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APPLICATION OF SUMUDU TRANSFORM ON FRACTIONAL KINETIC
EQUATION PERTAINING TO THE GENERALIZED K-WRIGHT FUNCTION

WAGDI F. S. AHMED1 AND D. D. PAWAR

ABSTRACT. Fractional kinetic equations (FKEs) that includes a wide range of
special functions have been applied to the description and resolution of many
important physics and astrophysics problems greatly and successfully.We de-
rive solutions for ( FKEs) in this paper with the help of Sumudu transforms,
including the product of the generalized k-Wright function. After that, other
important special cases have been revealed. The use of the Generalized k-
Wright function to obtain the (FKEs) solution is relatively general and can be
used effectively to construct many well-known and novel (FKEs).

1. INTRODUCTION AND PRELIMINARIES

The importance of differential fractional equations in the files not only in
math- ematics have applied science gained more attention dynamical systems,
direction but also in mathematical physics, control and engineering systems to
generate a mathematical model of many physical phenomena see [1,5–9,11,13,
19–21,28,29,33], [18].

The fractional calculus with the Mittag-Leffler law has been widely studied
recently due to its significance and applicability in various fields see [16,30,31]
(FKEs) of various models have been successfully applied in the last decades
to describe and explain numerous physics and astrophysics problems [35–39].
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Thus, we remember the differential fractional equation associated with the rate
of reaction change M = M(t) ,the destruction rate d = d(M) and the production
rate p = p(M) that given by Haubold and Mathai see [17] as the follows

d(M)

dt
= −d(Mt) + p(Mt)

where Mt is the function identified by

Mt(t
∗) = M(t− t∗), t∗ > 0.

Neglecting the inhomogeneity in the quantity M(t) that is the equation

(1.1)
dM

dt
= −ciMi(t)

is part of the initial condition Mi(t = 0) = M0 is the number of density of index
i at time t = 0

The equation solution (1.1) is referred as

Mi(t) = M0 e
−cit

On the other hand, we can take

(1.2) M(t)−M0 = c0 D
−1
t M(t)

where the 0D
−1
t is the standard fractional integral operator. In addition, the frac-

tional generalization for the standard kinetic equation (1.2) defined by Haubold
and Mathai see [17]as the form

(1.3) M(t)−M0 = cγ 0D
−γ
t M(t)

where 0D
−γ
t is the Riemann-Liouville fractional integral operator expressed as

0D
−γ
t f(t) =

1

Γ(γ)

∫ t

0

(t− s)γ−1f(s)ds, (t > 0,R(γ) > 0).

Haubold and Mathai [17] provide the equation solution (1.3) in the form:

M(t) = M0

∞∑
k=0

(−1)k

Γ(γk + 1)
(ct)γk.

Further, Saxena and Kalla see [32] expressed the following fractional kinetic
equation as the form

M(t)−M0f(t) = −cγ (0D
−γ
t M)(t), (R(γ) > 0
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where M(t) refers to density number of a given species at every time t , M0 =

M(0) is a density number that species at time t = 0, c is a constant andf ∈
L(0,∞).

The transform of Sumudu is widely used to solve different types of science
and engineering problems, and was presented by Watugala see [42, 43]. The
interested readers can use see [2–4,22,41] references for the all information of
Sumudu transforms, properties, and their applications. The Sumudu transform
over the set function:
A = f(t)

∣∣∃M, η1, η2 > 0,
∣∣f(t)

∣∣ <Me
|t|
τj , t ∈ (−1)j × [0,∞).

Is defined by the

G(τ) = S[f(t); τ ] =

∫ ∞
0

e−tf(τt)dt ; τ ∈ (−η1, η2).

In the following investigation, we establish generalized fractional kinetic equa-
tions’ solution. The definitions of various Wright functions are presented in
order to establish the fractional kinetic equation’s solutions in the following in-
vestigation.

2. GENERALIZED K-WRIGHT FUNCTION

In 2007, Diaz and Pariguan see [10] provided the symbol of k-Pochhemmer
and the function of k- gamma which are defined as follows:

(2.1) (y)n,k :=

{
Γk(y+nk)

Γk(y)
(k ∈ R; y ∈ C \ {0})

y(y + k)...(y + (n− 1)k) (n ∈ N; y ∈ C)

also the relation with the classical Euler’s gamma function as the form

Γk(y) =

∫ ∞
0

ty−1e−
tk

k dt

that is

Γk(y) = k
y
k
−1(

y

k
)., (R(y) > 0).

where y ∈ C, k ∈ R and n ∈ N.
Now, when k = 1 the equation (2.1)reduces to the classical Pochhammer

symbol and Euler’s gamma function respectively. For more details see [26, 27].
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Srivastava and Karisson, see [40] defined The Fox-Wright function as

nψm[z] = nψm

[
(p1, α1), ..., (pn, αn);

(q1, β1), ..., (qm, βm);
z

]
=
∞∑
r=0

∏n
i=1 Γ(pi + αir)∏m
j=1 Γ(qj + βjr)

zr

r!
,

where the coefficients α1, ..., αn, β1, ..., βm ∈ R+ such that

1 +
m∑
j=1

βj −
n∑
i=1

αi ≥ 0

presented the generalized k−Wright function concept, that is shown in the fol-
lowing definition.

Definition 2.1. [14]
For k ∈ R+; z ∈ C; pi, qj ∈ C, αi, βj ∈ R (αi, βj 6= 0; i = 1, 2, ..., n; j =

1, 2, ...,m) and (pi+αir), (qj +βjr) ∈ C\kZ−, the generalized k−Wright function

nψ
k
m is defined by

(2.2) nψ
k
m(z) = nψ

k
m

[
(pi, αi)1,n

(qj, βj)1,m

∣∣∣z] =
∞∑
r=0

∏n
i=1 Γk(pi + αir)∏m
j=1 Γk(qj + βjr)

zr

r!
.

We use the following notes to explain the state of convergence

∆ =
m∑
j=1

(
βj
k

)−
n∑
i=1

(
αi
k

); δ = Πn
i=1

∣∣∣αi
k

∣∣∣−αik Πm
j=1

∣∣∣βj
k

∣∣∣−βjk
µ =

m∑
j=1

(
qj
k

)−
n∑
i=1

(
pi
k

) +
n−m

2

(a). if ∆ > −1 the series (2.2) is completely convergent for all z ∈ C and
generalized k-Wright function nψ

k
m(z) is an entire function of z

(b). if ∆ = −1 then the series (2.2) is completely convergent for all |z| < δ

and of |z| = δ, <(µ) > 1
2
.

By giving the proper parameter values the follwoing relation of the gener-
alized k-Wright function nψm(z) in terms of family of Mittag-Leffler function
see [12,15,34,44,45], [23,25] defined as follows

(2.3) 1ψ
k
2(z) = 1ψ

k
2

[
(y, k)

(β, α), (y, 0)

∣∣∣z] =
∞∑
r=0

(y)r,kz
r

Γk(rα + β)r!
= Ey

k,α,β(z)

(2.4) 1ψ
k
2(z) = 1ψ

k
2

[
(yτ , k)

(β, α), (y, 0)

∣∣∣z] =
∞∑
r=0

(y)r τ,kz
r

Γk(rα + β)r!
= Ey,τ

k,α,β(z)
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(2.5) 1ψ
1
2(z) = 1ψ

1
2

[
(1, 1)

(1, α), (y, 0)

∣∣∣z] =
∞∑
r=0

zr

Γ(rα + 1)
= Eα(z)

(2.6) 1ψ
1
2(z) = 1ψ

k
2

[
(y, 1)

(β, α), (y, 0)

∣∣∣z] =
∞∑
r=0

(y)rz
r

Γ(rα + β)r!
= Ey

α,β(z)

(2.7) 1ψ
1
2(z) = 1ψ

1
2

[
(y, τ)

(β, α), (y, 0)

∣∣∣z] =
∞∑
r=0

(y)r τz
r

Γ(rα + β)r!
= Ey,τ

α,β(z)

(2.8) 1ψ
1
2(z) = 1ψ

1
2

[
(1, 1)

(β, α), (y, 0)

∣∣∣z] =
∞∑
r=0

zr

Γ(rα + β)
= Eα,β(z)

nψ
1
m(z) = nψ

1
m

[
(pi, αi)1,n

(qj, βj)1,m

∣∣∣z] = nψm(z).

3. SOLUTION OF GENERALIZED FRACTIONAL KINETIC EQUATIONS BY USING

SUMUDU TRANSFORM

In this part, we investigated the solutions of the generalized fractional kinetic
equations by considering generalized k−Wright function using the method of
Sumudu transforms.

Watugala [42,43], described and studied Sumudu transform in order to sim-
plify the steps of solving integral and differential equations in the time domain.
Sumudu transform has very unique and beneficial properties in solving the en-
gineering and science problems that govern kinetic equation.

Remark 3.1. In this part, solutions for the fractional kinetic equations as for the
generalized Mittag-Leffler are acquired Eα,β(z)see [24] , Which is defined as the
form:

Eα,β(z) =
∞∑
r=0

zr

Γ(αr + β)
, ‘<(α) > 0, <(β) > 0.
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Theorem 3.1. Let R(γ) > 0, δ > 0, c > 0, k ∈ R+; c, z ∈ C; pi, qj ∈ C, αi, βj ∈
R (αi, βj 6= 0; i = 1, 2, ..., n; j = 1, 2, ...,m) and (pi + αir), (qj + βjr) ∈ C \ kZ−,
then the following equation

(3.1) N(t)−N0

(
l∏

λ=1

nλψ
kλ
mλ

[
(pλi, αλi)1,nλ

(qλj, βλj)1,mλ

∣∣∣cγtγ]) = −δγ 0D
−γ
t N(t)

has a solution given by

N(t) = N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

) (
crγtrγ

r!

)λ

× 1

t

×Γ(γrλ+ 1) Eγ,γrλ (−δγtγ).

Proof. The Sumudu transform of Riemann- Liouville fractional integral operator
is presented as

(3.2) S {0D
−γ
t f(t); τ)} = (τ)γG(τ)

where G(τ) =
∫∞

0
e−tf(τt)dt. Now, applying the Sumudu transform to both

sides of equation (3.1) and using (3.2) we have

S
(
N(t); τ

)
= N0 S

(
l∏

λ=1

nλψ
kλ
mλ

[
(pλi, αλi)1,nλ

(qλj, βλj)1,mλ

∣∣∣cγtγ; τ])− δγ S( 0D
−γ
t N(t); τ

)
that is
(3.3)

N(τ) = N0

∫ ∞
0

e−t

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

)(
crγ(τt)rγ

r!

)λ

dt−δγ(τ)γN(τ),

by interchanging the order of integration and summation in the equation (3.3),
we obtain

N(τ)
[
1 + δγ(τ)γ

]
= N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

)∫ ∞
0

e−t

(
crγ(τt)rγ

r!

)λ

dt

= N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

)(
crγ(τ)rγ

r!

)λ ∫ ∞
0

e−ttγrλdt

= N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

)(
crγ(τ)rγ

r!

)λ

Γ(γrλ+ 1).(3.4)
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Equation (3.4) leads to
(3.5)

N(τ) = N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

)(
crγ(τ)rγ

r!

)λ

Γ(γrλ+1)
∞∑
µ=0

(−1)µ(δτ)γµ

Now, taking inverse Sumudu transform on both sides of the equation (3.5), and
using

S−1{τ γ; t} =
tγ−1

Γ(γ)
, (R(γ) > 0)

we have

S−1{N(τ)} = N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

) (
crγ

r!

)λ

×Γ(γrλ+ 1) S−1

(
∞∑
µ=0

(−1)µ(δ)γµ(τ)γrλ+γµ

)
.

That is

N(t) = N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

)(
crγ

r!

)λ

×Γ(γrλ+ 1)

(
∞∑
µ=0

(−1)µ(δ)γµ
(t)γrλ+γµ−1

Γ(γrλ+ γµ)

)

N(t) = N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

)(
crγtrγ

r!

)λ

× 1

t

(3.6) ×Γ(γrλ+ 1)

(
∞∑
µ=0

(−1)µ
(tγδγ)µ

Γ(γrλ+ γµ)

)
.

Now, we can write equation (3.6) as

N(t) = N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

) (
crγtrγ

r!

)λ

× 1

t

×Γ(γrλ+ 1) Eγ,γrλ (−δγtγ).

�
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Theorem 3.2. Let R(γ) > 0, c > 0, k ∈ R+; c, z ∈ C; pi, qj ∈ C, αi, βj ∈
R (αi, βj 6= 0; i = 1, 2, ..., n; j = 1, 2, ...,m) and (pi + αir), (qj + βjr) ∈ C \ kZ−,
then the following equation

N(t)−N0

(
l∏

λ=1

nλψ
kλ
mλ

[
(pλi, αλi)1,nλ

(qλj, βλj)1,mλ

∣∣∣cγtγ]) = −cγ 0D
−γ
t N(t)

has a solution given by

N(t) = N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

) (
crγtrγ

r!

)λ

× 1

t

×Γ(γrλ+ 1) Eγ,γrλ (−cγtγ).

Theorem 3.3. Let R(γ) > 0, c > 0, k ∈ R+; c, z ∈ C; pi, qj ∈ C, αi, βj ∈
R (αi, βj 6= 0; i = 1, 2, ..., n; j = 1, 2, ...,m) and (pi + αir), (qj + βjr) ∈ C \ kZ−,
then the following equation

N(t)−N0

(
l∏

λ=1

nλψ
kλ
mλ

[
(pλi, αλi)1,nλ

(qλj, βλj)1,mλ

∣∣∣t]) = −cγ 0D
−γ
t N(t)

has a solution given by

N(t) = N0

(
l∏

λ=1

∞∑
r=0

∏nλ
i=1 Γkλ(pλi + αλir)∏mλ
j=1 Γkλ(qλj + βλjr)

) (
tr

r!

)λ

× 1

t

×Γ(rλ+ 1) Eγ,rλ (−cγtγ).

Proof. The proofs of Theorem 3.2 and Theorem 3.3 are similar with the proof of
Theorem 3.1 . So it is omitted here. �

4. SPECIAL CASES

(i) From previous results if we choose λ = 1, in Theorem 3.1, Theorem 3.2
and Theorem 3.3 then we have the following corollaries:

Corollary 4.1. Let R(γ) > 0, δ > 0, c > 0, k ∈ R+; c, z ∈ C; pi, qj ∈
C, αi, βj ∈ R (αi, βj 6= 0; i = 1, 2, ..., n; j = 1, 2, ...,m) and (pi +

αir), (qj + βjr) ∈ C \ kZ−, then the following equation

N(t)−N0

(
nψ

k
m

[
(pi, αi)1,n

(qj, βj)1,m

∣∣∣cγtγ]) = −δγ 0D
−γ
t N(t)
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has a solution given by

N(t) = N0

(
∞∑
r=0

∏n
i=1 Γk(pi + αir)∏m
j=1 Γk(qj + βjr)

) (
crγtrγ

r!

)
× 1

t

×Γ(γr + 1) Eγ,γr (−δγtγ).

Corollary 4.2. Let R(γ) > 0, δ > 0, c > 0, k ∈ R+; c, z ∈ C; pi, qj ∈
C, αi, βj ∈ R (αi, βj 6= 0; i = 1, 2, ..., n; j = 1, 2, ...,m) and (pi +

αir), (qj + βjr) ∈ C \ kZ−, then the following equation

N(t)−N0

(
nψ

k
m

[
(pi, αi)1,n

(qj, βj)1,m

∣∣∣cγtγ]) = −cγ 0D
−γ
t N(t)

has a solution given by

N(t) = N0

(
∞∑
r=0

∏n
i=1 Γk(pi + αir)∏m
j=1 Γk(qj + βjr)

) (
crγtrγ

r!

)
× 1

t

×Γ(γr + 1) Eγ,γr (−cγtγ).

Corollary 4.3. Let R(γ) > 0, δ > 0, c > 0, k ∈ R+; c, z ∈ C; pi, qj ∈
C, αi, βj ∈ R (αi, βj 6= 0; i = 1, 2, ..., n; j = 1, 2, ...,m) and (pi +

αir), (qj + βjr) ∈ C \ kZ−, then the following equation

N(t)−N0

(
nψ

k
m

[
(pi, αi)1,n

(qj, βj)1,m

∣∣∣t]) = −cγ 0D
−γ
t N(t)

has a solution given by

N(t) = N0

(
∞∑
r=0

∏n
i=1 Γk(pi + αir)∏m
j=1 Γk(qj + βjr)

) (
tr

r!

)
× 1

t

×Γ(r + 1) Eγ,r (−cγtγ).

(ii) When we choose parameter values according as in equations (2.3), (2.4),
(2.5), (2.6), (2.7) and (2.8). The new results for the product of the
Mittag-Leffler functions can then be derived from the results in Theo-
rem 3.1, Theorem 3.2 and Theorem 3.3.
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5. CONCLUSION

In this study, a new and generalized solution of the fractional kinetic equation
using the Sumudu transform technique, which involves generalized k-Wright
function, is developed. In terms of the solution of the kinetic fractional equation
described above, the manifold generality of the generalized function k-Wright
is defined. In fact, the findings obtained here are very capable of generating a
quite large number of established and presumably new results.
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