
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.10, 8375–8384
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.10.67

AN EMPIRICAL APPROACH TO STUDY THE STABILITY OF GENERALIZED
LOGISTIC MAP IN SUPERIOR ORBIT

V. KUMAR, KHAMOSH, AND ASHISH1

ABSTRACT. The standard logistic map and its variants are one of the best and
simplest form of a dynamical system which plays an important role in various
fields of science like biology, engineering, electronics, cryptography, etc. The
generalization of the logistic map is assumed with freedom of an extra degree
of parameter β and then the variants of the logistic system are produced. This
article is concerned about the stability of generalized logistic map with the
help of superior orbit using time series representation. In literature of logistic
map, it is observed that the stabilization in standard logistic map exists for the
parameter 0 < r ≤ 3.2 in Picard orbit but in superior orbit, we examine that
the range of stability in generalized logistic map increases for the larger range
of the parameter r depending on the control parameter α and β.

1. INTRODUCTION

Chaos is a word which shows aperiodicity, unstability and sensitivity towards
initial conditions and now it becomes a subject of study and is called “chaos the-
ory”. It is believed that this concept emerged when Poincare [17] studied the
qualitative theory of non-linear dynamical systems on celestial mechanics. But,
unfortunately, this subject was not researched much after his demise until Henry
Lorenz picked it back up in 1960’s. In 1960’s, H. Lorenz [12] and R. May [14]
took important arithmetical footsteps and after that, almost every scientific field
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has been saturated with arithmetic computation of non-linear differential equa-
tions and difference maps. One of the most researched and exploited discrete
map is logistic map rx(1−x), which is also known as population growth model,
proposed by P. F. Verhulst [10]. The great personality Feigenbaum [9] in 1978
analyzed the analytical as well as experimental analysis of logistic map and also
studied its generic dynamical properties. For a brief overview of logistic map,
one may also go through [5–8,10].

The standard logistic map and various modified logistic maps have been in-
troduced in last few decades which has various applications in Physics, Biology,
Electronics and many other subjects. In present time, the logistic map and its
various modified versions are studied intensively as a prototype of dynamical
system. Song and Meng [23] proposed an error value feedback method for
synchronization of logistic map. Molina et al. [15] suggested embedding di-
mensions of time series in logistic map and other chaotic maps. In 2010, Singh
and Sinha [22] proposed a communication system and developed chaotic sig-
nals via logistic map. Radwan [18] presented a paper in which he studied some
generalized discrete maps and analyzed their dynamics. Next year, Prasad and
Katiyar [16] presented a paper in which they studied the stability of logistic
model. Kumar and Rani [11] proposed a comparative analysis of logistic map
in Picard orbit and that of Norlund orbit. In 2005, Rani and Kumar [20] ana-
lyzed the logistic map by new technique to study the stability of this map. They
proposed the superior orbit as a tool of two- step iterative method and exhib-
ited that the logistic map is convergent for extra-large value of parameter r as
compared to Picard orbit. Also, Rani and Goel [21] examined the convergent
behavior and stable behavior of the logistic map by I-Superior approach. They
showed that the logistic map is more stable in I-superior orbit than that of Picard
orbit. In 1953, Mann [13] proposed a fixed-point method to prove superiority
in functional analysis and various branches of mathematics. In 2009, Rani and
Agarwal [19] used this fixed-point feedback procedure of Mann to study the
convergence behavior of this discrete logistic map. Again in 2012, Chugh, Rani
and Ashish [4] studied the convergence of logistic map in Noor orbit which is
a four-step iterative method. In 2015, Rani and Yadav [24] analyzed and ex-
amined the stability of modified and extended logistic map for elaborating the
dynamics of multi-scaled population.
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Presently, Ashish, et. al. [2] studied the chaotic behavior of logistic map using
superior orbit. They investigated chaotic properties using Mann orbit and exam-
ined the Lyapunov exponent of standard logistic map. They showed that the new
parameter α in Mann orbits is treated as control variable which may enhance
the stability performance in traffic control models. Again in 2018, Ashish et
al. [1] proposed a new fixed-point feedback method for studying the dynamical
behavior of logistic map via superior fixed-point method. This new method gives
extra freedom to control parameter that enhances the performance of many ap-
plications. In 2019, Ashish et al. [3] again proposed a superior technique for
stabilizing the chaos via superior feedback method and also visualized its appli-
cations in discrete traffic control model. The article is divided into four sections.
In Section 2, we mention the basic entities which have been taken into account
during the analysis. In Section 3, the main results of the article are studied
followed by conclusion in Section 4.

2. PRELIMINARIES

In this section, we recall some definitions, facts and notions about the study
of stability of logistic map.

Definition 2.1. Let f be a one-dimensional map defined on non-empty sets X.
Then the Picard orbit which is also known as orbit of function is the set of all
iterates of an initial point x0 and defined as xn+1 = f(xn).

Definition 2.2. Let f be a one-dimensional map defined on a non-empty set X.
Then the sequence {xn} of all iterates defined by xn+1 = xn − α(xn − f(xn)), is
said to be superior fixed-point feedback system, where α ∈ [0, 1] and n ∈ N . This
sequence of iterates {xn} is also called Superior orbit [13].

Definition 2.3. Let f be a one-dimensional map defined on a set X, where X is
a non-empty set. A point x ∈ X is said to be fixed if it satisfies the condition
f(x) = x [5].

Definition 2.4. Let f be a one-dimensional map defined on a set X, where X is
a non-empty set. A point x ∈ X is said to be periodic fixed point of period-p or
cycle-p if it satisfies fp(x) = x, where p is a positive integer [5].
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3. STABILITY IN GENERALIZED LOGISTIC MAP USING SUPERIOR ORBIT

In this section, we deal with the stability of the generalized logistic map via
Superior Orbit. The generalized logistic map is defined as

(3.1) fr,β(x) = rx(1− x)β,

where x ∈ [0, 1], r > 0 and β > 1. For an initial point x0 ∈ [0, 1], let us consider
x1 as new outcome for the generalized map fr,β(x), in superior orbit (3.2) such
that

(3.2) x1 = x0 − α(x0 − fr,β(x0)) = S(x0, α, r, β),

where α ∈ [0, 1]. So, the stable behavior of the superior system S(x0, α, r, β)

completely relies on the values of α, β and r. Therefore, to understand the
stable behavior of the generalized map, we use the numerical simulation with
the help of time series. The following cases of simulation results with different
value of control parameter α and β are stated below in tables and figures.

In superior orbit, the standard logistic map exhibits stable behavior for larger
values of parameter r for all x ∈ [0, 1], where the maximum value of parameter
r depends on one control parameter β. But, in superior orbit the generalized
logistic map exhibits stable behavior for large values of r for all x ∈ [0, 1], where
the maximum value of r depends on the value of two control parameters α and
β. In this article, we take both parameters α and β in their prescribed range
where α ∈ (0, 1), and β > 1 always. We choose β > 1 in this article because
the generalized map converts into the standard logistic map for β = 1. For
analyzing the stability in the generalized logistic map, we consider some initial
point x0 in [0, 1] and try to get the maximum range of r for which the generalized
logistic map exhibits stable behavior. When we study the stability behavior of
this generalized logistic map for different value of α and β via superior orbit, we
observe that there is drastic increment in the value of parameter r. The results
are studied using some tables and time-series representations which show the
maximum value of r for specific choices of α and β against some initial values.
We also represent some time-series plots which show the cyclic behavior of the
function corresponding to various value of α, β and r. The control parameter
value considered in this simulation are α = 0.95, 0.84, 0.8, 0.22.
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3.1 Case-I for β = 2 and α = 0.95, 0.84, 0.8, 0.22

In Table 1, using Equation (3.1) and (3.2) we evaluate the maximum value
of the parameter r for β = 2, α = 0.95, 0.84, 0.8, 0.22, and initial values x0 =

0.2, 0.4, 0.6, 0.9. It is observed that for α = 0.95, 0.84, 0.8, 0.22 maximum value
of r reaches to 5.65, 7.63, 9.31, 29 respectively. Further, the following results are
analyzed from Table 1 and Figures 1 and 2:

(1). For α = 0.95, and 0 < r ≤ 5.65 we notice that for 0 < r ≤ 4.1, the
generalized logistic map is convergent to a fixed point and for 4.1 < r ≤ 5.65,
it shows periodicity or cyclic behavior. The cyclic behavior of the generalized
map at β = 2 and α = 0.95 has been shown through blue line in Figure 1, for
r = 5.65. We also examined that the generalized logistic map loses its stable
behavior in periodicity for r > 5.66.

(2). For α = 0.84, and 0 < r ≤ 7.63, we find that the generalized map is
convergent to a fixed point for 0 < r ≤ 4.77 and for 4.77 < r ≤ 7.63, it shows
cyclic behavior. Moreover, the generalized map does not create any irregular
behavior, that is, chaos at β = 2 and α = 0.84. The cyclic behavior of the
generalized map at β = 2 and α = 0.84 has been shown by red line in Figure 1,
for r = 7.63.

(3). For α = 0.8, and 0 < r ≤ 9.32, Table 1 shows the maximum range of
r in which the generalized map exhibits stable behavior. Here, we find that
the generalized map shows only stable behavior. It does not exhibit chaotic
behavior. The map convergent to a fixed point for 0 < r ≤ 5.05 and for 5.05 <

r ≤ 9.31, it shows cyclic behavior only. For graphical presentation of the cyclic
nature see Figure 2 shown by blue line.

(4). Again, Table 1, shows that for β = 2 and α = 0.22, the generalized logistic
map shows only convergent behavior which is shown by red line in Figure 2 for
the larger range of parameter r approaches to 29.5. But, for r > 29.5, the
generalized map cannot be described in superior orbit as xn is greater than 1.

Remark 3.1. From the above analysis it is examined that the generalized map for
β = 2 shows that the stable behavior exists only for α ≤ 0.84, that is no irregular
or chaos occurs for α ≤ 0.84. It only shows the convergent behavior to fixed point
and periodic points.
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TABLE 1. Stable cyclic nature of generalized logistic map for
maximum value of r for α ∈ [0, 1] and β = 2

Initiator α = 0.95, β = 2 α = 0.84, β = 2 α = 0.8, β = 2 α = 0.22, β = 2

x0 r r r r

0.20 5.65 7.63 9.13 29.5
0.40 5.65 7.63 9.13 29.5
0.60 5.65 7.63 9.13 29.5
0.90 5.65 7.63 9.13 29.5
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FIGURE 1. Cyclic behavior for α = 0.95, 0.84, r = 5.65, 7.63 and β = 2
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FIGURE 2. Stable behavior for α = 0.8, 0.22, r = 9.13, 29.5 and β = 2
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3.2 Case-II for β = 3 and α = 0.95, 0.89, 0.8, 0.35

In Table 2, using Equation (3.1) and (3.2) we evaluate the maximum value
of the parameter r for β = 3, α = 0.95, 0.89, 0.8, 0.35, and initial values x0 =

0.2, 0.4, 0.6, 0.9. It is observed that for α = 0.95, 0.89, 0.8, 0.35 maximum value
of r reaches to 7.2, 10.5, 11, 24.2 respectively. Further, the following results are
analyzed from Table 2 and Figures 3 and 4:

(1). For α = 0.95, and 0 < r ≤ 7.2, we notice that for 0 < r ≤ 4.8, the
generalized logistic map is convergent to a fixed point and for 4.8 < r ≤ 7.2, it
shows periodicity or cycle behavior. The blue line in Figure 3 shows the graphi-
cal representation. Further, it is observed that the generalized logistic map loses
its stable behavior for r > 7.2 and exhibits chaotic nature for 7.2 < r ≤ 9.85.

(2). For α = 0.89, and 0 < r ≤ 10.5, we find that the generalized map is
convergent to a point for 0 < r ≤ 5.15 and for 5.15 < r ≤ 10.5; it shows only
cyclic behavior and does not create chaos. Here this generalized map loses its
chaotic nature. The cyclic behavior of the generalized map at β = 3 and α = 0.89

has been shown by red line in time series Figure 3, for r = 10.5.
(3). For α = 0.8, and 0 < r ≤ 11, we find that the generalized map again

shows only stable behavior with period-2. It does not exhibit chaotic behavior.
The map convergent to a fixed point for 0 < r ≤ 6 and for 6 < r ≤ 11, it shows
cyclic behavior of period-2 only. The cyclic behavior of the generalized map at
β = 3 and α = 0.8 has been shown through blue line in the time series Figure 4,
for r = 11.

(4). Table 2, shows that for β = 3 and α = 0.35, the generalized logistic map
exhibits only stable behavior for all values of r and the maximum value of r
is 24.2. For 0 < r ≤ 24.2, this map convergent to a fixed point only and does
not show cyclicity. For graphical presentation the red line shows the convergent
behavior in Figure 4.

Remark 3.2. From the above analysis it is studied that the generalized map for
β = 3 shows only stable behavior for α ≤ 0.90 and it is also observed that for
α ≤ 0.90, it shows only convergent behavior to fixed point and periodic point.
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TABLE 2. Stable regime nature of generalized logistic map for
maximum value of r for α ∈ [0, 1] and β = 3

Initiator α = 0.95, β = 3 α = 0.89, β = 3 α = 0.8, β = 3 α = 0.35, β = 3

x0 r r r r

0.20 7.2 10.5 11 24.2
0.40 7.2 10.5 11 24.2
0.60 7.2 10.5 11 24.2
0.90 7.2 10.5 11 24.2
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FIGURE 3. Cyclic behavior for α = 0.95, 0.89, r = 7.2, 10.5 and β = 3
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FIGURE 4. Stable behavior for α = 0.8, 0.35, r = 11, 24.2 and β = 3
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4. CONCLUSION

Throughout this article using some computational work on generalized lo-
gistic map using Mann fixed point iterative procedure, we achieve some more
exciting and outstanding results on stabilization of logistic map as compared to
Picard system. From the above analysis it is examined that the generalized logis-
tic map for β = 2 shows that the stable behavior exists only for α ≤ 0.84, that is,
no irregular or chaos occurs for this range and it shows the convergent behavior
to fixed point and periodic points. Further, for β = 3 the map shows only stable
behavior for α ≤ 0.90 and it is also observed that for α ≤ 0.90, it shows only
convergent behavior to fixed point and periodic point and no irregular behavior
occurs in the range. Furthermore, it is concluded that as the value of parameter
β increases through 1 the range of the growth rate parameter r also increases.
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