Advances in Mathematics: Scientific Journal **9** (2020), no.10, 7971–7975 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.10.31 Spec. Issue on ACMAMP-2020

MODULAR COLORINGS OF CORONA PRODUCT OF C_m WITH C_n

N. PARAMAGURU

ABSTRACT. For $\ell \geq 2$, a modular ℓ -coloring of a graph \mathcal{G} without isolated vertices is a coloring of the vertices of \mathcal{G} with the elements in \mathbb{Z}_{ℓ} having the property that for every two adjacent vertices of \mathcal{G} , the sums of the colors of their neighbors are different in \mathbb{Z}_{ℓ} . The minimum ℓ for which \mathcal{G} has a modular ℓ -coloring is the modular chromatic number of \mathcal{G} . In this paper, we determine the modular chromatic number of corona product of cycles.

1. INTRODUCTION

For graph-theoretical terminology and notation, we in general follow [1]. For a vertex v of a graph \mathcal{G} , let $N_{\mathcal{G}}(v)$, the *neighborhood of* v, denote the set of vertices adjacent to v in \mathcal{G} . For a graph \mathcal{G} without isolated vertices, let $c : V(\mathcal{G}) \to \mathbb{Z}_{\ell}$, $\ell \ge 2$, be a vertex coloring of \mathcal{G} where adjacent vertices may be colored the same. The *color sum* $\mathcal{S}(v) = \sum_{u \in N_{\mathcal{G}}(v)} c(u)$ of a vertex v of \mathcal{G} is the sum of the colors of the vertices in $N_{\mathcal{G}}(v)$. The coloring c is called a *modular* ℓ -coloring of \mathcal{G} if $\mathcal{S}(x) \neq \mathcal{S}(y)$ in \mathbb{Z}_{ℓ} for all pairs x, y of adjacent vertices in \mathcal{G} . The *modular chromatic number* $Mc(\mathcal{G})$ of \mathcal{G} is the minimum ℓ for which \mathcal{G} has a modular ℓ -coloring. This concept was introduced by Zhang et. al. [2].

Okamoto, Salehi and Zhang proved, in [2], they proved that: every nontrivial connected graph \mathcal{G} has a modular ℓ -coloring for some integer $\ell \geq 2$ and $Mc(\mathcal{G}) \geq \chi(\mathcal{G})$, where $\chi(\mathcal{G})$ denotes the chromatic number of \mathcal{G} ; for the cycle C_n of length n, $Mc(C_n)$ is 2 if $n \equiv 0 \mod 4$ and it is 3 otherwise; every nontrivial

²⁰¹⁰ Mathematics Subject Classification. 05C15, 05C22.

Key words and phrases. modular colorings, corona product.

N. PARAMAGURU

tree has modular chromatic number 2 or 3; for the complete multipartite graph \mathcal{G} , $Mc(\mathcal{G}) = \chi(\mathcal{G})$; for the cartesian product $\mathcal{G} = K_r \Box K_2$, $Mc(\mathcal{G})$ is r if $r \equiv 2 \mod 4$ and it is r+1 otherwise; for the wheel $W_n = C_n \lor K_1$, $n \ge 3$, $Mc(W_n) = \chi(W_n)$, where \lor denotes the join of two graphs; for $n \ge 3$, $Mc(C_n \lor K_2^c) = \chi(C_n \lor K_2^c)$, where \mathcal{G}^c denotes the complement of \mathcal{G} ; and for $n \ge 2$, $Mc(P_n \lor K_2) = \chi(P_n \lor K_2)$, where P_n denotes the path of length n-1; and in [3] proved that: for $m, n \ge 2$, $Mc(P_m \Box P_n) = 2$.

Paramaguru and Sampthkumar proved, in [5], that: $Mc(C_3 \Box P_2) = 4$; except some special cases, for $m \ge 3$ and $n \ge 2$, $Mc(C_m \Box P_n) = \chi(C_m \Box P_n)$; if $m \equiv 2 \mod 4$ and $n \equiv 1 \mod 4$, then $Mc(C_m \Box P_n) \le 3$; if $n \equiv 1 \mod 4$, then $Mc(C_6 \Box P_n) = 3$. In [6], they proved that: if $m \ge 4$ and $n \ge 4$ are even integers and at least one of m, n is congruent to $0 \mod 4$, then $Mc(C_m \Box C_n) = \chi(C_m \Box C_n)$; if $n \ge 3$ is an integer, then $Mc(C_3 \Box C_n) = \chi(C_3 \Box C_n)$; if at least one of m, n is congruent to $1 \mod 2$, except some special cases, $m \ge 4$, $n \ge 4$, then $Mc(C_m \Box C_n) = \chi(C_m \Box C_n)$; if $n \equiv 2 \mod 4$, and $n \ge 6$, then $Mc(C_6 \Box C_n) = 3$, where \Box denotes the Cartesian product of two graphs.

Nicholas and Sanma discussed in [4], that: the modular chromatic number of Fan, Helm graph, Friendship graph and gear graph.

The *corona* of two graphs \mathcal{G} and \mathcal{H} is the graph $\mathcal{G} \circ \mathcal{H}$ formed from one copy of \mathcal{G} and $|V(\mathcal{G})|$ copies of \mathcal{H} , where the *i*th vertex of \mathcal{G} is adjacent to every vertex in the *i*th copy of \mathcal{H} . Such type of graph products was introduced by Frucht and Harary in 1970.

2. CORONA OF C_m WITH C_n

Define $V(C_m) = \{u_1, u_2, u_3, \dots, u_m\}; V(C_n) = \{v_1, v_2, v_3, \dots, v_n\}; E(C_m) = \{u_1u_2, u_2u_3, u_3u_4, \dots, u_{m-1}u_m, u_mu_1\}; E(C_n) = \{v_1v_2, v_2v_3, v_3v_4, \dots, v_{n-1}v_n, v_nv_1\}; V(C_m \circ C_n) = V(C_m) \bigcup \{v_j^i : i \in \{1, 2, 3, \dots, m\} \text{ and } j \in \{1, 2, 3, \dots, n\}\}; E(C_m \circ C_n) = E(C_m) \cup \{v_j^i v_{j+1}^i : i \in \{1, 2, 3, \dots, m\} \text{ and } j \in \{1, 2, 3, \dots, n-1\}\} \cup \{u_iv_i^j : i \in \{1, 2, 3, \dots, m\} \text{ and } j \in \{1, 2, 3, \dots, m\}\}.$

Theorem 2.1. For m even and n even, $m \ge 4$, $n \ge 4$, $Mc(C_m \circ C_n) = 3$.

Proof. Let $c: V(C_m \circ C_n) \to \mathbb{Z}_3$. **Case 1.** $n \equiv 4 \mod 6$. Define c as follows: $c(u_i) = 0$ if i is even; $c(u_i) = 1$ if i is odd; $c(v_i^i) = 0$ if

7972

 $i \in \{1, 2, 3, \ldots, m\}$, j is even; $c(v_j^i) = 1$ if $i \in \{1, 2, 3, \ldots, m\}$, j is odd; then $S(u_i) = 1$ if i is even; $S(u_i) = 2$ if i is odd; $S(v_j^i) = 1$ if i, j odd; $S(v_j^i) = 2$ if i, jeven; $S(v_j^i) = 0$ if i is odd, j is even; $S(v_j^i) = 0$ if i is even, j is odd. **Case 2.** $n \equiv 2 \mod 6$.

Define c as follows: $c(u_i) = 0$ if $i \in \{1, 2, 3, ..., m\}$; $c(v_j^i) = 0$ if $i \in \{1, 2, 3, ..., m\}$, j is even; $c(v_j^i) = 1$ if i, j odd; $c(v_j^i) = 2$ if i is even, j is odd; then $S(u_i) = 1$ if i is odd; $S(u_i) = 2$ if i is even; $S(v_j^i) = 1$ if i, j even; $S(v_j^i) = 2$ if i is odd, j is even; $S(v_j^i) = 0$ if $i \in \{1, 2, 3, ..., m\}$, j is odd.

Case 3. $n \equiv 0 \mod 6$.

Define c as follows:

 $c(u_i) = 0$ if *i* is odd; $c(u_i) = 2$ if *i* is even; $c(v_j^i) = 0$ if $i \in \{1, 2, 3, ..., m\}$, *j* is even; $c(v_j^i) = 1$ if $i \in \{1, 2, 3, ..., m\}$, *j* is odd; then $S(u_i) = 1$ if *i* is odd; $S(u_i) = 0$ if *i* is even; $S(v_j^i) = 1$ if *i*, *j* even; $S(v_j^i) = 2$ if *i* is odd, *j* is even; $S(v_j^i) = 2$ if *i* is even, *j* is odd; $S(v_j^i) = 0$ if *i*, *j* odd. Clearly, $\chi(C_m \circ C_n) = 3$. Hence, $Mc(C_m \circ C_n) = 3$. This completes the proof.

Theorem 2.2. For m even and n odd, $m \ge 4$, $n \ge 3$, $Mc(C_m \circ C_n) = 4$.

Proof. Let $c: V(C_m \circ C_n) \to \mathbb{Z}_4$.

Case 1. $n \equiv 1 \mod 8$.

Define c as follows: $c(u_i) = 0$ if i is even; $c(u_i) = 1$ if i is odd; $c(v_j^i) = 0$ if $i \in \{1, 2, 3, ..., m\}$, $j \equiv 0, 2, 3 \mod 4$; $c(v_n^i) = c(v_{n-4}^i) = 1$ if i is odd; $c(v_n^i) = 1$ if i is even; $c(v_j^i) = 2$ if i is odd, $j \equiv 1 \mod 4$; $j \notin \{n, n - 4\}$; $c(v_j^i) = 2$ if i is even; $j \equiv 1 \mod 4, j \neq n$; then $S(u_i) = 0$ if i is odd; $S(u_i) = 3$ if i is even; $S(v_j^i) = 0$ if i is even, $j \in \{3, 5, 7, ..., n - 2\}$; $S(v_j^i) = 1$ if i is odd, $j \in \{1, n - 1, n - 3, n - 5\}$; $S(v_j^i) = 2$ if i is even, $j \in \{2, 4, 6, ..., n - 7, n\}$.

Case 2. $n \equiv 3 \mod 8$ and $n \neq 3$.

Define c as follows: $c(u_i) = 0$ if i is even; $c(u_i) = 1$ if i is odd; $c(v_j^i) = 0$ if $i \in \{1, 2, 3, ..., m\}, j \equiv 0, 2, 3 \mod 4; c(v_{n-2}^i) = c(v_{n-6}^i) = 1$ if i is odd; $c(v_{n-2}^i) = 1$ if i is even; $c(v_j^i) = 2$ if i is odd, $j \equiv 1 \mod 4; j \notin \{n - 2, n - 6\}; c(v_j^i) = 2$ if i is even; $j \equiv 1 \mod 4, j \neq n - 2$; then $\mathcal{S}(u_i) = 0$ if i is odd; $\mathcal{S}(u_i) = 3$ if i is even; $\mathcal{S}(v_j^i) = 0$ if i is even, $j \in \{1, 3, 5, ..., n - 2\}; \mathcal{S}(v_j^i) = 1$ if i is odd, $j \in \{n - 1, n - 3\}; \mathcal{S}(v_j^i) = 2$ if i is odd, $j \in \{n - 1, n - 3, n - 5, n - 7\}; \mathcal{S}(v_j^i) = 2$ if i is even, $j \in \{2, 4, 6, ..., n - 5, n\};$

N. PARAMAGURU

 $S(v_j^i) = 3$ if *i* is odd, $j \in \{2, 4, 6, \dots, n-9, n\}$.

Case 3. $n \equiv 5 \mod 8$.

Define c as follows: $c(u_i) = 0$ if $i \in \{1, 2, 3, ..., m\}$; $c(v_j^i) = 0$ if $i \in \{1, 2, 3, ..., m\}$, $j \equiv 0, 2, 3 \mod 4$; $c(v_n^i) = 1$ if i is even; $c(v_n^i) = 3$ if i is odd; $c(v_j^i) = 2$ if $i \in \{1, 2, 3, ..., m\}$, $j \equiv 1 \mod 4$, $j \neq n$; then $\mathcal{S}(u_i) = 1$ if i is odd; $\mathcal{S}(u_i) = 3$ if i is even; $\mathcal{S}(v_j^i) = 0$ if $i \in \{1, 2, 3, ..., m\}$, $j \in \{3, 5, 7, ..., n-2\}$; $\mathcal{S}(v_j^i) = 1$ if i is even, $j \in \{1, n - 1\}$; $\mathcal{S}(v_j^i) = 3$ if i is odd, $j \in \{1, n - 1\}$; $\mathcal{S}(v_j^i) = 2$ if $i \in \{1, 2, 3, ..., m\}$, $j \in \{2, 4, 6, ..., n-3, n\}$.

Case 4. $n \equiv 7 \mod 8$.

Define c as follows: $c(u_i) = 0$ if $i \in \{1, 2, 3, ..., m\}$; $c(v_j^i) = 0$ if $i \in \{1, 2, 3, ..., m\}$, $j \equiv 0, 2, 3 \mod 4$; $c(v_{n-2}^i) = 1$ if i is even; $c(v_{n-2}^i) = 3$ if i is odd; $c(v_j^i) = 2$ if $i \in \{1, 2, 3, ..., m\}$, $j \equiv 1 \mod 4$, $j \neq n-2$; then $S(u_i) = 1$ if i is odd; $S(u_i) = 3$ if i is even; $S(v_j^i) = 0$ if $i \in \{1, 2, 3, ..., m\}$, $j \in \{1, 3, 5, ..., n-2\}$; $S(v_j^i) = 1$ if i is even, $j \in \{n-1, n-3\}$; $S(v_j^i) = 3$ if i is odd, $j \in \{n-1, n-3\}$; $S(v_j^i) = 2$ if $i \in \{1, 2, 3, ..., m\}$, $j \in \{2, 4, 6, ..., n-5, n\}$.

Case 5. n = 3.

Subcase 5.1. $m \equiv 0 \mod 4$.

Define *c* as follows: $c(u_i) = 0$ if $i \equiv 0, 2, 3 \mod 4$; $c(u_i) = 1$ if $i \equiv 1 \mod 4$; $c(v_1^i) = 0$ if $i \equiv 1 \mod 4$; $c(v_2^i) = 2$ if $i \equiv 1 \mod 4$; $c(v_3^i) = 3$ if $i \equiv 1 \mod 4$; $c(v_1^i) = 0$ if *i* is even; $c(v_2^i) = 1$ if *i* is even; $c(v_3^i) = 2$ if *i* is even; $c(v_1^i) = 1$ if $i \equiv 3 \mod 4$; $c(v_2^i) = 2$ if $i \equiv 3 \mod 4$; $c(v_3^i) = 3$ if $i \equiv 3 \mod 4$; then $S(u_i) = 1$ if $i \equiv 1 \mod 4$; $S(u_i) = 0$ if $i \equiv 0, 2 \mod 4$; $S(u_i) = 2$ if $i \equiv 3 \mod 4$; $S(v_1^i) = 2$ if $i \equiv 1 \mod 4$; $S(v_2^i) = 0$ if $i \equiv 1 \mod 4$; $S(v_3^i) = 3$ if $i \equiv 1 \mod 4$; $S(v_1^i) = 1$ if $i \equiv 3 \mod 4$; $S(v_2^i) = 0$ if $i \equiv 3 \mod 4$; $S(v_3^i) = 3$ if $i \equiv 3 \mod 4$; $S(v_1^i) = 1$ if $i \equiv 3 \mod 4$; $S(v_2^i) = 0$ if $i \equiv 3 \mod 4$; $S(v_3^i) = 3$ if $i \equiv 3 \mod 4$; $S(v_1^i) = 3$ if *i* is even; $S(v_2^i) = 2$ if *i* is even; $S(v_3^i) = 1$ if *i* is even.

Subcase 5.2. $m \equiv 2 \mod 4$.

Define c as follows: $c(u_i) = 0$ if $i \equiv 0, 2, 3 \mod 4$; $c(u_i) = 1$ if $i \equiv 1 \mod 4$; $c(v_1^i) = 0$ if $i \equiv 1 \mod 4$; $c(v_2^i) = 2$ if $i \equiv 1 \mod 4$; $c(v_3^i) = 3$ if $i \equiv 1 \mod 4$; $c(v_1^i) = 0$ if $i \in \{2, 4, 6, \dots, m-2\}$; $c(v_2^i) = 1$ if $i \in \{2, 4, 6, \dots, m-2\}$; $c(v_3^i) = 2$ if $i \in \{2, 4, 6, \dots, m-2\}$; $c(v_1^m) = 0$; $c(v_2^m) = 1$; $c(v_3^m) = 3$; $c(v_1^i) = 1$ if $i \equiv 3 \mod 4$; $c(v_2^i) = 2$ if $i \equiv 3 \mod 4$; $c(v_3^i) = 3$ if $i \equiv 3 \mod 4$; then $\mathcal{S}(u_i) = 1$ if $i \equiv 1 \mod 4$; $\mathcal{S}(u_i) = 0$ if $i \in \{2, 4, 6, \dots, m-2\}$; $\mathcal{S}(u_i) = 2$ if $i \equiv 3 \mod 4$; $\mathcal{S}(u_m) = 2$; $\mathcal{S}(v_1^i) = 2$ if $i \equiv 1 \mod 4$; $\mathcal{S}(v_2^i) = 0$ if $i \equiv 1 \mod 4$; $\mathcal{S}(v_3^i) = 3$ if $i \equiv 1 \mod 4$; $\mathcal{S}(v_1^i) = 1$ if $i \equiv 3 \mod 4$; $\mathcal{S}(v_2^i) = 0$ if $i \equiv 3 \mod 4$; $\mathcal{S}(v_3^i) = 3$ if $i \equiv 3 \mod 4$; $\mathcal{S}(v_1^i) = 1$ if $i \equiv 3 \mod 4$; $\mathcal{S}(v_2^i) = 0$ if $i \equiv 3 \mod 4$; $\mathcal{S}(v_3^i) = 3$ if $i \equiv 3 \mod 4$; $\mathcal{S}(v_1^i) = 3$ if $i \in \{2, 4, 6, \dots, m-2\}$; $\mathcal{S}(v_2^i) = 2$ if $i \in \{2, 4, 6, \dots, m-2\}$;

7974

 $S(v_3^i) = 1$ if $i \in \{2, 4, 6, ..., m - 2\}$; $S(v_1^m) = 0$; $S(v_2^m) = 3$; $S(v_3^m) = 1$. Clearly, $Mc(C_m \circ C_n) \ge \chi(C_m \circ C_n) = 4$. Hence, $Mc(C_m \circ C_n) = 4$. This completes the proof.

3. CONCLUSION

For some graphs \mathcal{G} and \mathcal{H} considered in this paper, we have seen that $Mc(\mathcal{G} \circ \mathcal{H}) = \chi(\mathcal{G} \circ \mathcal{H})$. Except the case: For $m \ge 1$, $n \ge 1$, $Mc(C_{2m+1} \circ C_{2n+1})$.

ACKNOWLEDGMENT

The author would like to thank the referees for the valuable suggestions and careful reading of the paper.

REFERENCES

- [1] R. BALAKRISHNAN AND K. RANGANATHAN, *A textbook of graph theory,* Second Edition, Springer-Verlag, New York, 2012.
- [2] F. OKAMOTO, E. SALEHI AND P. ZHANG, A checkerboard problem and modular colorings of graphs, Bulletin of ICA, 58 (2010), 29-47.
- [3] F. OKAMOTO, E. SALEHI AND P. ZHANG, *A solution to the checkerboard problem*, International Journal of Computational and Applied Mathematics, **5** (2010), 447-458.
- [4] T. NICHOLAS AND G. R, SANMA, *Modular colorings of cycle related graphs*, Global Journal of Pure and Applied Mathematics, **13** (7) (2017), 3779-3788.
- [5] N. PARAMAGURU AND R. SAMPATHKUMAR, Modular chromatic number of $C_m \Box P_n$, Transactions on Combinatorics, 2(2) (2013), 47-72.
- [6] N. PARAMAGURU AND R. SAMPATHKUMAR, Modular chromatic number of $C_m \Box C_n$, Advances in intelligent systems and soft computing, **246** (2014), 331-338.

Department of Mathematics Annamalai University Annamalai Nagar, India-608 002

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE FOR WOMEN KRISHNAGIRI, TAMAIL NADU, INDIA-635 002 *Email address*: npguru@gmail.com