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NUMERICAL SOLUTION OF ELEVENTH ORDER BOUNDARY VALUE
PROBLEMS BY GALERKIN METHOD WITH SEXTIC B-SPLINES

SREENIVASULU BALLEM1

ABSTRACT. In this paper, we present a finite element method involving Galerkin
method with sextic B-splines as basis functions to solve a general eleventh or-
der boundary value problem. The basis functions are modified into a new set of
basis functions which vanish on the boundary where almost all boundary con-
ditions are prescribed. The solution of a non-linear boundary value problem
has been obtained by quasilinearization technique.

1. INTRODUCTION

We consider a general eleventh order linear boundary value problem

(1.1) a0(x)y
(11)(x) + a1(x)y

(10)(x) + a2(x)y
(9)(x) + a3(x)y

(8)(x)

+ a4(x)y
(7)(x) + a5(x)y

(6)(x) + a6(x)y
(5)(x) + a7(x)y

(4)(x) + a8(x)y
′′′
(x)

+ a9(x)y
′′
(x) + a10(x)y

′
(x) + a11(x)y(x) = b(x), c < x < d

subject to boundary conditions

(1.2) y(c) = A0, y(d) = C0, y
′
(c) = A1, y

′
(d) = C1, y

′′
(c) = A2, y

′′
(d) = C2,

y
′′′
(c) = A3, y

′′′
(d) = C3, y

(4)(c) = A4, y
(4)(d) = C4, y

(5)(c) = A5.

where Ai’s, Ci’s are finite real constants and ai(x)′s and b(x)εC[c, d].
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Generally, this type of eleventh order boundary value problem arises in the
study of hydrodynamics and hydromagnetic stability, mathematical modeling
of the viscoelastic flows and other areas of applied mathematics, physics, en-
gineering sciences. The boundary value problems of higher order differential
equations have been investigated due to their mathematical importance and the
potential for applications in diversified applied sciences. In particular, these
types of problems occur in study of eigenvalue problems [1]. The literature on
the numerical solutions of eleventh order boundary value problems and associ-
ated eigenvalue problems is seldom. The existence and uniqueness of solutions
of these problems have been discussed by Agarwal [2]. Siddiqi et al [3] solved a
special case of eleventh order boundary value problems using the Variational it-
eration method. Amjad Hussain et al [4] applied Differential Transform method
to solve a special case of eleventh order boundary value problems. Md. Bellal
Hossain et al [5] developed the Galerkin method with Bernstein and Legendre
Polynomials as basis functions to solve a general eleventh order boundary value
problem. So far, eleventh order boundary value problems have not been solved
by using Galerkin method with sextic B-splines. This motivated us to solve a
general eleventh order boundary value problem by Galerkin method with sextic
B-splines.

2. DESCRIPTION OF THE METHOD

Sextic B-splines Bi(x)
′s are defined by

Bi(x) =


i+4∑

r=i−3

(xr − x)6+
π′(xr)

, for x ∈ [xi−3, xi+4]

0, otherwise

,

where

π(x) =
i+4∏

r=i−3

(x− xr), (xr − x)6+ is nonnegative function

{B−3(x), B−2(x), . . ., Bn+1(x),Bn+2(x)} forms a basis for the space S6(π) of sextic
polynomial splines. Sextic B-splines are defined in [6, 7]. Schoenberg [7] has
proved that sextic B-splines are the unique nonzero splines of smallest compact
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support over [x−6, xn+6]. We define the approximation for y(x) as

(2.1) y(x) =
n+2∑
j=−3

αjBj(x),

where αj ’s are the nodal parameter to be determined. Since we are approximat-
ing the eleventh order boundary value problem by sextic B-spline polynomial,
we redefine the basis functions into a new set of basis functions which vanish
on all most of all boundary conditions. The procedure for redefining the basis
functions is as follows.

Using the sextic B-splines and the boundary conditions of (1.2), we get the
approximate solution at the boundary points as

(2.2) Ai = y(i)(c) = y(i)(x0) =
n+2∑
j=−3

αjB
(i)
j (x0), i = 0, 1, 2, 3, 4,

(2.3) Ci = y(i)(d) = y(i)(xn) =
n+2∑
j=−3

αjB
(i)
j (xn), i = 0, 1, 2, 3, 4.

Eliminating α−3, . . . , α1 and αn−2, . . . , αn+2 from the equations (2.1) - (2.3), we
get

y(x) = w(x) +
n−3∑
j=2

αjB̃j(x),

where

w(x) = w4(x) +
A4 − w(4)

4 (x0)

S
(4)
1 (x0)

S1(x) +
C4 − w(4)

4 (xn)

S
(4)
n−2(xn)

Sn−2(x)

w4(x) = w3(x) +
A3 − w

′′′
3 (x0)

R
′′′
0 (x0)

R0(x) +
C3 − w

′′′
3 (xn)

R
′′′
n−1(xn)

Rn−1(x)

w3(x) = w2(x) +
A2 − w

′′
2 (x0)

Q
′′
−1(x0)

Q−1(x) +
C2 − w

′′
2 (xn)

Q′′
n(xn)

Qn(x)

w2(x) = w1(x) +
A1 − w

′
1(x0)

P
′
−2(x0)

P−2(x) +
C1 − w

′
1(xn)

P
′
n+1(xn)

Pn+1(x)

w1(x) =
A0

B−3(x0)
B−3(x) +

C0

Bn+2(xn)
Bn+2(x)
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B̃j(x) =



Sj(x)−
S
(4)
j (x0)

S
(4)
1 (x0)

S1(x), j = 2

Sj(x), j = 3, . . . , n− 4

Sj(x)−
S
(4)
j (xn)

S
(4)
n−2(xn)

Sn−2(x), j = n− 3.

Sj(x) =


Rj(x)−

R
′′′
j (x0)

R
′′′
0 (x0)

R0(x), j = 1, 2

Rj(x), j = 3, . . . , n− 4

Rj(x)−
R

′′′
j (xn)

R
′′′
n−1(xn)

Rn−1(x), j = n− 3, n− 2

Rj(x) =


Qj(x)−

Q
′′
j (x0)

Q
′′
−1(x0)

Q−1(x), j = 0, 1, 2

Qj(x), j = 3, . . . , n− 4

Qj(x)−
Q

′′
j (xn)

Q′′
n(xn)

Qn(x), j = n− 3, n− 2, n− 1

Qj(x) =


Pj(x)−

P
′
j (x0)

P
′
−2(x0)

P−2(x), j = −1, 0, 1, 2

Pj(x), j = 3, . . . , n− 4

Pj(x)−
P

′
j (xn)

P
′
n+1(xn)

Pn+1(x), j = n− 3, n− 2, n− 1, n

Pj(x) =


Bj(x)−

Bj(x0)

B−3(x0)
B−3(x), j = −2,−1, 0, 1, 2

Bj(x), j = 3, . . . , n− 4

Bj(x)−
Bj(xn)

Bn+2(xn)
Bn+2(x), j = n− 3, n− 2, n− 1, n, n+ 1.

Now the new set of basis functions for the approximation y(x) is {B̃j(x), j =

2, 3, . . . , n−3}. Applying the Galerkin method with the new set of basis functions

(2.4)
∫ xn

x0

[
a0(x)y

(11)(x) + a1(x)y
(10)(x) + a2(x)y

(9)(x) + a3(x)y
(8)(x)

+a4(x)y
(7)(x)+a5(x)y

(6)(x)+a6(x)y
(5)(x)+a7(x)y

(4)(x)+a8(x)y
′′′
(x)+a9(x)y

′′
(x)

+a10(x)y
′
(x)+a11(x)y(x)

]
B̃i(x) dx =

∫ xn

x0

b(x)B̃i(x) dx for i = 2, 3, 4, . . . , n−3.
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Integtating by parts terms the first six terms on the left hand side of (2.4), we get
term after applying the boundary conditions prescribed in (1.2), After rearrange
the system of equations in the matrix form as

Aα = B

where A = [aij], B = [bi],

aij =

∫ xn

x0

{[
d4

dx4

[
a1(x)B̃i(x)

]
− d3

dx3

[
a2(x)B̃i(x)

]
+

d2

dx2

[
a3(x)B̃i(x)

]]
− d

dx

[
a3(x)B̃i(x)

]]
B̃

(6)
j (x) +

[
a6(x)B̃i(x)−

d

dx

[
a5(x)B̃i(x)

]
− d6

dx6

[
a0(x)B̃i(x)

]]
B̃

(5)
j (x) + a7(x)B̃i(x)B̃

(4)
j (x) + a8(x)B̃i(x)B̃

′′′

j (x) + a9(x)B̃i(x)B̃
′′

j (x) + a10(x)B̃i(x)

B̃
′

j(x) + a11(x)B̃i(x)B̃j(x)
}
dx− d5

dx5

[
a0(x)B̃i(x)

]
B̃

(5)
j (x)

∣∣∣
xn

i, j = 2, 3, . . . , n−3.

and

bi =

∫ xn

x0

{
b(x)B̃i(x) +

[
− d4

dx4

[
a1(x)B̃i(x)

]
+

d3

dx3

[
a2(x)B̃i(x)

]
− d2

dx2

[
a3(x)B̃i(x)

]
+

d

dx

[
a3(x)B̃i(x)

]]
w(6)(x) +

[
−a6(x)B̃i(x) +

d

dx

[
a5(x)B̃i(x)

]
+
d6

dx6

[
a0(x)B̃i(x)

]]
w(5)(x)− a7(x)B̃i(x)w

(4)(x)− a8(x)B̃i(x)w
′′′
(x)− a9(x)B̃i(x)

w
′′
(x)− a10(x)B̃i(x)w

′
(x)− a11(x)B̃i(x)w(x)

}
dx+

d5

dx5

[
a0(x)B̃i(x)

]
w(5)(x)

∣∣∣
xn

− A5
d5

dx5

[
a0(x)B̃i(x)

]∣∣∣
x0

for i = 2, 3, . . . , n− 3

with α = [α2 α3 . . . αn−3]
T . The stiff matrix A is a thirteen diagonal band matrix.

The nodal parameter vector α has been obtained from the system Aα = B using
a band matrix solution package.

3. NUMERICAL RESULTS

To demonstrate the applicability of the proposed method for solving the ele-
venth order boundary value problems of the types (1.1) and (1.2), we con-
sidered one linear and one nonlinear boundary value problems. The obtained
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numerical results for each problem by taking moderate step size h=0.1, are pre-
sented in tabular forms and compared with the exact solutions available in the
literature.

Example 1. Consider the linear boundary value problem

y(11) + xy = −(10 + x2)ex, 0 < x < 1

subject to y(0) = 1, y(1) = 0, y′
(0) = 0, y′

(1) = −e, y′′
(0) = −1, y′′

(1) = −2e,
y

′′′
(0) = −2, y′′′

(1) = −3e, y(4)(0) = −3, y(4)(1) = −4e, y(5)(0) = −4e. The exact
solution for the above problem is y(x) = (1− x)ex. The obtained numerical results
for this problem are given in Table 1. The maximum absolute error obtained by the
proposed method is 8.672476× 10−05.

Example 2. Consider the nonlinear boundary value problem

(3.1) y(11) − e−xy2 = −e−x − e−3x, 0 < x < 1

subject to y(0) = 1, y(1) = 1
e
, y

′
(0) = −1, y

′
(1) = −1

e
, y

′′
(0) = 1, y′′

(1) =
1
e
, y′′′

(0) = −1, y′′′
(1) = −1

e
, y(4)(0) = 1, y(4)(1) = 1

e
, y(5)(0) = −1. The exact so-

lution for the above problem is y(x) = e−x. The nonlinear boundary value problem
(3.1) is converted into a sequence of linear boundary value problems generated by
quasilinearization technique [8] as

(3.2) y
(11)
(n+1) − [2yne

−x]y(n+1) = −y2ne−x − e−x − e−3x, n = 0, 1, 2, 3, . . .

y(n+1)(0) = 1, y(n+1)(1) =
1
e
, y′

(n+1)(0) = −1, y′

(n+1)(1) =
−1
e
, y

′′

(n+1)(0) = 1, y′′

(n+1)(1)

= 1
e
, y′′′

(n+1)(0) = −1, y′′′

(n+1)(1) =
−1
e

, y(4)(n+1)(0) = 1, y(4)(n+1)(1) =
1
e
, y(5)(n+1)(0) = −1.

The proposed method is applied to the sequence of a linear problems (3.2) and
these numerical results are presented in Table 2. The maximum absolute error is
7.337332× 10−05.

4. CONCLUSIONS

In this paper, we have deployed a Galerkin method with sextic B-splines as
basis functions to solve a general eleventh order boundary value problem. The
proposed method has been tested on one linear and one nonlinear eleventh
order boundary value problems. We found that numerical results are close to
the exact solutions. The objective of this paper is to present a simple, efficient
method to solve a general eleventh order boundary value problem.
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TABLE 1. Numerical results for Example 1 TABLE 2. Numerical results for Example 2
0.1 9.946538E-01 2.264977E-06
0.2 9.771222E-01 1.156330E-05
0.3 9.449012E-01 4.512072E-05
0.4 8.950948E-01 7.575750E-05
0.5 8.243606E-01 8.672476E-05
0.6 7.288475E-01 7.891655E-05
0.7 6.041259E-01 4.553795E-05
0.8 4.451082E-01 1.704693E-05
0.9 2.459602E-01 8.359551E-06

0.1 9.048374E-01 4.768372E-07
0.2 8.187308E-01 1.138449E-05
0.3 7.408182E-01 3.165007E-05
0.4 6.703200E-01 6.061792E-05
0.5 6.065307E-01 7.337332E-05
0.6 5.488116E-01 5.125999E-05
0.7 4.965853E-01 2.574921E-05
0.8 4.493290E-01 5.513430E-06
0.9 4.065697E-01 2.592802E-06
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