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SOME RESULTS ON CYCLIC AND NEGACYCLIC CODES OVER FORMAL
POWER SERIES RINGS AND FINITE CHAIN RINGS

MRIGANKA S. DUTTA1 AND HELEN K. SAIKIA

ABSTRACT. In this article, relationship between cyclic codes of composite length
mn over formal power series ring and u−constacyclic code of length m over
R∞[x]

<xn−1> has been established by constructing an isomorphism. For two odd
numbers m and n, relationship between u−constacyclic code of length m over
R∞[x]

<xn−1> and u−constacyclic code of length m over R∞[x]
<xn+1> has been obtained.

The ideals of the rings
R∞[u]

<un−1> [x]

<xm−u> and
Ri[u]

<un−1> [x]

<xm−u> have also been determined.

1. INTRODUCTION

Due to the rich algebraic structure, cyclic codes play an important role in cod-
ing theory as seen in [1, 7]. Initially, the researchers studied the properties of
Cyclic codes over the binary field F2, then they extended the study to Fq with
q = pr for some prime p and r ≥ 1. The structure of cyclic codes was obtained
by viewing a cyclic code C of length n over a finite field Fq as an ideal of the
ring Fq [x]

<xn−1> . Dinh and Lopez-Permouth [2] in the year 2004 published a paper
on structure of cyclic and negacyclic codes over finite chain rings. Dougherty,
Liu, and Park [5] in 2011 defined a series of finite chain rings and introduced
the concept of γ−adic codes over formal power series rings. In 2011 Dougherty
and Liu [4] have given the concept of λ−cyclic code of length n over formal
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power series rings. They established a relation between cyclic codes and nega-
cyclic codes over formal power series rings. They obtained a relation between
cyclic codes over formal power series rings and cyclic codes over finite chain
rings. Dougherty and Ling [3] in the year 2006 proved that a cyclic shift in Z2kn

4

corresponds to a u−constacyclic shift in ( Z4[u]

<u2k−1>
)n by constructing a module

isomorphism between ( Z4[u]

<u2k−1>
)n and Z2kn

4 . Dutta and Saikia [6] have intro-
duced the concept of Φλl−cyclic code of length n over a formal power series
ring and derived some related results. Sobhani and Molakarimi [8] in the year
2013 constructed a one-to-one correspondence between cyclic codes of length
2n over the ring Rk−1,m and cyclic codes of length n over the ring Rk,m for odd
n and determined the number of ideals of the ring R2,m and R3,m. Hence in
[8] they have obtained the number of cyclic codes of odd length over R2,m and
R3,m as a corollary. In this article, we have constructed an isomorphism be-

tween
R∞[u]
<un−1>

[x]

<xm−u> and R∞[x]
<xmn−1> and proved that cyclic codes of composite length

mn over the formal power series ring R∞ corresponds to u−constacyclic code
of length m over R∞[x]

<xn−1> . Here, considering both m and n as odd numbers we
have proved that u−constacyclic codes of length m over R∞[x]

<xn−1> corresponds
to u−constacyclic code of length m over R∞[x]

<xn+1>
. Thus corresponding to every

cyclic code of odd length mn over R∞ there exists a negacyclic code of same
length over R∞. Finally, we have also determined the types of ideals of the ring
R∞[u]
<un−1>

[x]

<xm−u> as well as the ring
Ri[u]

<un−1>
[x]

<xm−u> that will give us cyclic codes over R∞ and
Ri respectively.

2. FINITE CHAIN RING AND FORMAL POWER SERIES RING

In this article, we assume that all rings are commutative with identity 1 6= 0.

Definition 2.1. [4] Let R be a ring and I be an ideal of R. I is called a principal
ideal if it is generated by a singleton set.

Definition 2.2. [4] A finite ring is called a chain ring if all its ideals are linearly
ordered by inclusion.

Theorem 2.1. [4] All the ideals of a finite chain ring are principal.

Remark 2.1. Let R be a finite chain ring. As R is finite, it must have finitely many
ideals. Again R is a chain ring. Thus all the ideals of R must be linearly ordered
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by inclusion. Hence every finite chain ring R has a unique maximal ideal. Let I be
the unique maximal ideal of R. As all the ideals of R are principal, I must have
some generator. Let γ be a generator of I.

Definition 2.3. [4] Let i be an arbitrary positive integer and F be a finite field.
The ring Ri is a finite chain ring and is defined as

Ri = {a0 + a1γ + ...+ ai−1γ
i−1 | ai ε F},

where γi−1 6= 0, but γi = 0 in Ri. The operations over Ri are defined as follows:
i−1∑
l=0

alγ
l +

i−1∑
l=0

blγ
l =

i−1∑
l=0

(al + bl)γ
l; (

i−1∑
l=0

alγ
l).(

i−1∑
l=0

blγ
l) =

i−1∑
s=0

(
∑
l+l′=s

albl′)γ
s.

Definition 2.4. [4] The ring R∞ is called a formal power series ring which is
defined as

R∞ = F[[γ]] = {
∞∑
l=0

alγ
l | al ε F}.

Addition and multiplication over R∞ are defined by extending the addition and
multiplication of polynomials, namely, term-by-term addition

∞∑
l=0

alγ
l +

∞∑
l=0

blγ
l =

∞∑
l=0

(al + bl)γ
l,

and the Cauchy product

(
∞∑
l=0

alγ
l).(

∞∑
l=0

blγ
l) =

∞∑
s=0

(
∑
l+l′=s

albl′)γ
s.

Lemma 2.1. [4] If a and b are any two elements of R∞ such that both not zero,
then the greatest common divisor gcd(a, b) exists.

Corollary 2.1. [4] If a1, a2, . . . , an ∈ R∞ such that aj 6= 0 for some 0 ≤ J ≤ n,
then the greatest common divisor gcd(a1, a2, . . . , an) exists. If aj is a unit for some
j, then, gcd(a1, a2, . . . , an) = 1.

Definition 2.5. [4] Let i, j be two integers with i ≤ j. In [4], the mapping Ψj
i is

defined by

Ψj
i : Rj −→ Ri,

j−1∑
l=0

alγ
l 7−→

i−1∑
l=0

alγ
l.



8514 M. S. DUTTA AND H. K. SAIKIA

Definition 2.6. [4] Let i be any positive integer. In [4], the mapping Ψi is defined
by

Ψi : R∞ −→ Ri,
∞∑
l=0

alγ
l 7−→

i−1∑
l=0

alγ
l.

It can be proved that Ψj
i and Ψi are homomorphisms. We can extend Ψj

i natu-
rally from Rn

j to Rn
i . Similarly Ψi can be extended naturally from Rn

∞ to Rn
i .

3. POLYNOMIAL RINGS OVER R∞ AND Ri

The polynomial ring over R∞ is given by

R∞[x] = {a0 + a1x+ a2x
2 + · · ·+ anx

n | ai ∈ R∞, n ≥ 0}.

Since R∞ is a domain, R∞[x] is also a domain [4]. We shall consider a polyno-
mial

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n ∈ R∞[x].

We can define the following mapping:

ψj : R∞[x]→ Rj[x], f(x) 7−→ ψj(f(x)),

where

ψj(f(x)) = ψj(a0) + ψj(a1)x+ · · ·+ ψj(an)xn ∈ Rj[x].

Thus by projecting the coefficients of the elements in R∞[x] onto the coefficients
of the elements in Rj[x], we got the ring of polynomials over Rj from the ring
of polynomials over R∞ [4].

Again we shall consider

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n ∈ Rj[x].

Now we can define a mapping as follows:

ψji : Rj[x]→ Ri[x], f(x) 7−→ ψji (f(x)),

where

ψji (f(x)) = ψji (a0) + ψji (a1)x+ · · ·+ ψji (an)xn ∈ Ri[x].

Definition 3.1. [4] If f(x) ∈ R∞[x] such that deg(f(x)) > 0 and gcd(a1, a2, . . . ,

an) = 1, then f(x) is called a primitive element.
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Lemma 3.1. [4] If f(x) ∈ R∞[x] such that deg(f(x)) > 0, then f(x) is a primitive
polynomial iff ψi(f(x)) 6= 0 ∀ i <∞.

Theorem 3.1. [4] If f(x) ∈ R∞[x] such that deg(f(x)) > 0, then there exist a
unique s and a primitive polynomial g(x), such that f(x) = γsg(x).

Definition 3.2. [4] If < f(x) > + < g(x) >= Ri[x], then the polynomials
f(x), g(x) ∈ Ri[x] are called coprime, where i < ∞ or equivalently, if there ex-
ists u(x), v(x) ∈ Ri[x] such that f(x)u(x) + g(x)v(x) = 1, then the polynomials
f(x), g(x) ∈ Ri[x] are called coprime.

4. LINEAR, CYCLIC AND NEGACYCLIC CODES

Definition 4.1. [4] Let R be a ring and Rn be the R−module. A R−submodule C
of Rn is called a linear code of length n over R.

Note that in this study all codes are linear.

Definition 4.2. [4] Let x, y be vectors in Rn. The inner product of x and y is
defined by

[x, y] = x1y1 + x2y2 + ...+ xnyn.

Definition 4.3. [4] For a code C of leangth n over R, the dual code of C is defined
by

C⊥ = {xεRn|[x, c] = 0,∀cεC}.

Remark 4.1. C⊥ is linear whether or not C is linear.

In our study p is the characteristic of the finite field F. Thus p is prime. We
assume that n is relatively prime to p.

Let λ be an arbitrary unit of R∞ and let

R∞[x]

< xn − λ >
= {f(x)+ < xn − λ > |f(x) ∈ R∞[x]}

Let

f(x)+ < xn − λ >, g(x)+ < xn − λ >∈ R∞[x]

< xn − λ >
,

such that 0 ≤ deg(f(x)), deg(g(x)) < n, and f(x)+ < xn − λ >= g(x)+ <

xn−λ >. Then, we have f(x)−g(x) ∈< xn−λ >. Which implies that f(x) = g(x)

as R∞ is a domain. Hence, for each f(x)+ < xn−λ >∈ R∞[x]
<xn−λ> , there is a unique
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f(x) with deg(f(x)) < n. We can identify each coset f(x)+ < xn − λ > with its
unique representative polynomial f(x), where deg(f(x)) < n. That is,

R∞[x]

< xn − λ >
= {f(x)+ < xn − λ > |where deg(f(x)) < n or f(x) = 0}.

Let us define a mapping

Pλ : Rn
∞ −→

R∞[x]

< xn − λ >
given by

(a0, a1, . . . , an−1) 7−→ a0 + a1x+ · · ·+ an−1x
n−1+ < xn − λ > .

Putting λ = 1 and λ = −1 we get P1 and P−1 as follows:

P1 : Rn
∞ −→

R∞[x]

< xn − 1 >

given by

(a0, a1, . . . , an−1) 7−→ a0 + a1x+ · · ·+ an−1x
n−1+ < xn − 1 >,

and

P−1 : Rn
∞ −→

R∞[x]

< xn + 1 >
given by

(a0, a1, . . . , an−1) 7−→ a0 + a1x+ · · ·+ an−1x
n−1+ < xn − 1 > .

Let C be an arbitrary subset of Rn
∞. We denote the image of C under the map

Pλ by Pλ(C). We use a(x) = a0 +a1x+a2x
2 + · · ·+an−1x

n−1 to denote the image
of (a0, a1, . . . , an−1) under Pλ, P1 and P−1 respectively ([4]).

Definition 4.4. [4] Let C be a linear code of length n over R∞. The code C is
called a λ−cyclic code over R∞, if

c = (c0, c1, . . . , cn−1) ∈ C =⇒ (λcn−1, c0, . . . , cn−2) ∈ C.

If λ = 1 then C is called a cyclic code and if λ = −1, then C is called a negacyclic
code, otherwise, it is called a constacyclic code. Thus

Pλ(C) = {c0 + c1x+ · · ·+ cn−1x
n−1+ < xn − λ > |(c0, c1, . . . , cn−1) ∈ C}.

Now the following lemma can be easily proved.

Lemma 4.1. [4] A linear code C of length n over R∞ is a λ−cyclic code iff Pλ(C)

is an ideal of R∞[x]
<xn−λ>
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From Lemma 4.1 we get the following corollary:

Corollary 4.1. [4] Assuming the notations given above
(i) A linear code C of length n over R∞ is a cyclic code iff P1(C) is an ideal of
R∞[x]
<xn−1> ;
(ii) A linear code C of length n over R∞ is a negacyclic code iff P−1(C) is an ideal
of R∞[x]

<xn+1>
.

Let us consider the following ring homomorphism:

ψi :
R∞[x]

< xn − 1 >
−→ Ri[x]

< xn − 1 >

given by

f(x) 7−→ ψi(f(x)).

Since ψi is a ring homomorphism, therefore if I is an ideal of R∞[x]
<xn−1> , then ψi(I)

is an ideal of Ri[x]
<xn−1> .

Theorem 4.1. [4] If C is a cyclic code over R∞, then, ψi(C) is a cyclic code over
Ri for all i <∞.

Now we are going to establish an important result which is the central result
of our present work. Let F be a finite field and p be the characteristic of F. Thus
p is a prime. Let R∞ = F[[γ]] = {

∑∞
l=0 alγ

l|al ∈ F} be the formal power series
ring over F, where γ is the indeterminate. Let λ be an arbitrary unit of R∞. If
we consider m and n to be two positive integers relatively prime to p, then we
have the following result:

Theorem 4.2. Assuming the notations given above we have
R∞[u]
<un−λ> [x]

< xm − u >
∼=

R∞[x]

< xmn − λ >
.

Proof. Let us define a mapping Φ :
R∞[u]
<un−λ> [x]

<xm−u> −→
R∞[x]

<xmn−λ> given by

Φ(
m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj) =

m−1∑
j=0

(
n−1∑
i=0

ai,j(x
m)i)xj.

Now for

a0,0 + a0,1x+ · · ·+ a0,m−1x
m−1 + a1,0x

m + a1,1x
m+1 + · · ·+ a1,m−1x

2m−1
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+ · · ·+ an−1,0x
m(n−1) + · · ·+ an−1,m−1x

mn−1 ∈ R∞[x]

< xmn − λ >
,

there exists
m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj ∈

R∞[u]
<un−λ> [x]

< xm − u >
.

such that

Φ(
m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj) =

m−1∑
j=0

(
n−1∑
i=0

ai,j(x
m)i)xj

=
m−1∑
j=0

(a0,j(x)0 + a1,jx
m + · · ·+ an−1,jx

m(n−1))xj

=a0,0 + a0,1x+ · · ·+ a0,m−1x
m−1 + a1,0x

m + a1,1x
m+1

+ · · ·+ a1,m−1x
2m−1 + · · ·+ an−1,0x

m(n−1)

+ · · ·+ an−1,m−1x
mn−1 ∈ R∞[x]

< xmn − λ >
.

Therefore the mapping Φ is onto.
To prove Φ is one-one, we take

Φ(
m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj) = Φ(

m−1∑
j=0

(
n−1∑
i=0

bi,ju
i)xj)

=⇒
m−1∑
j=0

(
n−1∑
i=0

ai,j(x
m)i)xj =

m−1∑
j=0

(
n−1∑
i=0

bi,j(x
m)i)xj

=⇒
m−1∑
j=0

(a0,j(x)0 + a1,jx
m + · · ·+ an−1,jx

m(n−1))xj

=
m−1∑
j=0

(b0,j(x)0 + b1,jx
m + · · ·+ bn−1,jx

m(n−1))xj

=⇒ a0,0 + a0,1x+ · · ·+ a0,m−1x
m−1 + a1,0x

m + a1,1x
m+1 + . . .

+ a1,m−1x
2m−1 + · · ·+ an−1,0x

m(n−1) + · · ·+ an−1,m−1x
mn−1

= b0,0 + b0,1x+ · · ·+ b0,m−1x
m−1 + b1,0x

m + b1,1x
m+1 + . . .

+ b1,m−1x
2m−1 + · · ·+ bn−1,0x

m(n−1) + · · ·+ bn−1,m−1x
mn−1
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=⇒ a0,0 = b0,0, a0,1 = b0,1, . . . , an−1,m−1 = bn−1,m−1

=⇒
m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj =

m−1∑
j=0

(
n−1∑
i=0

bi,ju
i)xj.

Thus Φ is one-one and hence it is a bijection.
Now for

m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj,

m−1∑
j=0

(
n−1∑
i=0

bi,ju
i)xj ∈

R∞[u]
<un−λ> [x]

< xm − u >

Φ(
m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj +

m−1∑
j=0

(
n−1∑
i=0

bi,ju
i)xj) = Φ(

m−1∑
j=0

(
n−1∑
i=0

(ai,j + bi,j)u
i)xj)

=⇒ Φ(
m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj +

m−1∑
j=0

(
n−1∑
i=0

bi,ju
i)xj) =

m−1∑
j=0

(
n−1∑
i=0

(ai,j + bi,j)(x
m)i)xj

=⇒ Φ(
m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj +

m−1∑
j=0

(
n−1∑
i=0

bi,ju
i)xj) =

m−1∑
j=0

(
n−1∑
i=0

ai,j(x
m)i)xj

+
m−1∑
j=0

(
n−1∑
i=0

bi,j(x
m)i)xj

=⇒ Φ(
m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj +

m−1∑
j=0

(
n−1∑
i=0

bi,ju
i)xj) = Φ(

m−1∑
j=0

(
n−1∑
i=0

ai,ju
i)xj)

+ Φ(
m−1∑
j=0

(
n−1∑
i=0

bi,ju
i)xj).

Hence Φ preserves addition.
Let us consider

ai,ju
ixj, br,su

rxs ∈
R∞[u]
<un−λ> [x]

< xm − u >
.

Now we have

ai,ju
ixj.br,su

rxs = ai,j.br,su
i+rxj+s ∈

R∞[u]
<un−λ> [x]

< xm − u >
,

(4.1) Φ(ai,ju
ixj).Φ(br,su

rxs) = ai,j.br,sx
m(i+r)+j+s

(4.2) Φ(ai,ju
ixj.br,su

rxs) = Φ(ai,j.br,su
i+rxj+s) = ai,j.br,sx

m(i+r)+j+s.
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Hence from (4.1) and (4.2)

Φ(ai,ju
ixj.br,su

rxs) = Φ(ai,ju
ixj).Φ(br,su

rxs).

This implies that Φ preserves multiplication. Thus it is proved that Φ is an
isomorphism. Therefore

R∞[u]
<un−λ> [x]

< xm − u >
∼=

R∞[x]

< xmn − λ >
.

�

Putting λ = 1 and λ = −1, we get the following two corollaries:

Corollary 4.2. Assuming the notations given above we have
R∞[u]
<un−1> [x]

< xm − u >
∼=

R∞[x]

< xmn − 1 >
.

Corollary 4.3. Assuming the notations given above we have
R∞[u]
<un+1>

[x]

< xm − u >
∼=

R∞[x]

< xmn + 1 >
.

Thus we have established that cyclic codes of composite length mn over the
formal power series ring R∞ corresponds to u−constacyclic code of length m

over R∞[u]
<un−1> . Similarly negacyclic codes of composite length mn over the for-

mal power series ring R∞ corresponds to u−constacyclic code of length m over
R∞[u]
<un+1>

.

Theorem 4.3. Assuming the notations given above we have
Ri[u]

<un−λ> [x]

< xm − u >
∼=

Ri[x]

< xmn − λ >
.

Proof. The proof of this theorem is similar to the proof of the Theorem 4.1. �

Putting λ = 1 and λ = −1, we get the following two corollaries:

Corollary 4.4. Assuming the notations given above we have
Ri[u]

<un−1> [x]

< xm − u >
∼=

Ri[x]

< xmn − 1 >
.

Corollary 4.5. Assuming the notations given above we have
Ri[u]

<un+1>
[x]

< xm − u >
∼=

Ri[x]

< xmn + 1 >
.
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Theorem 4.4. Let m and n are two odd numbers and gcd(m, p) = 1, gcd(n, p) = 1.
Then

R∞[u]
<un−1> [x]

< xm − u >
∼=

R∞[u]
<un+1>

[x]

< xm − u >
.

Proof. Since m and n both are odds, mn is also odd. Again gcd(m, p) = 1 and
gcd(n, p) = 1. Therefore gcd(mn, p) = 1. We define the map

η :
R∞[x]

< xmn + 1 >
−→ R∞[x]

< xmn − 1 >

given by

f(x)+ < xmn + 1 >7−→ f(−x)+ < xmn − 1 > .

Now if

f(x)+ < xmn + 1 >= g(x)+ < xmn + 1 >,

then we have

f(x)− g(x) ∈< xmn + 1 > .

Therefore

f(x)− g(x) = (xmn + 1)q(x) for some q(x)

and

f(−x)− g(−x) = ((−x)mn + 1)q(−x) = (−xmn + 1)q(−x)

= (xmn − 1)(−q(−x)) ∈< xmn − 1 > .

This implies that

η(f(x)+ < xmn + 1 >) = f(−x)+ < xmn − 1 >= g(−x)+ < xmn − 1 >

= η(g(x)+ < xmn + 1 >).

Thus, the correspondence η is a well-defined map. Now

η((f(x)+ < xmn + 1 >) + (g(x)+ < xmn + 1 >))

=η((f(x) + g(x))+ < xmn + 1 >) = (f(−x) + g(−x))+ < xmn − 1 >

=f(−x)+ < xmn − 1 > +g(−x)+ < xmn − 1 >

=η(f(x)+ < xmn + 1 >) + η(g(x)+ < xmn + 1 >).

Thus, η preserves addition.
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Again

η((f(x)+ < xmn + 1 >).(g(x)+ < xmn + 1 >))

=η((f(x).g(x))+ < xmn + 1 >) = (f(−x).g(−x))+ < xmn − 1 >

=(f(−x)+ < xmn − 1 >).(g(−x)+ < xmn − 1 >)

=η(f(x)+ < xmn + 1 >).η(g(x)+ < xmn + 1 >).

Thus η preserves multiplication.
For f(−x)+ < xmn − 1 >∈ R∞[x]

<xmn−1> there exists f(x)+ < xmn + 1 >∈ R∞[x]
<xmn+1>

such that
η(f(x)+ < xmn + 1 >) = f(−x)+ < xmn − 1 > .

Hence η is onto.
Let

η(f(x)+ < xmn + 1 >) = η(g(x)+ < xmn + 1 >)

=⇒ f(−x)+ < xmn − 1 >= g(−x)+ < xmn − 1 >

=⇒ f(x)+ < −xmn − 1 >= g(x)+ < −xmn − 1 >

(Replacing x by −x and since mn is odd)

=⇒ f(x)+ < xmn + 1 >= g(x)+ < xmn + 1 > .

Hence η is bijective. Thus it is an isomorphism. Therefore

R∞[x]

< xmn + 1 >
∼=

R∞[x]

< xmn − 1 >
.

Because
R∞[u]
<un−1> [x]

< xm − u >
∼=

R∞[x]

< xmn − 1 >
and

R∞[u]
<un+1>

[x]

< xm − u >
∼=

R∞[x]

< xmn + 1 >
.

Therefore
R∞[u]
<un−1> [x]

< xm − u >
∼=

R∞[u]
<un+1>

[x]

< xm − u >
.

�

Theorem 4.5. A linear code C of length mn over R∞ is a λ−cyclic code if and only

if Φ−1(Pλ(C)) is an ideal of
R∞[u]
<un−λ> [x]

<xm−u> .

Proof. From Lemma 4.1 we know that, a linear code C of length mn over R∞
is a λ−cyclic code, if, and only if, Pλ(C) is an ideal of R∞[x]

<xmn−λ> . Again Φ is

an isomorphism between
R∞[u]
<un−λ> [x]

<xm−u> and R∞[x]
<xmn−λ> . Thus Φ−1 is an isomorphism.
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So Φ−1(Pλ(C)) is an ideal of
R∞[u]
<un−λ> [x]

<xm−u> , if, and only if, (Pλ(C)) is an ideal of
R∞[x]

<xmn−λ> . Thus A linear code C of length mn over R∞ is a λ−cyclic code if and

only if Φ−1(Pλ(C)) is an ideal of
R∞[u]
<un−λ> [x]

<xm−u> . �

Corollary 4.6. Assuming the notations given above we have

(i) A linear code C of length mn over R∞ is a cyclic code if and only if

Φ−1(P1(C)) is an ideal of
R∞[u]
<un−1>

[x]

<xm−u> .
(ii) A linear code C of length mn over R∞ is a negacyclic code if and only if

Φ−1(P−1(C)) is an ideal of
R∞[u]
<un+1>

[x]

<xm−u> .

Theorem 4.6. If C is a cyclic code of length mn over R∞ then, Φ−1(ψi(P1(C))) is

an ideal of
Ri[u]

<un−1>
[x]

<xm−u> .

Proof. From Theorem 4.1 we know that if C is a cyclic code over R∞, then,
ψi(C) is a cyclic code over Ri for all i < ∞. Thus if C is a cyclic code of length
mn over R∞ then ψi(P1(C)) is an ideal of Ri[x]

<xmn−1> . As Φ is an isomorphism

between
Ri[u]

<un−1>
[x]

<xm−u> and Ri[x]
<xmn−1> , Φ−1 is an isomorphism between Ri[x]

<xmn−1> and
Ri[u]

<un−1>
[x]

<xm−u> . Hence ψi(P1(C)) is an ideal of Ri[x]
<xmn−1> if and only if Φ−1(ψi(P1(C)))

is an ideal of
Ri[u]

<un−1>
[x]

<xm−u> . Thus if C is a cyclic code of length mn over R∞ then,

Φ−1(ψi(P1(C))) is an ideal of
Ri[u]

<un−1>
[x]

<xm−u> . �

5. CONCLUSION

In [4] Dougherty and Liu proved that corresponding to every cyclic code
of odd length n over R∞ there exists a negacyclic code of same length over
R∞. Here we have considered both m and n as odd numbers and proved that
u−constacyclic codes of length m over R∞[x]

<xn−1> corresponds to u−constacyclic
code of length m over R∞[x]

<xn+1>
. Neither a counter example have been found

to disprove that u−constacyclic codes of length m over R∞[x]
<xn−1> corresponds to

u−constacyclic code of length m over R∞[x]
<xn+1>

, nor any isomorphism has been

constructed between
R∞[u]
<un−1>

[x]

<xm−u> and
R∞[u]
<un+1>

[x]

<xm−u> to prove that u−constacyclic codes
of length m over R∞[x]

<xn−1> corresponds to u−constacyclic codes of length m over
R∞[x]
<xn+1>

, when at least one of m or n is even. Hence still the problem whether
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R∞[u]
<un−1>

[x]

<xm−u> is isomorphic to
R∞[u]
<un+1>

[x]

<xm−u> or not is unsolved, when at least one of m or
n is even.
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