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GENERALIZED NARAYANA SEQUENCES AND FIGURATE NUMBERS

R. SIVARAMAN

ABSTRACT. Among several amusing sequences that exist in mathematics, Fi-
bonacci sequence is the most common and famous sequence that is known to
everyone. An equally absorbing sequence was described by Indian mathemati-
cian Narayana Panditha. In this paper, we try to generalize Narayana sequence
using the coefficients which are Figurate numbers and try to explore the lim-
iting ratios of such sequences. In this way, this paper provides the interesting
relationship between Generalized Narayana sequences and Figurate numbers.

1. INTRODUCTION

Leonardo Fibonacci of Italy introduced the most famous Fibonacci sequence
using his immortal rabbits in his wonderful book “Liber Abaci” published in
1202 CE. Nearly after a century, Indian notable Indian mathematician Narayana
Panditha introduced a wonderful sequence using immortal cows resembling Fi-
bonacci sequence. The behavior of Narayana sequence and the ratio of its suc-
cessive terms is well known. Also some generalizations of Narayana sequence
is also dealt by several authors. In this paper, we shall consider generaliza-
tions of Narayana sequence using Figurate numbers as coefficients. In partic-
ular, we consider natural numbers, triangular numbers and square numbers as
coefficients in the recurrence relations describing the Narayana sequence and
try to analyze such generalized sequences. The main objective of this paper
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is to obtain interesting results regarding the limiting ratios of such generalized
Narayana sequences. First, we begin with some definitions.

2. DEFINITION

Narayana Panditha described the Narayana sequence in such a way that the
number of cows present each year is equal to the number of cows in previous
year plus the number of cows three years ago. Using this convention, we form
the following Recurrence Relation describing Narayana Sequence.

(2.1) Nn+1 = Nn +Nn−2;n ≥ 2, N0 = 0, N1 = 1, N2 = 1

3. GENERALIZING NARAYANA SEQUENCE

We will consider the following three cases in meeting our objective of gener-
alizing Narayana sequence.

3.1. Let k be any positive integer. We define a new sequence whose terms are
given by the recurrence relation:

(3.1) Nk,n+1 = kNk,n +
k(k + 1)

2
Nk,n−2; n ≥ 2, Nk,0 = 0, Nk,1 = 1, Nk,2 = k.

We note that for k = 1, equation (3.1) reduces to the classic Narayana sequence
defined in (2.1). The coefficients in the right hand side of the recurrence relation
(3.1) are natural numbers and triangular numbers respectively. If we assume
that the limiting ratio of generalized Narayana sequence is λ then by definition
we have lim

(
Nk,n+1

Nk,n

)
= λ as n → ∞. Now for any integer r, we have the

following equation:

lim
n→∞

(
Nk,n+r

Nk,n

)
= lim

n→∞

(
Nk,n+r

Nkn+ r − 1
× Nk,n+r−1

Nk,n+r−2
× Nk,n+r−2

Nk,n+r−3
× · · · × Nk,n+1

Nk,n

)
= λ× . . .× λ = λr

lim
n→∞

(
Nk,n+1

Nk,n

)
= lim

n→∞

(
kNk,n +

k(k+1)
2

Nk,n−2

Nk,n

)
= lim

n→∞

(
k +

k(k + 1)

2

Nk,n−2

Nk,n

)
.

(3.2)
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Now using (3.2), as n→∞ we get:

(3.3) λ = k +
k(k + 1)

2

1

λ2
.

This leads to the equation:

(3.4) 2λ3 − 2kλ2 − k(k + 1) = 0.

We call equation (3.4) as the Characteristic Equation, which is a cubic poly-
nomial in limiting ratio λ corresponding to the generalized Narayana sequence
defined in (3.1). First we note that if:

(3.5) P1(λ) = 2λ3 − 2kλ2 − k(k + 1)

is the cubic polynomial corresponding to equation (3.4), we see that P1(k) =

−k(k + 1) < 0 (since k is a positive integer) and P1(k + 1) = (k + 1)(k + 2) >

0.Moreover by Descarte’s Rule of signs, we observe that the polynomial in (3.5)
possess only one positive real root. Thus, the positive real root of equation (3.4)
lies in the interval (k, k + 1). So the limiting ratio is of order k. That is:

(3.6) λ = O(k).

Hence using (3.6), we get:

(3.7)
k(k + 1)

2

1

λ2
→ k(k + 1)

2

1

k2
=

1

2

as k →∞. Hence as k →∞, equation (3.3) becomes λ = k+ 1
2
. So, the limiting

ratio of generalized Narayana sequence defined in (3.1) is:

(3.8) λ = k +
1

2

for very large values of k.

3.2. Let k be any positive integer. We define a new sequence whose terms are
given by the recurrence relation:

(3.9) Nk,n+1 = kNk,n + k2Nk,n−2; n ≥ 2, Nk,0 = 0, Nk,1 = 1, Nk,2 = k.

We note that for k = 1, equation (3.9) reduces to the classic Narayana sequence
defined in (2.1). The coefficients in the right hand side of the recurrence relation
(3.9) are natural numbers and square numbers respectively. In similar way, if
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we try to compute the limiting ratio corresponding to the equation (3.9) then
we get:

lim
n→∞

(
Nk,n+1

Nk,n

)
= lim

n→∞

(
kNk,n + k2Nk,n−2

Nk,n

)
= lim

n→∞

(
k + k2

Nk,n−2

Nk,n

)
.

Now using (3.2) (which is applicable generally) and taking the limit as n→∞,
we have:

(3.10) λ = k +
k2

λ2
.

Thus the characteristic equation of (3.9) is:

(3.11) λ3 − kλ2 − k2 = 0.

As k is positive, if we consider:

(3.12) P2(λ) = λ3 − kλ2 − k2,

then by Descarte’s Rule of signs, we find that there is only one positive real
root for the cubic polynomial (3.12). Further, we note that P2(k) = −k2 <

0, P2(k + 2) = k2 + 8k + 8 > 0. Thus the positive real root of (3.11) lies in the
interval (k, k + 2). So, the limiting ratio is of order k. That is:

(3.13) λ = O(k).

Hence using (3.13) in (3.10), we get:

(3.14) λ = k +
k2

λ2
→ k +

k2

k2
= k + 1,

as k → ∞. Thus as k → ∞ equation (3.10) becomes λ = k + 1. Hence, the
limiting ratio of generalized Narayana sequence defined in (3.9) is:

(3.15) λ = k + 1,

for very large values of k.

3.3. In this case, we consider a more general situation, in which the coefficients
are natural numbers and Figurate numbers of order m (m ≥ 3) respectively. Let
k be a positive integer. The recurrence relation for this situation is given by:
(3.16)

Nk,n+1 = kNk,n + Fm(k)Nk,n−2;m ≥ 3, n ≥ 2, Nk,0 = 0, Nk,1 = 1, Nk,2 = k.

We note that if k = 1, equation (3.16) reduces to the classic Narayana sequence
defined in (2.1). As in the previous two cases, if we assume that if λ is the
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limiting ratio of the generalized Narayana sequence defined in (3.16), then we
get:

lim
n→∞

(
Nk,n+1

Nk,n

)
= lim

n→∞

(
kNk,n + Fm(k)Nk,n−2

Nk,n

)
= lim

n→∞

(
k + Fm(k)

Nk,n−2

Nk,n

)
.

Now using (3.2), and taking the limit as n→∞, we get:

(3.17) λ = k +
Fm(k)

λ2
.

Thus the characteristic equation of (3.16) is given by:

(3.18) λ3 − kλ2 − Fm(k) = 0.

Since k is positive, we see that the polynomial:

(3.19) P3(λ) = λ3 − kλ2 − Fm(k)

by Descarte’s Rule of signs has only one positive real root. Thus the equation
(3.18) has only one only one positive real root in the interval (k, k+m− 2). So,
the limiting ratio is of order k. That is:

(3.20) λ = O(k).

Hence using (3.20) in (3.17), and from equation (2.3), we get:

λ = k +
Fm(k)

λ2
= k +

(m− 2)k2 − (m− 4)k

2λ2

→ k +
(m− 2)k2 − (m− 4)k

2k2
= k +

m− 2

2
,

(3.21)

as k → ∞. Thus as k → ∞, equation (3.17) becomes λ = k + m−2
2

. Hence, the
limiting ratio of generalized Narayana sequence defined in (3.16) is:

(3.22) λ = k +
m− 2

2

for very large values of k.
We note that the values of λ obtained in sections 3.1 and 3.2 through equa-

tions (3.8), (3.15) are special cases of equation (3.22) for m = 3, 4 respectively.

4. GENERALIZED NARAYANA SEQUENCES AND FIGURATE NUMBERS

In this section, we consider two cases by considering two interesting recur-
rence relations and try to determine the limiting ratios for each case.
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4.1. For positive integer k, we consider the recurrence relation given by:

(4.1) Nk,n+1 = Fm(k)Nk,n + kNk,n−2;m ≥ 3, n ≥ 2, Nk,0 = 0, Nk,1 = 1, Nk,2 = k.

We note that if k = 1, equation (3.16) reduces to the classic Narayana sequence
defined in (2.1). If λ is the limiting ratio of the generalized Narayana sequence
defined in (4.1), then we get:

lim
n→∞

(
Nk,n+1

Nk,n

)
= lim

n→∞

(
Fm(k)Nk,n + kNk,n−2

Nk,n

)
= lim

n→∞

(
Fm(k) + k

Nk,n−2

Nk,n

)
.

Now using (3.2), and taking the limit as n→∞ we get:

(4.2) λ = Fm(k) +
k

λ2
.

As discussed in section 3 for the three cases, we see that:

(4.3) λ = O(k).

Hence using (4.3) in (4.2) and considering the limit as k →∞, we get:

(4.4) λ = Fm(k) +
k

λ2
→ Fm(k) +

k

k2
= Fm(k).

Thus as k →∞, equation (4.2) becomes λ = Fm(k). Hence the limiting ratio of
generalized Narayana sequence defined in (4.1) is:

(4.5) λ = Fm(k),

for large values of k. We observe that value of the limiting ratio obtained in
(4.5) is precisely the Figurate numbers of order m defined in (2.3). This gives
the intimate connection between Generalized Narayana sequence and Figurate
numbers of order m.

4.2. In this case, we consider generalized Narayana sequence through a recur-
rence relation constructed using figurate numbers with two different orders say
p and q. Let k, p, q be positive integers such that p, q ≥ 3. We define the Gen-
eralized Narayana sequence using Figurate numbers coefficients given by the
following recurrence relation:

(4.6) Nk,n+1 = Fp(k)Nk,n + Fq(k)Nk,n−2,
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p, q ≥ 3, n ≥ 2, Nk,0 = 0, Nk,1 = 1, Nk,2 = k. If k = 1, then we get the classic
Narayana sequence as defined in (2.1). If is the limiting ratio of the recurrence
relation defined in (4.6) then we get:

lim
n→∞

(
Nk,n+1

Nk,n

)
= lim

n→∞

(
Fp(k)Nk,n + Fq(k)Nk,n−2

Nk,n

)
= lim

n→∞

(
Fp(k) + Fq(k)

Nk,n−2

Nk,n

)
Now using (3.2), and taking the limit as n→∞ we get:

(4.7) λ = Fp(k) +
Fq(k)

λ2
.

Thus the characteristic equation corresponding to (4.6) is given by:

(4.8) λ3 − Fp(k)λ
2 − Fq(k) = 0.

Using Descarte’s rule of signs, we see that there is only one positive real root for
(4.8). Moreover, we also find that such a root should be such that:

(4.9) λ = O(k).

Hence using (4.9) in (4.2) and considering the limit as k →∞ we get:

λ = Fp(k) +
Fq(k)

λ2
→ Fp(k) +

(q − 2)k2 − (q − 4)k

2k2

= Fp(k) +
q − 2

2
− q − 4

2k
→ Fp(k) +

q − 2

2
.

(4.10)

Thus as k →∞, the unique positive real root of (4.8) is λ = Fp(k) +
q−2
2

. Hence
the limiting ratio of generalized Narayana sequence defined in (4.6) is given by:

(4.11) λ = Fp(k) +
q − 2

2
.

for very large values of k.

CONCLUSION

In this paper, we have generalized the usual Narayana sequence in variety
of ways using different recurrence relations defined through equations (3.1),
(3.9), (3.16), (4.1), (4.6). We notice in all these five cases we get the recurrence
relation of Narayana sequence defined in (2.1) for the choice of k = 1. Thus,
by generalizing the Narayana sequence using recurrence relations using natural
numbers and figurate numbers as coefficients we could produce various limiting



7984 R. SIVARAMAN

ratios corresponding to each of the five cases. The limiting ratio obtained in
(4.10) generalizes all other limiting ratios obtained in equations (3.8), (3.15),
(3.22), (4.5). Thus the recurrence relation defined in (4.6) and the associated
limiting ratio in (4.10) provides the explicit connection between Generalized
Narayana sequence and Figurate numbers thereby serving the main purpose of
this article. But the limiting ratio values make sense only if k is very large that
is as k →∞.
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