHA: On binary structure of supra topological spaces, Bol. Soc. Paran. Mat., **35**(3) (2017), 25-37.
- [5] S. MEENA PRIYADARSHINI, V. KOKILAVANI: Mildly α generalized binary closed sets in binary topological space, submitted.
- [6] S. NITHYANANTHA JOTHI, P. THANGAVELU: *Topology between two sets*, Journal of Mathematical Sciences and Computer Applications, **1**(3) (2011), 95-107.
- [7] S. NITHYANANTHA JOTHI, P. THANGAVELU: On binary topological spaces, Pacific Asian Journal of Mathematics., **56** (1991), 87-92.
- [8] S. NITHYANANTHA JOTHI, P. THANGAVELU: Generalized binary closed sets in binary topological spaces, Ultera Scientist., **26**(1A) (2014), 25-30.
- [9] S. NITHYANANTHA JOTHI, P. THANGAVELU: *Generalized binary regular closed sets*, IRA-International Journal of Applied Sciences., **4**(2) (2016), 259-263.
- [10] C. SANTHINI, T. DHIVYA: New notion of generalized binary closed sets in binary topological space, International journal of Mathematical Archive, 9(10) (2018), 1-7.

DEPARTMENT OF MATHEMATICS, KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE-641 049, TAMILNADU, IINDIA

Email address: meenapriyadarshini.s.sci@kct.ac.in

Department of Mathematics, Kongunadu arts and science college, Coimbatore-641 049, Tamilnadu, Iindia

Email address: vanikasc@yahoo.co.in