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SENSITIVITY ANALYSIS OF HIV-1 VIRAL INTERACTION MODEL WITH
SATURATED INFECTION RATE

D. SUNITHA AND K. KRISHNAN 1

ABSTRACT. This paper deals with the sensitivity analysis of Delay-induced mo-
del for viral-immune interaction with saturated infection rate. The length of the
delay parameter for preserving stability of the system is estimated, which gives
the idea about the mode of action for controlling oscillations in viral infection.
Sensitivity analysis is performed on a delay differential equation model for viral-
immune system. The theoretical and numerical outcomes have been supported
through experimental results from literatures.

1. INTRODUCTION

Time delay models of population dynamics in macroscopic models of the im-
mune response are natural and common [1–4]. It is well known that viruses are
intracellular parasites that depend on the host cells to survive and duplicate. As
in HIV-1, intracellular time delays are intrinsic to the viral infection, replication
processes and maturation. In general, multiple delays can naturally occur, and
they have been incorporated into in host models (see [5–11]). To incorporate
intracellular delays into in-host model may lead to additional insights in the
study of complicated biological processes.

Time delays cannot be ignored in models for immune response. Antigenic
stimulation generating CTLs may need a period of time τ [12]. Canabarro et.
al., [13], studied a non-linear model of the cellular immune response to a vi-
ral infection with a time-delayed CTL responsiveness. For using the larger time
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delay value, the dynamic solutions present a series of bifurcations, evolving to-
wards a chaotic behaviour. Buric et. al., [12], investigated the effects of time
delay for immune response in a two dimensional system which consists of in-
fected cells and CTLs, the time delay in any other single term of the equations
produces stabilization of the transient irregular behaviour onto the simple at-
tractor, i.e., the fixed point or the periodic orbit. Qizhi et. al., [14], discussed
when the birth rates of susceptible cells λ is larger than a critical value, com-
plicated dynamic behavior will occur as the time delay τ increases. Our main
purpose of this study is to develop a viral-immune with saturation infection for
small level of immune delay.

Here, we have considered saturated infection rate model [15], known as
Holling type II infection rate and represented by the term βxy

1+αy
; β > 0, α ≥ 0. Let

us we consider the following [15] saturated infection rate for three-dimensional
equations with two delays are as follows:

dx

dt
= λ− dx− βxy

1 + αy
,

dy

dt
=
βx(t− τ1)y(t− τ1)
1 + αy(t− τ1)

− ay − pyz,(1.1)

dz

dt
= cy(t− τ2)z(t− τ2)− bz,

where x(t) is the number of susceptible host cells, y(t) is the number of virus
population and z(t) is the number of CTLs. Susceptible host cells are generated
at a rate λ, die at a rate d and become infected by the virus at a rate β.

This paper is structured as follows. In Section 2, we estimate the length of the
delay to preserve stability of the system (1.1). Sensitivity analysis is discussed
in Section 3. Finally, In Section 4, provide the conclusion of this article.

2. ESTIMATION OF THE LENGTH OF DELAY TO PRESERVE STABILITY

We linearize the system (1.1) about its steady state E1, then (1.1) can be
written as

u̇1 +

(
d+

βy1
1 + αy1

)
u1(t) = −

βx1
(1 + αy1)2

u2(t),

u̇2 + (a+ pz1)u2(t) =
βy1

1 + αy1
u1(t− τ1) +

βx1
(1 + αy1)2

u2(t− τ1)− pu3(t)y1,

u̇3 + bu3(t) = cz1u2(t− τ2) + cy1u3(t− τ2).

(2.1)
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Taking Laplace transform of the system (2.1), we get(
σ + d+

βy1
1 + αy1

)
û1(s) = − βx1

(1 + αy1)2
û2(s) + u1(0),

(σ + a+ pz1) û2(s) =
βy1

1 + αy1
e−sτ1û1(s) +

βy1
1 + αy1

e−sτ1G1(s)

+
βx1

(1 + αy1)2
e−sτ1û2(s) +

βx1
(1 + αy1)2

e−sτ1G2(s)

−py1û3(s) + u2(0),

(σ + b) û3(s) = cz1e
−sτ2û2(s) + cz1e

−sτ2G3(s) + cy1e
−sτ2û3(s)

+cy1e
−sτ2G4(s) + u3(0).(2.2)

where

G1(s) =

∫ 0

−τ1
e−stu1(t)dt; G2(s) =

∫ 0

−τ1
e−stu2(t)dt;

G3(s) =

∫ 0

−τ2
e−stu2(t)dt; G4(s) =

∫ 0

−τ2
e−stu3(t)dt;

û1(s), û2(s), û3(s) are the Laplace transformation of u1(t), u2(t) and u3(t) respec-
tively. Following the lines of [16, 17], and using the Nyquist criterion, it can be
shown that the sufficient conditions for the local asymptotic stability at E1 are
given by

<H(iω0) = 0

=H(iω0) > 0,(2.3)

where ω0 is the smallest positive root of equation (2.3). In [15] we have already
shown that E1(x1, y1, z1) is locally asymptotically stable in absence of delay (by
virtue of (??))(Ref Thm 5). Hence, by continuity, all eigenvalues will continue to
have negative real parts for sufficiently small τ2 > 0 provided one can guarantee
that no eigenvalues with positive real parts bifurcates from infinity as τ increases
from zero. This can be proved using Butler’s lemma (Freedman and Rao, 1983),
already stated before. In our case an equation (2.3) gives

M1ω
2
0 −M3 = (M6 −M4ω

2
0) cos(ω0τ2) +M5ω0 sin(ω0τ2)(2.4)

ω0(ω
2
0 −M2) > M5ω0 cos(ω0τ2) + (M4ω

2
0 −M6) sin(ω0τ2).(2.5)

The sufficient conditions to guarantee the stability are given by (2.4) and
(2.5), if these two equations are satisfied simultaneously. we shall utilize them
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to get an estimate on the length of delay. Our aim is to find an upper bound ω∗

to ω0, independent of τ2 and then to estimate τ2 so that the equation(2.5) holds
for all values of ω, 0 ≤ ω ≤ ω∗ and hence, in particular at ω = ω∗. Maximizing
the R.H.S. of (2.4) subject to |sin(ω0τ2)| ≤ 1, |cos(ω0τ2)| ≤ 1, we obtain(

|M1| − |M4|
)
ω2
0 ≤ |M5|ω0 +

(
|M6| − |M3|

)
(2.6)

and if

ω∗ =
|M5|+

√
|M5|2 + 4

(
|M1| − |M4|

)(
|M6| − |M3|

)
2
(
|M1| − |M4|

)(2.7)

then clearly we have ω0 ≤ ω∗.
From (2.5) we obtain,

ω2
0 > M2 +M5 cos(ω0τ2) +

(M4ω
2
0 −M6)

ω0

sin(ω0τ2)(2.8)

Since E1 is locally asymptotically stable for τ2 = 0, the inequality (2.8) will
continue to hold for sufficiently small τ2 > 0. Substituting equation(2.4) in
equation(2.8) and rearranging we get[(

M6 −M4ω
2
0

)
M1

−M5

]
(1− cos(ω0τ2)) +

[(
M4ω

2
0 −M6

)
ω0

− M5ω0

M1

]
sin(ω0τ2)

<
1

M1

(
M6 −M4ω

2
0 −M1M5 −M1M2 +M3

)
(2.9)

Using the following bounds,[(
M6 −M4ω

2
0

)
M1

−M5

]
(1− cos(ω0τ2)) = 2 sin2

(ω0τ2
2

)[(M6 −M4ω
2
0

)
M1

−M5

]

≤ 1

2

∣∣∣∣∣M6 −M4ω
2
0 −M1M5

M1

∣∣∣∣∣(ω∗)2τ 22

and[(
M4ω

2
0 −M6

)
ω0

− M5ω0

M1

]
sin(ω0τ2) ≤

∣∣∣∣∣
[(

M4 −
M5

M1

)
(ω∗)2 −M6

]∣∣∣∣∣τ2
in (2.9) we get

L1τ
2
2 + L2τ2 < L3
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where

L1 =
1

2

∣∣∣∣∣M6 −M4ω
2
0 −M1M5

M1

∣∣∣∣∣(ω∗)2,

L2 =

∣∣∣∣∣
[(

M4 −
M5

M1

)
(ω∗)2 −M6

]∣∣∣∣∣,
L3 =

1

M1

(
M6 −M4ω

2
0 −M1M5 −M1M2 +M3

)
.

Hence

τ ∗2 =
1

2L1

(
− L2 +

√
L2
2 + 4L1L3

)
Then, for 0 ≤ τ2 < τ ∗2 , the Nyquist criterion holds and τ ∗2 estimates the maximum
length of delay preserving the stability.

3. SENSITIVITY ANALYSIS

Of considerable importance in assessing the model (1.1) is the sensitivity of
the model solution y(t; q) to changes in the parameter q or the sensitivity of
the best to changes in the data. A knowledge of how the solution can vary with
respect to small change in the data or the parameters can yield insights into
the model behaviour and can assist the modelling process. The sensitivity of
the parameter estimate to the observation is low if the sensitivity of the state
variable to the parameter estimate is high. There are different approaches to
find the sensitivity functions of DDEs [18]. However, for simplicity we will use
the so called “direct approach" to find sensitivity functions of model (1.1). Con-
sider model (1.1), with vector parameter q = [a, c, β, p, d, α]T . The sensitivity
functions with respect to the parameter qi (i = 1, ..., 6), for the model (1.1) are
denoted by,

u1,qi
=

∂u1(t)

∂qi

,

u2,qi
=

∂u2(t)

∂qi

,(3.1)

u3,qi
=

∂u3(t)

∂qi

.
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The corresponding sensitivity of system (1.1), with respect to the parameter ‘d’
is as follows,

(
du1
dt

)
t,d

= −u1(t)−
βy1

1 + αy1
u1,d(t, d)

− βx1
(1 + αy1)2

u2,d(t, d),(
du2
dt

)
t,d

=
βy1

1 + αy1
u1,d(t− τ1, d) +

βx1
(1 + αy1)2

u2,d(t− τ1, d)

−au2,d(t, d)− pu2,d(t, d)z1 − py1u3,d(t, d),(3.2) (
du3
dt

)
t,d

= cz1u2,d(t− τ2, d) + cy1u3,d(t− τ2, d)− bu4,d(t, d).

Similarly we can easily obtained the corresponding sensitivity of system (1.1),
with respect to the parameter a, p, α, b, c, and β.

The semi-relative sensitivity solutions (depicted in Fig.1 and 2) are calculated
by simply multiplying the unmodified sensitivity solutions by a chosen param-
eter which provides information concerning the amount the state will change
when that parameter is doubled.

Figure 1
Parameters description and Values [9,10]
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In Fig. 1, we notice that the population of the immune CTL cell is negatively pro-
portion with increasing parameter the parameter “c" and it is very sensitive in the early
time intervals and the sensitivity decreases by time to be insensitive in the steady state.

Figure. 2. We notice that the population of the susceptible, virus and CTL immune
cells are negatively proportion with increasing parameter the parameter “β’ and it is
very sensitive in the early time intervals and the sensitivity decreases by time to be in-
sensitive in the steady state.

We can easily see that the described model is very sensitive with respect to the pa-
rameter “b, α, d, a, p". From the above figures, we may observe that a small change in
the above said parameters, which can produce significant change in the level of viral
infection model.
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