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MODULAR COLORINGS OF CORONA PRODUCT OF Cm WITH Cn

N. PARAMAGURU

ABSTRACT. For ` ≥ 2, a modular `-coloring of a graph G without isolated ver-
tices is a coloring of the vertices of G with the elements in Z` having the prop-
erty that for every two adjacent vertices of G, the sums of the colors of their
neighbors are different in Z`. The minimum ` for which G has a modular `-
coloring is the modular chromatic number of G. In this paper, we determine the
modular chromatic number of corona product of cycles.

1. INTRODUCTION

For graph-theoretical terminology and notation, we in general follow [1]. For
a vertex v of a graph G, letNG(v), the neighborhood of v, denote the set of vertices
adjacent to v in G. For a graph G without isolated vertices, let c : V (G) → Z`,

` ≥ 2, be a vertex coloring of G where adjacent vertices may be colored the same.
The color sum S(v) =

∑
u∈NG(v)

c(u) of a vertex v of G is the sum of the colors of the

vertices in NG(v). The coloring c is called a modular -̀coloring of G if S(x) 6= S(y)
in Z` for all pairs x, y of adjacent vertices in G. The modular chromatic number
Mc(G) of G is the minimum ` for which G has a modular -̀coloring. This concept
was introduced by Zhang et. al. [2].

Okamoto, Salehi and Zhang proved, in [2], they proved that: every nontrivial
connected graph G has a modular -̀coloring for some integer ` ≥ 2 and Mc(G)
≥ χ(G), where χ(G) denotes the chromatic number of G; for the cycle Cn of
length n, Mc(Cn) is 2 if n ≡ 0 mod 4 and it is 3 otherwise; every nontrivial
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tree has modular chromatic number 2 or 3; for the complete multipartite graph
G, Mc(G) = χ(G); for the cartesian product G = Kr�K2, Mc(G) is r if r ≡
2mod 4 and it is r+1 otherwise; for the wheel Wn = Cn∨K1, n ≥ 3, Mc(Wn) =

χ(Wn), where ∨ denotes the join of two graphs; for n ≥ 3, Mc(Cn ∨ Kc
2) =

χ(Cn ∨ Kc
2), where Gc denotes the complement of G; and for n ≥ 2, Mc(Pn ∨

K2) = χ(Pn∨K2), where Pn denotes the path of length n−1; and in [3] proved
that: for m,n ≥ 2, Mc(Pm�Pn) = 2.

Paramaguru and Sampthkumar proved, in [5], that: Mc(C3�P2) = 4; ex-
cept some special cases, for m ≥ 3 and n ≥ 2, Mc(Cm�Pn) = χ(Cm�Pn); if
m ≡ 2 mod 4 and n ≡ 1 mod 4, then Mc(Cm�Pn) ≤ 3; if n ≡ 1 mod 4, then
Mc(C6�Pn) = 3. In [6], they proved that: if m ≥ 4 and n ≥ 4 are even in-
tegers and at least one of m, n is congruent to 0 mod 4, then Mc(Cm�Cn) =

χ(Cm�Cn); if n ≥ 3 is an integer, then Mc(C3�Cn) = χ(C3�Cn); if at least one
of m, n is congruent to 1 mod 2, except some special cases, m ≥ 4, n ≥ 4, then
Mc(Cm�Cn) = χ(Cm�Cn); if n ≡ 2 mod 4, and n ≥ 6, then Mc(C6�Cn) = 3,

where � denotes the Cartesian product of two graphs.
Nicholas and Sanma discussed in [4], that: the modular chromatic number of

Fan, Helm graph, Friendship graph and gear graph.
The corona of two graphs G and H is the graph G ◦ H formed from one copy

of G and |V (G)| copies ofH, where the ith vertex of G is adjacent to every vertex
in the ith copy of H. Such type of graph products was introduced by Frucht and
Harary in 1970.

2. CORONA OF Cm WITH Cn

Define V (Cm) = {u1, u2, u3, . . . , um}; V (Cn) = {v1, v2, v3, . . . , vn}; E(Cm) =

{u1u2, u2u3, u3u4, . . . , um−1um, umu1};E(Cn) = {v1v2, v2v3, v3v4, . . . , vn−1vn, vnv1};
V (Cm ◦ Cn) = V (Cm)

⋃
{vij : i ∈ {1, 2, 3, . . . ,m} and j ∈ {1, 2, 3, . . . , n}};

E(Cm◦Cn) = E(Cm) ∪ {vijvij+1 : i ∈ {1, 2, 3, . . . ,m} and j ∈ {1, 2, 3, . . . , n−1}} ∪
{uivij : i ∈ {1, 2, 3, . . . ,m} and j ∈ {1, 2, 3, . . . , n}} ∪ {vinvi1 : i ∈ {1, 2, 3, . . . ,m}}.

Theorem 2.1. For m even and n even, m ≥ 4, n ≥ 4, Mc(Cm ◦ Cn) = 3.

Proof. Let c : V (Cm ◦ Cn)→ Z3.

Case 1. n ≡ 4 mod 6.

Define c as follows: c(ui) = 0 if i is even; c(ui) = 1 if i is odd; c(vij) = 0 if
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i ∈ {1, 2, 3, . . . ,m}, j is even; c(vij) = 1 if i ∈ {1, 2, 3, . . . ,m}, j is odd; then
S(ui) = 1 if i is even; S(ui) = 2 if i is odd; S(vij) = 1 if i, j odd; S(vij) = 2 if i, j
even; S(vij) = 0 if i is odd, j is even; S(vij) = 0 if i is even, j is odd.
Case 2. n ≡ 2 mod 6.

Define c as follows: c(ui) = 0 if i ∈ {1, 2, 3, . . . ,m}; c(vij) = 0 if i ∈ {1, 2, 3, . . . ,m},
j is even; c(vij) = 1 if i, j odd; c(vij) = 2 if i is even, j is odd; then S(ui) = 1 if i is
odd; S(ui) = 2 if i is even; S(vij) = 1 if i, j even; S(vij) = 2 if i is odd, j is even;
S(vij) = 0 if i ∈ {1, 2, 3, . . . ,m}, j is odd.
Case 3. n ≡ 0 mod 6.

Define c as follows:
c(ui) = 0 if i is odd; c(ui) = 2 if i is even; c(vij) = 0 if i ∈ {1, 2, 3, . . . ,m}, j
is even; c(vij) = 1 if i ∈ {1, 2, 3, . . . ,m}, j is odd; then S(ui) = 1 if i is odd;
S(ui) = 0 if i is even; S(vij) = 1 if i, j even; S(vij) = 2 if i is odd, j is even;
S(vij) = 2 if i is even, j is odd; S(vij) = 0 if i, j odd. Clearly, χ(Cm ◦ Cn) = 3.

Hence, Mc(Cm ◦ Cn) = 3. This completes the proof. �

Theorem 2.2. For m even and n odd, m ≥ 4, n ≥ 3, Mc(Cm ◦ Cn) = 4.

Proof. Let c : V (Cm ◦ Cn)→ Z4.

Case 1. n ≡ 1 mod 8.

Define c as follows: c(ui) = 0 if i is even; c(ui) = 1 if i is odd; c(vij) = 0 if
i ∈ {1, 2, 3, . . . ,m}, j ≡ 0, 2, 3 mod 4; c(vin) = c(vin−4) = 1 if i is odd; c(vin) = 1

if i is even; c(vij) = 2 if i is odd, j ≡ 1 mod 4; j 6∈ {n, n − 4}; c(vij) = 2

if i is even, j ≡ 1 mod 4, j 6= n; then S(ui) = 0 if i is odd; S(ui) = 3 if i
is even; S(vij) = 0 if i is even, j ∈ {3, 5, 7, . . . , n − 2}; S(vij) = 1 if i is odd,
j ∈ {3, 5, 7, . . . , n − 2}; S(vij) = 1 if i is even, j ∈ {1, n − 1}; S(vij) = 2 if i is
odd, j ∈ {1, n− 1, n− 3, n− 5}; S(vij) = 2 if i is even, j ∈ {2, 4, 6, . . . , n− 3, n};
S(vij) = 3 if i is odd, j ∈ {2, 4, 6, . . . , n− 7, n}.
Case 2. n ≡ 3 mod 8 and n 6= 3.

Define c as follows: c(ui) = 0 if i is even; c(ui) = 1 if i is odd; c(vij) = 0 if
i ∈ {1, 2, 3, . . . ,m}, j ≡ 0, 2, 3mod 4; c(vin−2) = c(vin−6) = 1 if i is odd; c(vin−2) = 1

if i is even; c(vij) = 2 if i is odd, j ≡ 1 mod 4; j 6∈ {n − 2, n − 6}; c(vij) = 2 if
i is even, j ≡ 1 mod 4, j 6= n − 2; then S(ui) = 0 if i is odd; S(ui) = 3 if i
is even; S(vij) = 0 if i is even, j ∈ {1, 3, 5, . . . , n − 2}; S(vij) = 1 if i is odd,
j ∈ {1, 3, 5, . . . , n− 2}; S(vij) = 1 if i is even, j ∈ {n− 1, n− 3}; S(vij) = 2 if i is
odd, j ∈ {n−1, n−3, n−5, n−7}; S(vij) = 2 if i is even, j ∈ {2, 4, 6, . . . , n−5, n};
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S(vij) = 3 if i is odd, j ∈ {2, 4, 6, . . . , n− 9, n}.
Case 3. n ≡ 5 mod 8.

Define c as follows: c(ui) = 0 if i ∈ {1, 2, 3, . . . ,m}; c(vij) = 0 if i ∈ {1, 2, 3, . . . ,m},
j ≡ 0, 2, 3 mod 4; c(vin) = 1 if i is even; c(vin) = 3 if i is odd; c(vij) = 2 if
i ∈ {1, 2, 3, . . . ,m}, j ≡ 1 mod 4, j 6= n; then S(ui) = 1 if i is odd; S(ui) = 3

if i is even; S(vij) = 0 if i ∈ {1, 2, 3, . . . ,m}, j ∈ {3, 5, 7, . . . , n − 2}; S(vij) = 1

if i is even, j ∈ {1, n − 1}; S(vij) = 3 if i is odd, j ∈ {1, n − 1}; S(vij) = 2 if
i ∈ {1, 2, 3, . . . ,m}, j ∈ {2, 4, 6, . . . , n− 3, n}.
Case 4. n ≡ 7 mod 8.

Define c as follows: c(ui) = 0 if i ∈ {1, 2, 3, . . . ,m}; c(vij) = 0 if i ∈ {1, 2, 3, . . . ,m},
j ≡ 0, 2, 3 mod 4; c(vin−2) = 1 if i is even; c(vin−2) = 3 if i is odd; c(vij) = 2 if
i ∈ {1, 2, 3, . . . ,m}, j ≡ 1 mod 4, j 6= n− 2; then S(ui) = 1 if i is odd; S(ui) = 3

if i is even; S(vij) = 0 if i ∈ {1, 2, 3, . . . ,m}, j ∈ {1, 3, 5, . . . , n− 2}; S(vij) = 1 if i
is even, j ∈ {n − 1, n − 3}; S(vij) = 3 if i is odd, j ∈ {n − 1, n − 3}; S(vij) = 2 if
i ∈ {1, 2, 3, . . . ,m}, j ∈ {2, 4, 6, . . . , n− 5, n}.
Case 5. n = 3.

Subcase 5.1. m ≡ 0 mod 4.

Define c as follows: c(ui) = 0 if i ≡ 0, 2, 3 mod 4; c(ui) = 1 if i ≡ 1 mod 4;

c(vi1) = 0 if i ≡ 1 mod 4; c(vi2) = 2 if i ≡ 1 mod 4; c(vi3) = 3 if i ≡ 1 mod 4;

c(vi1) = 0 if i is even; c(vi2) = 1 if i is even; c(vi3) = 2 if i is even; c(vi1) = 1 if
i ≡ 3 mod 4; c(vi2) = 2 if i ≡ 3 mod 4; c(vi3) = 3 if i ≡ 3 mod 4; then S(ui) = 1

if i ≡ 1 mod 4; S(ui) = 0 if i ≡ 0, 2 mod 4; S(ui) = 2 if i ≡ 3 mod 4; S(vi1) = 2

if i ≡ 1 mod 4; S(vi2) = 0 if i ≡ 1 mod 4; S(vi3) = 3 if i ≡ 1 mod 4; S(vi1) = 1 if
i ≡ 3 mod 4; S(vi2) = 0 if i ≡ 3 mod 4; S(vi3) = 3 if i ≡ 3 mod 4; S(vi1) = 3 if i is
even; S(vi2) = 2 if i is even; S(vi3) = 1 if i is even.
Subcase 5.2. m ≡ 2 mod 4.

Define c as follows: c(ui) = 0 if i ≡ 0, 2, 3 mod 4; c(ui) = 1 if i ≡ 1 mod 4;

c(vi1) = 0 if i ≡ 1 mod 4; c(vi2) = 2 if i ≡ 1 mod 4; c(vi3) = 3 if i ≡ 1 mod 4;

c(vi1) = 0 if i ∈ {2, 4, 6, . . . ,m−2}; c(vi2) = 1 if i ∈ {2, 4, 6, . . . ,m−2}; c(vi3) = 2 if
i ∈ {2, 4, 6, . . . ,m− 2}; c(vm1 ) = 0; c(vm2 ) = 1; c(vm3 ) = 3; c(vi1) = 1 if i ≡ 3 mod 4;

c(vi2) = 2 if i ≡ 3 mod 4; c(vi3) = 3 if i ≡ 3 mod 4; then S(ui) = 1 if i ≡ 1 mod 4;

S(ui) = 0 if i ∈ {2, 4, 6, . . . ,m − 2}; S(ui) = 2 if i ≡ 3 mod 4; S(um) = 2;

S(vi1) = 2 if i ≡ 1 mod 4; S(vi2) = 0 if i ≡ 1 mod 4; S(vi3) = 3 if i ≡ 1 mod 4;

S(vi1) = 1 if i ≡ 3 mod 4; S(vi2) = 0 if i ≡ 3 mod 4; S(vi3) = 3 if i ≡ 3 mod 4;

S(vi1) = 3 if i ∈ {2, 4, 6, . . . ,m − 2}; S(vi2) = 2 if i ∈ {2, 4, 6, . . . ,m − 2};
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S(vi3) = 1 if i ∈ {2, 4, 6, . . . ,m − 2}; S(vm1 ) = 0; S(vm2 ) = 3; S(vm3 ) = 1. Clearly,
Mc(Cm ◦ Cn) ≥ χ(Cm ◦ Cn) = 4. Hence, Mc(Cm ◦ Cn) = 4. This completes
the proof. �

3. CONCLUSION

For some graphs G and H considered in this paper, we have seen that Mc(G ◦
H) = χ(G ◦ H). Except the case: For m ≥ 1, n ≥ 1, Mc(C2m+1 ◦ C2n+1).
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