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MODULAR COLORINGS OF CORONA PRODUCT OF C,,, WITH C,,
N. PARAMAGURU

ABSTRACT. For ¢ > 2, a modular ¢-coloring of a graph G without isolated ver-
tices is a coloring of the vertices of G with the elements in Z, having the prop-
erty that for every two adjacent vertices of G, the sums of the colors of their
neighbors are different in Z,. The minimum /¢ for which G has a modular ¢-
coloring is the modular chromatic number of G. In this paper, we determine the
modular chromatic number of corona product of cycles.

1. INTRODUCTION

For graph-theoretical terminology and notation, we in general follow [1]. For
avertex v of a graph G, let Ng(v), the neighborhood of v, denote the set of vertices
adjacent to v in G. For a graph G without isolated vertices, let ¢ : V(G) — Zy,
¢ > 2, be avertex coloring of G where adjacent vertices may be colored the same.

The color sum S(v) = > c¢(u) of avertex v of G is the sum of the colors of the
u€Ng(v)
vertices in Ng(v). The coloring c is called a modular fcoloring of G if S(x) # S(y)

in Z, for all pairs z, y of adjacent vertices in G. The modular chromatic number
Mc(G) of G is the minimum ¢ for which G has a modular £coloring. This concept
was introduced by Zhang et. al. [2].

Okamoto, Salehi and Zhang proved, in [2], they proved that: every nontrivial
connected graph G has a modular #coloring for some integer ¢ > 2 and M¢(G)
> x(G), where x(G) denotes the chromatic number of G; for the cycle C,, of
length n, Mc(C,) is 2 if n = 0 mod 4 and it is 3 otherwise; every nontrivial
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tree has modular chromatic number 2 or 3; for the complete multipartite graph
G, Mc(G) = x(G); for the cartesian product G = K,OKy, Mc(G) is r if r =
2 mod 4 and it is r+ 1 otherwise; for the wheel W,, = C,,VK;,n > 3, Mc(W,,) =
x(W,,), where Vv denotes the join of two graphs; for n > 3, Mc(C, V K) =
x(C, V K§), where G° denotes the complement of G; and for n > 2, M¢(P, V
K;) = x(P,V K3), where P, denotes the path of length n — 1; and in [3] proved
that: for m,n > 2, M¢(P,,0P,) = 2.

Paramaguru and Sampthkumar proved, in [5], that: Mc(C30P,) = 4; ex-
cept some special cases, for m > 3 and n > 2, Mc(C,,0F,) = x(C,OF,); if
m = 2mod 4 and n = 1 mod 4, then M¢(C,,0P,) < 3;ifn = 1 mod 4, then
Mc(CsOP,) = 3. In [6], they proved that: if m > 4 and n > 4 are even in-
tegers and at least one of m, n is congruent to 0 mod 4, then M¢(C,,00C,) =
x(C,0C,); if n > 3 is an integer, then Mc(C30C,) = x(C50C,); if at least one
of m, n is congruent to 1 mod 2, except some special cases, m > 4, n > 4, then
Mc(C,0C,) = x(C,0C,); if n = 2 mod 4, and n > 6, then Mc(CsOC,) = 3,
where [J denotes the Cartesian product of two graphs.

Nicholas and Sanma discussed in [4], that: the modular chromatic number of
Fan, Helm graph, Friendship graph and gear graph.

The corona of two graphs G and H is the graph G o H formed from one copy
of G and |V (G)| copies of H, where the ith vertex of G is adjacent to every vertex
in the ith copy of H. Such type of graph products was introduced by Frucht and
Harary in 1970.

2. CORONA OF C,,, WITH C,,

Define V(C,,) = {u1,ug,us,...,un}; V(C,) = {vi,v2,0s,...,0,}; E(Cy) =
{ugug, uguz, ugtiy, . . .y U1 U, Uty }; E(Cy) = {102, Vo3, 0304, . . ., V1V, UyU1 };
V(Cro Cp) = V(Cr) U{v} : i € {1,2,3,...,m} and j € {1,2,3,...,n}};
E(CpoCy) = E(Cy) U{vivl,, :i€{1,2,3,...,m}and j € {1,2,3,...,n—1}} U
{uwf i€ {1,2,3,...,m}and j € {1,2,3,...,n}} U {vjv} :i€{1,2,3,...,m}}.

Theorem 2.1. For m even and n even, m >4, n >4, Mc(C,, o C,) = 3.

Proof. Letc: V(Cy, 0 Cy) — Zs.
Case 1. n =4 mod 6.
Define ¢ as follows: c(u;) = 0 if i is even; c(u;) = 1 if i is odd; c(v}) = 0 if
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i € {1,2,3,...,m}, jis even; c(vj) = 1if i € {1,2,3,...,m}, j is odd; then
S(u;) = 1if 4 is even; S(u;) = 2 if 7 is odd; S(v}) = 1 lfl,j odd; S(vi) = 2if i,
even; S(v}) = 0if i is odd, j is even; S(v}) = 0 if 7 is even, j is odd.

Case 2. n =2 mod 6.

Define c as follows: c(u;) = 0ifi € {1,2,3,...,m}; c(v}) = 0ifi € {1,2,3,...,m},
j is even; c(v}) = 1if i, j odd; c(v}) = 2 if i is even, j is odd; then S(u;) = 1if i is
odd; S(u;) = 2 if i is even; S(v}) = 1if i, j even; S(v}) = 2 if 7 is odd, j is even;
S(vi) =0ifi € {1,2,3,...,m}, j is odd.

Case 3. n =0 mod 6.

Define c as follows:

c(u;) = 0 if 4 is odd; c(u;) = 2 if i is even; c(v}) = 0if i € {1,2,3,...,m}, j
is even; c(vj) = 1if7 € {1,2,3,...,m}, j is odd; then S(u;) = 1 if 4 is odd;
S(u;) = 0if i is even; S(v}) = 11if 7,5 even; S(v}) = 2 if i is odd, j is even;
S(vi) = 2if i is even, j is odd; S(v}) = 0 if 7, j odd. Clearly, x(C,, o C,) = 3.
Hence, M ¢(C,, o C,,) = 3. This completes the proof. O

Theorem 2.2. For m even and n odd, m > 4,n > 3, Mc(C,, 0o Cy,) =

Proof. Letc: V(Cy, 0 Cy) — Zy.

Case 1. n =1 mod 8.

Define ¢ as follows: c(u;) = 0 if i is even; c(u;) = 1 if i is odd; c(v}) =
i€{1,2,3,...,m}, j = 0,2,3 mod 4; c(v?) = c(v)_,) = 1if i is odd; C(U:l)

if i is even; c(v}) = 2 if i isodd, j = 1 mod 4; j & {n,n — 4}; c(v}) =

if i is even, j = 1 mod 4, j # n; then S(u;) = 0 if i is odd; S(u;) = 3 1f i
is even; S(v?) = 0if 7 is even, j € {3,5,7,...,n — 2}; S(v}) = 1 if i is odd,
j€1{3,5,7,....n—-2}; S(v}) = 1ifiiseven, j € {1,n—1}; S(v}) = 2if i is
odd, j € {1,n—1,n —3,n —5}; S(v) = 2if i is even, j € {2,4,6,...,n — 3,n};
S(vi) =3ifiisodd, j € {2,4,6,...,n —7,n}.

Case 2. n = 3 mod 8 and n # 3.

Define ¢ as follows: c¢(u;) = 0 if i is even; c(ul) = 1if i is odd; c(v}) =
i€{1,2,3,....,m},j =0,2,3mod 4; c(v!,_,) = c(v’_) = 1ifiis odd; (v}, _ 2):1
if 7 is even; c( vi) = 2ifiisodd, j = 1 mod 4; j & {n —2,n—6}; c(v)) = 2i
iiseven, j = 1 mod 4, j # n — 2; then S(u;) = 0 if ¢ is odd; S(u;) = 3 1fz
is even; S(v!) = 0if 7 is even, j € {1,3,5,...,n — 2}; S(v}) = 1 if i is odd,
je{1,3,5,...,n -2} Si) =1ifiiseven, j € {n —1,n—3}; S(v}) = 2if i is
odd, j € {n—1,n—3,n—5n—T}; S(vj) = 2ifiiseven, j € {2,4,6,...,n—5,n};
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S(vi) =3ifiisodd, j € {2,4,6,...,n —9,n}.

Case 3. n =5 mod 8.

Define c as follows: c(u;) = 0ifi € {1,2,3,...,m}; c(v}) = 0ifi € {1,2,3,...,m},

J = 0,2,3 mod 4; c(vi) = 1 if i is even; c(v) 31fz1sodd c(v ):2if

i€ {1,2,3,...,m}, j = 1mod 4, j # n; then S(u;) = 1if 7 is odd; S(uz

if 7 is even; 8( v)) = 0if i € {1,2,3,...,m}, j € {3,5,7,...,n —2}; S(v}) =

if i is even, j € {I,n —1}; S(v}) = 3ifiis odd, j € {I,n —1}; S(v}) = 2 if

i€{1,2,3,...,m},j€12,4,6,...,n—3,n}.

Case 4. n = 7 mod 8.

DeﬁnecastHOWS' clu;) = 0ifi € {1,2,3,...,m}; c(v}) = 0ifi € {1,2,3,...,m},
= 0,2,3 mod 4; c(v!_,) = 1if i is even; c(vn_)—?;lf“sodd, c(v j)—2if

26{1,2,3,...,m},]_1m0d4,j7én—2;then5(ui):1ifiisodd;8(u,~):3

if i is even; S(v}) = 0if i € {1,2,3,...,m}, j € {1,3,5,...,n —2}; S(v}) = 1 if i

iseven, j € {n—1,n—3}; S(vj) = 3ifiisodd, j € {n — 1,n - 3}; S(v}) = 2Iif

i€{1,2,3,....m},j € {2,4,6,....,n—5,n}.

Case 5. n = 3.

Subcase 5.1. m = 0 mod 4.

Define ¢ as follows: c(u;) = 0if i = 0,2,3 mod 4; c(u;) = 1 if i = 1 mod 4;

c(vi) = 0ifi = 1 mod 4; c(vy) = 2 if i = 1 mod 4; c(vy) = 3if i = 1 mod 4;

c(v’l') = 0 if 7 is even; c(vy) = 1 if i is even; c(v}) = 2 if 7 is even; c(v}) = 1 if
= 3 mod 4; ¢(vy) = 2 if i = 3 mod 4; c¢(vy) = 3 if i = 3 mod 4; then S(u;) = 1

1fz_1m0d4,8(ul)—01f2_0 2 mod 4; S(u;) = 2 if i = 3 mod 4; S(vi) = 2

if i =1 mod 4; S(vi) = 0if i = 1 mod 4; S(vi) = 3 if i = 1 mod 4; S(v}) = 1 if

i =3 mod 4; S(vi) = 0if i =3 mod 4; S(vy) = 3if i = 3 mod 4; S(v}) = 3if i is

even; S(vy) = 2 if i is even; S(vi) = 1 if 7 is even.

Subcase 5.2. m = 2 mod 4.

Define ¢ as follows: c(u;) = 0if i = 0,2,3 mod 4; c¢(u;) = 1 if i = 1 mod 4;

c(vi) = 0if i = 1 mod 4; c(vy) = 2if i = 1 mod 4; c¢(vy) = 3if i = 1 mod 4;

c(vi) =0ifi € {2,4,6,...,m—2}; c(vi) = 1ifi € {2,4,6,...,m—2}; c(v}) = 2if

i €{2,4,6,....,m—2}; c(v) = 0; c(vy) = 1; c(v§") = 3; c(v}) = 1if i = 3 mod 4;

c(vy) = 2 if i = 3 mod 4; c(v) = 3 if i = 3 mod 4; then S(u;) = 1 if i = 1 mod 4;

Uj

S(u;)) = 0ifi € {2,4,6,...,m — 2}; S(w;) = 2 if i = 3 mod 4; S(un) = 2;
S(i) =2ifi = 1 mod 4; S(vi) = 0if i = 1 mod 4; S(vi) = 3 if i = 1 mod 4;
Si) = 1ifi = 3 mod 4; S(vi) = 0if i = 3 mod 4; S(vi) = 3 if i = 3 mod 4;
Swi) = 3ifi € {2,4,6,...,m — 2}; S(vi) = 2if i € {2,4,6,...,m — 2};



MODULAR COLORINGS OF CORONA PRODUCT OF C,, WITH C, 7975

Si) =1ifi € {2,4,6,...,m —2}; S(v1*) = 0; S(vi") = 3; S(v§*) = 1. Clearly,
Mc(C,, o Cy) > x(C,, o C,) = 4. Hence, Mc(C,, o C,,) = 4. This completes
the proof. O

3. CONCLUSION

For some graphs G and H considered in this paper, we have seen that M¢(G o
H) = x(G o H). Except the case: Form > 1, n > 1, Mc(Copy1 © Copyr).
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