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CONFORMAL RICCI SOLITON ON ALMOST CO-KÄHLER MANIFOLD

DIPEN GANGULY1 AND ARINDAM BHATTACHARYYA

ABSTRACT. In this paper, we study almost coKähler manifolds admitting the
conformal Ricci soliton and determine the value of the soliton constant λ and
hence the condition for the soliton to be shrinking, steady or expanding. Then
we find the condition on the conformal pressure p under which, a conformal
Ricci soliton on a (k, µ)-almost coKähler manifold becomes expanding. Finally
we show that a (k, µ)-almost coKähler manifold, with the potential vector field
V pointwise collinear with the Reeb vector field ξ, does not admit conformal
gradient Ricci soliton.

1. INTRODUCTION

A Riemannian metric g defined on a smooth manifold Mn,of dimension n, is
said to be a Ricci soliton if for some constant λ, there exists a smooth vector
field X on M satisfying the equation

(1.1) Ric+
1

2
LV g = λg,

where LV denotes the Lie derivative in the direction of V and Ric is the Ricci
tensor. The Ricci soliton is called shrinking if λ > 0, steady if λ = 0 and ex-
panding if λ < 0. In 1982, R.S. Hamilton [11] first studied the Ricci soliton as a
self similar solution to the Ricci flow equation given by: ∂

∂t
(g(t)) = −2Ric(g(t)),

where g(t) is a one parameter family of metrics on M2n+1.
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Ricci solitons can also be viewed as natural generalizations of Einstein metrics
which moves only by a one-parameter group of diffeomorphisms and scaling
[12]. Again a Ricci soliton is called a gradient Ricci soliton [3] if the concerned
vector field V in the equation (1.1), is the gradient of some smooth function f ,
i.e; if V = Df , where D is the gradient operator of g. This function f is called
the potential function of the Ricci soliton.

A.E. Fisher, in 2005, introduced [9] conformal Ricci flow equation which is
a modified version of the Hamilton’s Ricci flow equation that modifies the vol-
ume constraint of that equation to a scalar curvature constraint. The conformal
Ricci flow equations on a smooth closed connected oriented manifold Mn, of
dimension n, are given by

(1.2)
∂g

∂t
+ 2

(
Ric+

g

n

)
= −pg,

r(g) = −1,

where p is a non-dynamical(time dependent) scalar field and r(g) is the scalar
curvature of the manifold. The term −pg acts as the constraint force to maintain
the scalar curvature constraint. Thus these evolution equations are analogous
to famous Navier-Stokes equations in fluid mechanics where the constraint is
divergence free. That is why sometimes p is also called the conformal pressure.

Recently, in 2015, N. Basu and A. Bhattacharyya [2] introduced the concept
of conformal Ricci soliton as a generalization of the classical Ricci soliton.

Definition 1.1. A Riemannian metric g on a smooth manifold Mn,of dimension n,
is called a conformal Ricci soliton if there exists a constant λ and a vector field V
such that

(1.3) LV g + 2S =

[
2λ−

(
p+

2

n

)]
g,

where S = Ric is the Ricci tensor, λ is a constant and p is the conformal pressure.

It can be easily checked that the above soliton equation satisfies the conformal
Ricci flow equation (1.2). Later, T. Dutta. et.al. [7] studied this conformal Ricci
soliton in the framework of Lorentzian α-Sasakian manifolds. Moreover, if the
vector field V is the gradient of some smooth function f on Mn, we call the
soliton a conformal gradient Ricci soliton and then the soliton equation (1.2)
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becomes

(1.4) S +∇∇f =

[
λ−

(
p

2
+

1

n

)]
g,

where ∇ is the Riemannian connection on the manifold Mn.
Motivated by the above studies, here we study conformal Ricci soliton in the

framework of almost coKähler manifold and on its various versions. We find
conditions to determine the nature of the soliton for different cases. The pa-
per is organised as follows: in section-2, we discuss some preliminary concepts
of almost coKähler manifolds. Then in section-3, we study almost coKähler
manifolds admitting the conformal Ricci soliton and we calculate the value of
the soliton constant λ and hence we find the condition for the soliton to be
shrinking, steady or expanding. After that in section-4, we find the condition
on the conformal pressure p under which, a conformal Ricci soliton on a (k, µ)-
almost coKähler manifold becomes expanding. Finally in section-5, we show
that a (k, µ)-almost coKähler manifold, with the potential vector field V point-
wise collinear with the Reeb vector field ξ, does not admit conformal gradient
Ricci soliton.

2. PRELIMINARIES ON ALMOST COKÄHLER MANIFOLDS

The geometry of coKähler manifolds as a special case of almost contact man-
ifolds was studied primarily as an odd-dimensional analogy of the Kähler man-
ifolds in complex geometry. So, let us first recall some preliminaries on almost
coKähler manifolds. A smooth (2n + 1) dimensional manifold M2n+1 is said to
admit an almost contact structure (φ, ξ, η) if there exist a (1, 1) tensor field φ, a
vector field ξ and a global 1-form η on M2n+1 such that

(2.1) φ2 = −I + η ⊗ ξ and η(ξ) = 1,

where I is the identity endomorphism on M. Then the manifold M equipped
with this almost contact structure (φ, ξ, η) is called an almost contact manifold
(see [1]) and is denoted as (M2n+1φ, ξ, η). The vector field ξ is called the char-
acteristic vector field or Reeb vector field.

From (2.1) it can easily be seen that, for an almost contact structure the
following relations hold; φ(ξ) = 0 and η ◦ φ = 0.
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Furthermore, on an almost contact manifold (M2n+1, φ, ξ, η) if there exists a
Riemannian metric g satisfying;

g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for all vector fields X, Y in TM , where TM is tangent bundle of M, then the
metric g is called compatible with the almost contact structure. The manifold
M2n+1 together with the almost contact metric structure (φ, ξ, η, g) is called an
almost contact metric manifold and we denote it as (M2n+1, g, φ, ξ, η).

We define the fundamental 2-form Φ on an almost contact metric manifold as

(2.2) Φ(X, Y ) = g(X,φY ) = dη(X, Y ),

for all vector fields X, Y in TM . Now, it is known that on the product manifold
M2n+1 × R, if we define a structure J as;

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

for all X in TM , where t is the coordinate of R and f is a smooth function
on M2n+1 × R: then J becomes an almost complex structure and if this al-
most complex structure J is integrable we say that the almost contact structure
(M2n+1, φ, ξ, η) is normal. Again, D.E. Blair [1] expressed the condition for nor-
mality of an almost contact structure as: [φ, φ] = −2dη ⊗ ξ; where the Nijenhuis
tensor [φ, φ] is defined as

[φ, φ](X, Y ) = φ2[X, Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ],

for all X, Y in TM and [X,Y] is the Lie bracket operation. Now we are in a
position to define the concept of coKähler manifold [see [1], [4]] and almost
coKähler manifold.

Definition 2.1. An almost contact metric manifold is called an almost coKähler
manifold if both the 1-form η and the fundamental 2-form Φ (as defined by equa-
tion (2.2)) are closed.

In particular, if the associated almost contact structure is normal or equiva-
lently ∇φ = 0 or ∇Φ = 0: then the almost coKähler manifold is called a coKäh-
ler manifold. Also, it is to be noted that, examples (see [5], [13]) of almost
coKähler manifolds exist, which are not globally the product of a almost Kähler
manifold and the real line.
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Next, we set two symmetric operators h and h′ given by, h = 1
2
Lξφ and h′ =

h ◦ φ on the almost coKähler manifold (M2n+1, g, φ, ξ, η). Then the following
relations can be obtained (see [13], [6])

(2.3) hξ = 0, hφ+ φh = 0, tr(h) = tr(h′) = 0,

(2.4) ∇ξφ = 0, ∇ξ = h′, divξ = 0,

(2.5) S(ξ, ξ) + ‖h‖2 = 0,

(2.6) φlφ− l = 2h2,

∇ξh = −h2φ− φl,
where we set l := R(., ξ)ξ and R is the Riemannian curvature tensor defined by

(2.7) R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

for all vector fields X, Y, Z ∈ TM .

3. CONFORMAL RICCI SOLITON ON ALMOST COKÄHLER MANIFOLD

Let us consider (M2n+1, g, φ, ξ, η) be an almost coKähler manifold which sat-
isfies the conformal Ricci soliton equation given in equation (1.3); then for all
vector fields X, Y in TM i.e; we have

(3.1) (LV g)(X, Y ) + 2S(X, Y ) =

[
2λ− (p+

2

2n+ 1
)

]
g(X, Y ).

Now, let the vector field V be pointwise collinear with the Reeb vector field
ξ, i.e; V = βξ, where βis a non-zero smooth function on the corresponding
manifold. Then taking covariant differentiation of both sides of V = βξ, along
the direction of X we get

∇XV = X(β)ξ + β∇Xξ,

and using ∇ξ = h′ from equation (2.4) the above equation eventually becomes

(3.2) ∇XV = X(β)ξ + βh′X.

On the other hand, from the definiton of Lie derivative it follows from equation
(3.1) that

(3.3) g(∇Y βξ, Z) + g(Y,∇Zβξ) + 2S(Y, Z) =

[
2λ−

(
p+

2

2n+ 1

)]
g(Y, Z),
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for all Y, Z in TM . Then using equation (3.2) in the above equation (3.3) we
get

g(Y βξ + βh′Y, Z) + g(Y, Zβξ + βh′Z) + 2S(Y, Z) = [2λ− (p+
2

2n+ 1
)]g(Y, Z).

Again using from the fact that h′ is symmetric and after simplification the above
equation finally becomes

(3.4) Y (β)η(Z)+Z(β)η(Y )+2βg(h′Y, Z)+2S(Y, Z) = [2λ−(p+
2

2n+ 1
)]g(Y, Z).

Next, we consider a local φ-basis {ej : 1 ≤ j ≤ 2n + 1} on the tangent space
TpM for each point p ∈ M2n+1. Then putting Y = Z = ej in the equation (3.4)
and taking summation over 1 ≤ j ≤ 2n + 1 and also using tr(h′) = 0 from
equation (2.3) we get

(3.5) ξ(β) + r = [λ− (
p

2
+

1

2n+ 1
)](2n+ 1).

Again putting Z = ξ in the equation (3.4) and using symmetry of h′ we have

(3.6) Y (β) + ξ(β)η(Y ) + 2S(Y, ξ) = [2λ− (p+
2

2n+ 1
)]η(Y ).

Now, combining equations (3.5) and (3.6) and after some calculations we get

Y (β) + 2S(Y, ξ) = [[λ− (
p

2
+

1

2n+ 1
)](1− 2n) + r]η(Y ).

Thus, from the above it is easily seen that

(3.7) ξ(β) + 2S(ξ, ξ) = [λ− (
p

2
+

1

2n+ 1
)](1− 2n) + r.

Eliminating ξ(β) from equations (3.5) and (3.7) and after simplification we ar-
rive at

2n[λ− (
p

2
+

1

2n+ 1
)]− r + S(ξ, ξ) = 0.

Using equation (2.5) in the above equation and using the fact that for conformal
Ricci soliton the scalar curvature r = −1 (see equation(1.2)) and then simplify-
ing we get the value of the soliton constant as

(3.8) λ =
‖h‖2 − 1

2n
+ (

p

2
+

1

2n+ 1
).

Therefore in view of the fact that the soliton is shrinking, steady or expanding
according as λ > 0, λ = 0 or, λ < 0; from the above equation (3.8) we can state
the following theorem
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Theorem 3.1. Let (M2n+1, g, φ, ξ, η) be an almost coKähler manifold such that the
metric g is a conformal Ricci soliton. If the potential vector field V be non-zero
pointwise collinear with the Reeb vector field ξ, then

(i) the soliton is shrinking if, p > 1−(2n+1)‖h‖2
(2n2+n)

,

(ii) the soliton is steady if, p = 1−(2n+1)‖h‖2
(2n2+n)

,

(iii) the soliton is expanding if, p < 1−(2n+1)‖h‖2
(2n2+n)

.

Again if we have S = [‖h‖
2−1
2n

]g, then from equation (3.1) and using value of
the soliton constant λ from (3.8) we have LV g = 0. Therefore we can see that
V = βξ is a Killing vector field and hence the soliton becomes trivial. Hence we
can state the following corollary.

Corollary 3.1. Let (M2n+1, g, φ, ξ, η) be an almost coKähler manifold such that
the metric g is a conformal Ricci soliton. If the potential vector field V be non-zero
pointwise collinear with the Reeb vector field ξ and the Ricci tensor S be a constant
multiple of the metric g, with the constant ‖h‖

2−1
2n

, (i.e; if S = [‖h‖
2−1
2n

]g), then the
soliton is trivial.

4. CONFORMAL RICCI SOLITON ON (k, µ)-ALMOST COKÄHLER MANIFOLD

In recent years, many authors studied (k, µ)-contact metric manifolds as a
generalization of Sasakian and K-contact metric manifolds. Also R. Sharma
[15], and later A. Ghosh [10] proved some interesting results in the field of
Ricci solitons on (k, µ)-contact metric manifolds. Let us now give the definition
(k, µ)-almost coKähler manifold.

Definition 4.1. An almost coKähler manifold is said to be a (k, µ)-almost coKähler
manifold if the characteristic vector field ξ belongs to the generalised (k, µ)-nullity
distribution i.e; if the Riemannian curvature tensor R satisfies

(4.1) R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ],

for all X, Y in TM and for some smooth functions (k, µ).

Remark 4.1. Here, in this paper, we call a (k, µ)-almost coKähler manifold with
k < 0, a proper (k, µ)-almost coKähler manifold . Proper almost coKähler mani-
folds with k and µ being constants were introduced by H. Endo [8] and later Dacko
and Olszak [6] further studied it in generalised cases.
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Now, putting Y = ξ in (4.1) we get

R(X, ξ)ξ = k[X − η(X)ξ] + µ[hX − η(X)hξ].

Then using the definition of l := R(., ξ)ξ and from equation (2.3) using the fact
that hξ = 0, we can write

l = −kφ2 + µh.

Combining the equation (2.6) and the above equation and after brief calcula-
tions we get h2 = kφ2. Thus, it is clear that the manifold M2n+1 is K-almost
coKähler if and ony if, k = 0. According to Dacko and Olszak [6] a (k, µ, ν)-
almost coKähler manifold with k < 0 becomes a (−1, µ√

−k )-almost coKähler
manifold, under some D-homothetic deformation.

Now, we state a lemma [for proof see Lemma 4.1 of [16]] which will be used
in the later theorems.

Lemma 4.1. Let (M2n+1, g, φ, ξ, η) be a (k, µ)-almost coKähler manifold of dimen-
sion greater than 3 with k < 0. Then the Ricci operator is given by

(4.2) Q = µh+ 2nkη ⊗ ξ,

where k is a non-zero constant and µ is a smooth function satisfying dµ ∧ η = 0.

Now let us consider the metric g of the (k, µ)-almost coKähler manifold admits
a conformal Ricci soliton. Then from the soliton equation (1.3) and using the
definition of the Lie derivative we can write

(4.3) g(∇XV, Y ) + g(X,∇Y V ) + 2S(X, Y ) = [2λ− (p+
2

2n+ 1
)]g(X, Y ).

Then, substituting V = ξ in the above equation (4.3) and using the result ∇ξ =

h′ from (2.4) we get

g(h′X, Y ) + g(X, h′Y ) + 2S(X, Y ) = [2λ− (p+
2

2n+ 1
)]g(X, Y ).

Again as h′ is symmetric the above equation implies

(4.4) g(h′X, Y ) + g(QX, Y ) = [λ− (
p

2
+

1

2n+ 1
)]g(X, Y ).

Now, in view of the Lemma 4.1 putting value of the Ricci operator Q, from
equation (4.2), in the above equation (4.4) we get

(4.5) g(h′X, Y ) + g(µhX, Y ) + 2nkη(X)η(Y ) = [λ− (
p

2
+

1

2n+ 1
)]g(X, Y ).
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Thus putting Y = ξ in the above (4.5) and using hφ + φh = 0 from equation
(2.3) we finally get

(4.6) 2nk = [λ− (
p

2
+

1

2n+ 1
)].

Now, as it is mentioned in the Lemma 4.1 that k < 0, so from the above
relation (4.6) we can conclude that [λ− (p

2
+ 1

2n+1
)] < 0 that is; λ < (p

2
+ 1

2n+1
).

Thus if (p
2

+ 1
2n+1

) ≤ 0, i.e; if, p ≤ −2
2n+1

then λ < 0 and therefore the soliton is
expanding. So, in view of the above we have the following theorem.

Theorem 4.1. Let (M2n+1, g, φ, ξ, η) be a (k, µ)-almost coKähler manifold of di-
mension greater than 3 with k < 0 and the metric g admits a conformal Ricci
soliton. Then the soliton is expanding if the conformal pressure p satisfy the in-
equality p ≤ −2

2n+1
.

5. CONFORMAL GRADIENT RICCI SOLITON ON (k, µ)-ALMOST COKÄHLER

MANIFOLD

This section is devoted to the study of conformal gradient Ricci soliton on
(k, µ)-almost coKähler manifold. So, let us first give the statement of our main
theorem of this section.

Theorem 5.1. Let (M2n+1, g, φ, ξ, η) be a (k, µ)-almost coKähler manifold of di-
mension greater than 3 with k < 0. Then there exist no conformal gradient Ricci
soliton on the manifold, with the potential vector field V pointwise collinear with
the Reeb vector field ξ.

Proof. We prove this theorem by the method of contradiction. So, let us assume
that the manifold admits a conformal gradient Ricci soliton. Then from equation
(1.4) we have

S +∇∇f = [λ− (
p

2
+

1

2n+ 1
)]g.

Now as the soliton is gradient, i.e; V = Df for some smooth function f and
here D is the gradient operator. Thus for any vector field X ∈ TM , the above
equation is equivalent to

(5.1) ∇XDf +QX = [λ− (
p

2
+

1

2n+ 1
)]X.
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Replacing X by Y in the above (5.1) we get

(5.2) ∇YDf +QY = [λ− (
p

2
+

1

2n+ 1
)]Y.

Similarly replacing X by [X, Y ] in the equation (5.1) we get

(5.3) ∇[X,Y ]Df +Q[X, Y ] = [λ− (
p

2
+

1

2n+ 1
)][X, Y ].

Now from the well-known formula for Riemannian curvature, using (2.7) we
can write

(5.4) R(X, Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df.

Using equations (5.1), (5.2) and (5.3) in the equation (5.4) and after some
simple calculations we get

(5.5) R(X, Y )Df = (∇YQ)X − (∇XQ)Y.

Again for any vector fields X, Y in TM , using equation (4.2) of Lemma 4.1 we
obtain

(∇YQ)X − (∇XQ)Y = µ((∇Y h)X − (∇Xh)Y )

+ 2nk(η(X)h′Y − η(Y )h′X) + Y (µ)hX −X(µ)hY.
(5.6)

Now we shall use an equation from Proposition-9 of the paper [14]. The result
is, for any vector fields X, Y in TM ,

(∇Xh)Y − (∇Y h)X = k(η(Y )φX − η(X)φY

+ 2g(φX, Y )ξ) + µ(η(X)h′Y − η(Y )h′X).
(5.7)

Then using (5.6) in (5.5) and then using (5.7), a simple computation gives that

R(X, Y )Df = kµ(η(X)φY − η(Y )φX + 2g(X,φY )ξ) + Y (µ)hX

−X(µ)hY − µ2(η(X)h′Y − η(Y )h′X) + 2nk(η(X)h′Y − η(Y )h′X),
(5.8)

for any vector fields X, Y in TM . Putting X = ξ in the above equation (5.8) we
get

R(ξ, Y )Df = kµ(φY )− ξ(µ)hY − µ2(h′Y ) + 2nk(h′Y ).

Replacing Y by X in the above equation and then taking inner product with
respect to arbitrary vector Y gives us

g(R(ξ,X)Df, Y ) =kµg(φX, Y )− ξ(µ)g(hX, Y )− µ2g(h′X, Y )

+2nkg(h′X, Y ).
(5.9)
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Again for a (k, µ)-almost coKähler manifold, using equation (4.1) we can write

R(ξ,X)Y = k[g(X, Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX].

Taking inner-product of the equation with respect to the vector field Df and
using the fact that g(X,Df) = (Xf) we get

g(R(ξ,X)Y,Df) = k[g(X, Y )(ξf)− η(Y )(Xf)] + µ[g(hX, Y )(ξf)

− η(Y )((hX)f)].
(5.10)

Now combining (5.9) and (5.10) and applying the property g(R(X, Y )Z,U) =

−g(R(X, Y )U,Z), for any vector fields X, Y, Z, U in TM , yields

kµg(φX, Y )− ξ(µ)g(hX, Y )− µ2g(h′X, Y ) + 2nkg(h′X, Y ) =

− kg(X, Y )(ξf) + kη(Y )(Xf)− µg(hX, Y )(ξf) + µη(Y )((hX)f).
(5.11)

Antisymmetrizing the above equation we get

kµ[g(φX, Y )− g(X,φY )] = k[η(Y )(Xf)− η(X)(Y f)]

+ µ[η(Y )((hX)f)]− η(X)((hY )f).
(5.12)

Now as per our assumption V = bξ, it is easy to see that h′(Df) = 0. This again
implies, (h′X)f = g(h′X,Df) = g(X, h′(Df)) = 0. Similarly (h′Y )f = 0. Thus

(5.13) (h(φX))f = 0, (h(φY ))f = 0.

Using antisymmetry of φ and then putting X = φX in equation (5.11) and using
(5.12) we get

(5.14) −2µg(X, Y ) + µη(X)η(Y ) = η(Y )((φX)f).

Putting Y = ξ in the above (5.13) yields

(5.15) −µg(X, ξ) = g(φX,Df).

Then again using X = φX in the above equation (5.14) we get g(X,Df) =

g(X, ξ(ξf)). This gives us

(5.16) Df = (ξf)ξ.

Covariant differentiation of the equation (5.15) along the direction of X we get

(5.17) ∇XDf = (X(ξf))ξ + (ξf)(h′X).
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Again from the equation (5.1) we have

(5.18) ∇XDf = [λ− (
p

2
+

1

2n+ 1
)]X −QX.

Thus combining equations (5.16) and (5.17) we get

(5.19) QX = [λ− (
p

2
+

1

2n+ 1
)]X − (X(ξf))ξ − (ξf)(h′X).

Again, the value of Q from Lemma 4.1 gives us

QX = µhX + 2nkη(X)ξ.

Now, compairing right hand sides of (5.18) and (5.19) we get (X(ξf)) =

−2nkη(X) i.e; D(ξf) = −2nkξ or equivalently, d2f = −2nk, where d is the
exterior derivative of f . Again from the well-known Poincare lemma of exterior
differentiation we know that, d2 = 0 and this implies, −2nk = 0, which is a
contradiction to our assumtion that k < 0. This completes the proof. �
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