
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.10, 8525–8546
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.10.79

GENERALIZED L-CONTRACTIVE MAPPING THEOREMS IN PARTIALLY
ORDERED SETS WITH b-METRIC SPACES

SEONG-HOON CHO

ABSTRACT. In this paper, the notion of generalized L-contractions is introduced
in partially ordered sets with b-metric spaces and a new fixed point theorem for
such contractions is established. An example and an application to differential
equation are given to support the validity of the main theorem.

1. INTRODUCTION AND PRELIMINARIES

Banach’s contraction principle, which plays a very important role in nonlinear
analysis, has been generalized and expanded by many researchers.

In particular, Chatterjea [3] gave a generalization of Banach contraction prin-
ciple as follows.

Theorem 1.1. [3] Let (X, d) be a complete metric space, and T : X → X be a
C-contraction, i.e.

∃α ∈ (0,
1

2
) : ∀x, y ∈ X, d(Tx, Ty) ≤ α[d(x, Ty) + d(y, Tx)].

Then T has a unique fixed point.

Choudhury [5] introduced a generalization of the notion of C-contraction and
he obtained the following result which is a generalization of Theorem 1.1.
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Theorem 1.2. [5] Let (X, d) be a complete metric space, and T : X → X be a
weakly C-contraction, i.e.

∀x, y ∈ X, d(Tx, Ty) ≤ 1

2
[d(x, Ty) + d(y, Tx)]− ϕ(d(x, Ty), d(y, Tx))

where ϕ : [0,∞) × [0,∞) → [0,∞) is continuous with ϕ(x, y) = 0 ⇔ x = y = 0.

Then T has a unique fixed point.

Harjani et al. [8] extended the result of [5] to partially ordered sets with
metric spaces.

Theorem 1.3. [8] Let (X,�) be a partially ordered set. Suppose that there exists
a metric d on X such that (X, d) is a complete metric space.

Let T : X → X be a non-decreasing mapping, i.e. Tx � Ty whenever x � y,
such that

∀x, y ∈ X : y � x, d(Tx, Ty) ≤ 1

2
[d(x, Ty) + d(y, Tx)]− ϕ(d(x, Ty), d(y, Tx))

where ϕ : [0,∞) × [0,∞) → [0,∞) is continuous with ϕ(x, y) = 0 ⇔ x = y = 0.

Assume that there exists x0 ∈ X such that x0 � Tx0.
If either T is continuous or xn � x for any non-decreasing sequence {xn} ⊂ X

with
lim
n→∞

d(x, xn) = 0,

then T has a fixed point. Further if for x, y ∈ X, there exists z ∈ X such that either
z � x or z � y, then T has a unique fixed point.

Let θ : (0,∞)→ (1,∞) be a function. Consider the following conditions:

(θ1) θ is non-decreasing;
(θ2) ∀{tn} ⊂ (0,∞),

lim
n→∞

θ(tn) = 1⇔ lim
n→∞

tn = 0;

(θ3) ∃r ∈ (0, 1) ∧ l ∈ (0,∞):

lim
t→0+

θ(t)− 1

tr
= l;

(θ4) θ is continuous on (0,∞).

Denote Θ123 by the family of all functions θ : (0,∞) → (1,∞) satisfying con-
ditions (θ1), (θ2) and (θ3), and Θ124 by the class of all functions θ : (0,∞) →
(1,∞) such that (θ1), (θ2) and (θ4) holds.
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Recently, Jleli and Samet [10] introduced the notion of θ-contractions and
gave a generalization of the Banach contraction principle in generalized metric
spaces, where θ ∈ Θ123. Also, Ahmad et al. [1] extended the result of Jleli and
Samet [10] to metric spaces by using θ ∈ Θ124.

Very recently, Cho [4] introduced the notion of L-contractions by introducing
the concept of L-simulation function and obtained fixed point result for such
contractions in the setting of generalized metric spaces, which is a generaliza-
tion of result [10].

In the paper, we introduce the concept of a new type of contraction maps
which is generalization of C-contractions and weak C-contractions, and we es-
tablish a new fixed point theorem for such contraction maps in the setting of
partially ordered sets with b-metric spaces.

Recall the concept of L-simulation functions.

A function ξ : [1,∞) × [1,∞) → R is called L-simulation [4] if and only if it
satisfies the following conditions:

(ξ1) ξ(1, 1) = 1;
(ξ2) ξ(t, s) < s

t
∀s, t > 1;

(ξ3) for any sequence {tn}, {sn} ⊂ (1,∞) with tn ≤ sn ∀n = 1, 2, 3, · · ·

lim
n→∞

tn = lim
n→∞

sn > 1⇒ lim
n→∞

sup ξ(tn, sn) < 1.

Denote L by the family of all L-simulation functions.
Note that ξ(t, t) < 1 ∀t > 1.

Example 1. [4] Let ξb, ξw, ξ, ξwc : [1,∞) × [1,∞) → R be functions defined as
follows, respectively:

(1) ξb(t, s) = sk

t
∀t, s ≥ 1 where k ∈ (0, 1);

(2) ξw(t, s) = s
tφ(s)

∀t, s ≥ 1, where φ : [1,∞)→ [1,∞) is non-decreasing and
lower semicontinuous such that φ−1({1}) = 1;

(3) ξ(t, s) =


1 if (s, t) = (1, 1),

s
2t

if s < t,

sλ

t
otherwise,

∀s, t ≥ 1, where λ ∈ (0, 1);
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(4) ξwc(t, s1s2) = s1s2
tψ(s1,s2)

∀t, s1, s2 ≥ 1, where ψ : [1,∞)× [1,∞)→ [1,∞) is
continuous such that ψ(µ, ν) = 1 if and only if µ = ν = 1.

Czerwik [6] introduced the concept of a b-metric.
A function d : X × X → [0,∞), where X is a non-empty set, is called b-

metric [6] on X if and only if it satisfies the following conditions:
for all x, y, z ∈ X

(d1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ 2[d(x, z) + d(z, y)].

In this case, the pair (X, d) is called a b-metric space.
Also, Czerwik [7] gave a generalization of this concept by replacing constant

2 in condition (d3) with constant s ≥ 1 as follows:

Let X be a non-empty set, and d : X ×X → [0,∞) be a function such that for
all x, y, z ∈ X

(d1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ s[d(x, z) + d(z, y)] where s ≥ 1.

Then d is also called a b-metric and (X, d) is called a b-metric space.
Note that if s=1, then a b-metric reduce to a metric.

Let (X, d) be a b-metric space, {xn} ⊂ X be a sequence and x ∈ X. Then we
say that

(1) {xn} is convergent to x (denoted by limn→∞ xn = x) if and only if for all
ε > 0, there exists n0 ∈ N such that

∀n ≥ n0, d(xn, x) < ε, i.e. lim
n→∞

d(x, xn) = 0;

(2) {xn} is Cauchy if and only if for all ε > 0, there exists n0 ∈ N such that

∀n,m ≥ n0, d(xn, xm) < ε, i.e. lim
m,n→∞

d(xn, xm) = 0;

(3) The b-metric space (X, d) is complete if and only if every Cauchy se-
quence in X is convergent to some point in X.
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Note that every convergent sequence in a b-metric space has a unique limit.
In fact, if limn→∞ d(x, xn) = 0 and limn→∞ d(y, xn) = 0, then

d(x, y) ≤ s[d(x, xn) + d(xn, y)]

which yields d(x, y) = 0, and x = y.
Also, note that every convergent sequence in a b-metric space is a Caucy se-

quence.
Khamsi and Hussein [11] defined a toplogy σd on b-metric space (X, d) by

U ∈ σd ⇐⇒ ∀x ∈ U, ∃ε > 0 : B(x, ε) = {y : d(x, y) < ε} ⊂ U.

Let (X, d) be a b-metric space.
A map T : X → X is called continuous at x ∈ X if for any V ∈ σd containg

Tx, there exists U ∈ σd containg x such that TU ⊂ V .
We say that a map T : X → X is continuous whenever it is continuous at each

point in X.

Proposition 1.1. Let (X, d) be a b-metric space, and let T : X → X be a map.
Then the followings are equivalent.

(1) T is continuous at x ∈ X;
(2) ∀ε > 0, ∃δ > 0:

d(x, y) < δ =⇒ d(Tx, Ty) < ε;

(3) T is sequentially continuous at x, i.e. limn→∞ d(Txn, Tx) = 0 for any
sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0.

Remark 1.1. [9] If d is a b-metric on X, then d is not generally continuous in each
coordinates.

Proposition 1.2. [2] Let (X, d) be a b-metric space. If d is continuous in one
variable, then d is continuous in other variable. Moreover, we have that ∀x ∈
X, ∀r > 0

(1) B(x, r) ∈ σd;
(2) X\B[x, r] ∈ σd.
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2. FIXED POINT THEOREMS

Let (X,�) be a partially ordered set.
A mapping T : X → X is called non-decreasing if and only if for x, y ∈ X,

x � y implies Tx � Ty.

Now, we prove our main result.

Theorem 2.1. Let (X,�) be a partially ordered set. Suppose that there exists a
b-metric d on X such that (X, d) is complete. Let T : X → X be a non-decreasing
mapping such that for all x, y ∈ X with y � x

(2.1) d(Tx, Ty) > 0⇒ ξ(θ(sd(Tx, Ty)), θ(
1

1 + s
[d(x, Ty) + d(y, Tx)])) ≥ 1.

Assume that there exists x0 ∈ X such that x0 � Tx0. If T is continuous, then T
has a fixed point.

Proof. Suppose that x0 � Tx0. Since T is non-decreasing,

x0 � Tx0 � T 2x0.

Inductively, we have

x0 � Tx0 � T 2x0 � T 3x0 · · · � T nx0 � T n+1x0 � · · · .

Let {xn} ⊂ X be a sequence defined by

xn = Txn−1 = T nx0,∀n = 1, 2, 3, · · · .

Then
xn � xn+1,∀n = 1, 2, 3, · · · .

If xn = xn+1 for some n ≥ 1, then xn = Txn and the proof is finished. Thus
assume that

xn � xn+1 and xn 6= xn+1, ∀n = 1, 2, 3, · · · .

It follows from (2.1) that

1 ≤ξ(θ(sd(Txn−1, Txn)), θ(
1

1 + s
[d(xn−1, Txn) + d(xn, Txn−1)]))

=ξ(θ(sd(xn, xn+1)), θ(
1

1 + s
[d(xn−1, xn+1) + d(xn, xn)]))

=ξ(θ(sd(xn, xn+1)), θ(
1

1 + s
d(xn−1, xn+1)))
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<
θ( 1

1+s
d(xn−1, xn+1))

θ(sd(xn, xn+1))

which implies

(2.2) θ(sd(xn, xn+1)) < θ(
1

1 + s
d(xn−1, xn+1))

and so

θ(sd(xn, xn+1)) < θ(
1

1 + s
d(xn−1, xn+1))

≤θ( s

1 + s
[d(xn−1, xn) + d(xn, xn+1)]).

(2.3)

Since θ is non-decreasing,

sd(xn, xn+1)

<
s

1 + s
[d(xn−1, xn) + d(xn, xn+1)]

which implies
s2

1 + s
d(xn, xn+1) <

s

1 + s
d(xn−1, xn).

Thus we have

s

1 + s
d(xn, xn+1) <

s2

1 + s
d(xn, xn+1) <

s

1 + s
d(xn−1, xn).

Hence

d(xn, xn+1) < d(xn−1, xn),∀n = 1, 2, 3, · · · .

Since {d(xn−1, xn)} ⊂ [0,∞) is a decreasing sequence, there exists r ≥ 0 such
that

lim
n→∞

d(xn−1, xn) = r.

We now show that r = 0. Suppose that r 6= 0. Let tn = θ(sd(xn, xn+1)) and
sn = θ( 1

1+s
d(xn−1, xn+1))∀n = 1, 2, 3, · · · . Then it follows from (2.2) that

tn < sn∀n = 1, 2, 3, · · · .

We have

lim
n→∞

tn = θ(sr).
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It follows from (2.3) that

θ(sd(xn, xn+1))

<θ(
1

1 + s
d(xn−1, xn+1))

<θ(
s

1 + s
[d(xn−1, xn) + d(xn, xn+1)])

<θ(
s

2
[d(xn−1, xn) + d(xn, xn+1)]).

(2.4)

Letting n→∞ in (2.4), we have

lim
n→∞

sn = θ(sr).

Hence
1 ≤ lim

n→∞
sup ξ(θ(tn, sn)) < 1

which is a contradiction. Thus we have

lim
n→∞

d(xn−1, xn) = 0

and so
lim
n→∞

θ(d(xn−1, xn)) = 1.

We show that {xn} is a Cauchy sequence. On the contrary, assume that {xn}
is not a Cauchy sequence. Then there exists an ε > 0 for which we can find
subsequences {xm(k)} and {xn(k)} of {xn} such that m(k) is the smallest index
for which m(k) > n(k) > k ∀k = 1, 2, 3, · · ·

d(xm(k), xn(k)) ≥ ε and d(xm(k)−1, xn(k)) < ε.

Since m(k) > n(k) > k ∀k = 1, 2, 3, · · · ,

xn(k) � xm(k) ∀k = 1, 2, 3, · · · .

It follows from (2.1) that

1 ≤ξ(θ(sd(xn(k), xm(k))), θ(
1

1 + s
[d(xn(k)−1, xm(k)) + d(xm(k)−1, xn(k))])

<
θ( 1

1+s
[d(xn(k)−1, xm(k)) + d(xm(k)−1, xn(k))])

θ(sd(xn(k), xm(k)))

which implies

θ(sd(xn(k), xm(k))) < θ(
1

1 + s
[d(xn(k)−1, xm(k)) + d(xm(k)−1, xn(k))]).
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Hence we have

sε

≤sd(xn(k), xm(k))

<
1

1 + s
[d(xn(k)−1, xm(k)) + d(xm(k)−1, xn(k))]

<
1

1 + s
[ε+ d(xn(k)−1, xm(k))].

(2.5)

We infer that

d(xn(k)−1, xm(k))

≤sd(xm(k), xn(k)) + sd(xn(k), xn(k)−1)

≤s2d(xm(k), xm(k)−1) + s2d(xm(k)−1, xn(k)) + sd(xn(k), xn(k)−1)

<s2d(xm(k), xm(k)−1) + s2ε+ sd(xn(k), xn(k)−1).

(2.6)

Letting n→∞ in (2.6), we obtain

(2.7) lim
k→∞

d(xn(k)−1, xm(k)) ≤ s2ε.

By taking k →∞ in (2.5) and applying (2.7), we have

sε

≤ lim
k→∞

sd(xm(k), xn(k))

≤ lim
k→∞

1

1 + s
[d(xn(k)−1, xm(k)) + d(xm(k)−1, xn(k))]

≤ lim
k→∞

1

1 + s
[d(xn(k)−1, xm(k)) + ε]

≤ 1

1 + s
[ε+ s2ε]

=
(1 + s2)

1 + s
ε

≤(1 + s)s

1 + s
ε

=sε

which implies

lim
k→∞

sd(xm(k), xn(k)) = lim
k→∞

1

1 + s
[d(xn(k)−1, xm(k)) + d(xm(k)−1, xn(k))] = sε.
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Let tk = θ(sd(xm(k), xn(k))) and sk = θ( 1
1+s

[d(xn(k)−1, xm(k)) +d(xm(k)−1, xn(k))]).
Then

tk < sk ∀k = 1, 2, 3, · · · , and lim
k→∞

tk = lim
k→∞

sk > 1.

Hence
1 ≤ lim

k→∞
sup ξ(tk, sk) < 1

which is a contradiction.
Thus {xn} is a Cauchy sequence, and so there exists x∗ ∈ X such that

lim
n→∞

d(x∗, xn) = 0.

Since T is continuous,

lim
n→∞

d(Tx∗, xn+1) = lim
n→∞

d(Tx∗, Txn) = 0.

Thus we have

d(x∗, Tx∗) ≤ s lim
n→∞

[d(x∗, xn+1) + d(xn+1, Tx∗)] = 0.

Hence x∗ = Tx∗. �

Theorem 2.2. Let (X,�) be a partially ordered set. Suppose that there exists a
b-metric d on X such that (X, d) is complete. Let T : X → X be a non-decreasing
mapping such that (2.1) holds. Assume that there exists x0 ∈ X such that x0 �
Tx0. If, for any non-decreasing sequence {xn} with limn→∞ d(x, xn) = 0,

(2.8) xn � x

then T has a fixed point.

Proof. Following proof of Theorem 2.1, we have a sequence {xn = T nx0} ⊂
X, x0 ∈ X such that for all n = 1, 2, 3, · · · ,

xn � xn+1, xn 6= xn+1, lim
n→∞

d(x∗, xn) = 0 and lim
n→∞

d(xn−1, xn) = 0.

It follows from (2.1) and (2.8) that

1 ≤ ξ(θ(sd(Tx∗, Txn)), θ(
1

1 + s
[d(x∗, Txn) + d(xn, Tx∗)]))

=ξ(θ(sd(Tx∗, Txn)), θ(
1

1 + s
[d(x∗, xn+1) + d(xn, Tx∗)]))

<
θ( 1

1+s
[d(x∗, xn+1) + d(xn, Tx∗)])

θ(sd(Tx∗, Txn))
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which implies

(2.9) θ(sd(Tx∗, Txn)) < θ(
1

1 + s
[d(x∗, xn+1) + d(xn, Tx∗)]).

Hence

sd(Tx∗, xn+1)) <
1

1 + s
[d(x∗, xn+1) + d(xn, Tx∗)]

<
1

1 + s
[d(x∗, xn+1) + sd(xn, x∗) + sd(x∗, Tx∗)]

<
1

1 + s
d(x∗, xn+1) + d(xn, x∗) + d(x∗, Tx∗)].

Thus

lim
n→∞

sd(Tx∗, xn+1) ≤ d(x∗, Tx∗).

Hence

d(x∗, Tx∗) ≤ lim
n→∞

[sd(x∗, xn+1) + sd(xn+1, Tx∗)] ≤ d(x∗, Tx∗)

which implies

d(x∗, Tx∗) ≤ lim
n→∞

sd(xn+1, Tx∗) ≤ d(x∗, Tx∗)

and so

lim
n→∞

sd(xn+1, Tx∗) = d(x∗, Tx∗).

It follows from (2.9) that

sd(Tx∗, Txn) <
1

1 + s
[d(x∗, xn+1) + d(xn, Tx∗)] <

s

1 + s
[d(x∗, xn+1) + d(xn, Tx∗)].

By letting n→∞ in above we have

d(x∗, Tx∗) ≤
1

1 + s
d(x∗, Tx∗)

which is a contradiction if d(x∗, Tx∗) > 0.
Hence d(x∗, Tx∗) = 0, and hence x∗ = Tx∗. �
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Theorem 2.3. Let (X,�) be a partially ordered set. Suppose that there exists a
b-metric d on X such that (X, d) is complete. Let T : X → X be a non-decreasing
mapping such that (2.1) holds. Suppose that there exists x0 ∈ X such that x0 �
Tx0, and assume that either T is continuous or (2.8) is satisfied. If for x, y ∈ X,
there exists z ∈ X such that either z � x or z � y, then T has a unique fixed point.

Proof. By Theorem 2.1 or Theorem 2.2, T has a fixed point.
We show that the fixed point of T is unique. Let u = Tu and v = Tv. We

consider the following two cases.

Case 1. Let v � u.
Suppose that u 6= v. Then d(u, v) > 0, and form (2.1) we have

1 ≤ξ(θ(sd(Tu, Tv)), θ(
1

1 + s
[d(u, Tv) + d(v, Tu)]))

=ξ(θ(sd(u, v)), θ(
1

1 + s
[d(u, v) + d(v, u)]))

<
θ( 1

1+s
[d(u, v) + d(v, u)])

θ(sd(u, v))

which implies

θ(sd(u, v)) < θ(
1

1 + s
[d(u, v) + d(v, u)]) = θ(

2

1 + s
[d(u, v)]) ≤ θ(d(u, v))

which is a contradiction. Thus u = v, and T has a unique fixed point.

Case 2. If u 6� v, then there exists z ∈ X such that z � u or z � v.
Suppose that z � u. Since T is non-decreasing,

T n−1z � T n−1u ∀n = 1, 2, 3, · · · .

It follows from (2.1) that ∀n = 1, 2, 3, · · ·

1 ≤ξ(θ(sd(T nu, T nz)), θ(
1

1 + s
[d(u, T nz) + d(T n−1z, T nu)]))

=ξ(θ(sd(u, T nz)), θ(
1

1 + s
[d(u, T nz) + d(T n−1z, u)]))

<
θ( 1

1+s
[d(u, T nz) + d(T n−1z, u)])

θ(sd(u, T nz))

which implies

θ(sd(u, T nz)) < θ(
1

1 + s
[d(u, T nz) + d(T n−1z, u)])
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and so

(2.10) sd(u, T nz) <
1

1 + s
[d(u, T nz) + d(T n−1z, u)].

Hence

1

1 + s
d(u, T nz) ≤ (s− 1

1 + s
)d(u, T nz) <

1

1 + s
d(u, T n−1z)

and hence

d(u, T nz) < d(u, T n−1z) ∀n = 1, 2, 3, · · · .

Thus there exists l ≥ 0 such that limn→∞ d(u, T n−1z) = l. By letting n→∞ in
(2.10), we have

sl ≤ 2

1 + s
l

which is a contradiction if l 6= 0. Hence l = 0 and hence limn→∞ d(u, T nz) = 0.

Similary, we can prove limn→∞ d(v, T nz) = 0. Thus we have

d(u, v) ≤ lim
n→∞

[sd(u, T nz) + sd(T nz, v)] = 0.

Hence u = v, and T has a unique fixed point. �

By taking ξc(t, q) = qk

t
, k ∈ (0, 1) in Theorem 2.3, we have the following result.

Corollary 2.1. Let (X,�) be a partially ordered set. Suppose that there exists a
b-metric d on X such that (X, d) is complete. Let T : X → X be a non-decreasing
mapping such that for all x, y ∈ X with y � x

d(Tx, Ty) > 0⇒ θ(sd(Tx, Ty)) ≤ [θ(
1

1 + s
{d(x, Ty) + d(y, Tx)})]k

where k ∈ (0, 1).
Suppose that there exists x0 ∈ X such that x0 � Tx0, and assume that either T

is continuous or (2.8) is satisfied.
Then T has a fixed point. Further if for x, y ∈ X, there exists z ∈ X such that

z � x or z � y, then T has a unique fixed point.
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Corollary 2.2. Let (X,�) be a partially ordered set. Suppose that there exists a
b-metric d on X such that (X, d) is complete. Let T : X → X be a non-decreasing
mapping such that for all x, y ∈ X with y � x

sd(Tx, Ty) ≤ k

1 + s
[d(x, Ty) + d(y, Tx)]

where k ∈ (0, 1).
Suppose that there exists x0 ∈ X such that x0 � Tx0, and assume that either T

is continuous or (2.8) is satisfied.
Then T has a fixed point. Further if for x, y ∈ X, there exists z ∈ X such that

z � x or z � y, then T has a unique fixed point.

By taking ξwc in Theorem 2.3, we have the following result.

Corollary 2.3. Let (X,�) be a partially ordered set. Suppose that there exists a
b-metric d on X such that (X, d) is complete. Let T : X → X be a non-decreasing
mapping such that for all x, y ∈ X with y � x

d(Tx, Ty) > 0⇒ θ(sd(Tx, Ty)) ≤
θ( 1

1+s
[d(x, Ty) + d(y, Tx)])

ψ(θ( 1
1+s

d(x, Ty)), θ( 1
1+s

d(y, Tx)))

where θ ∈ Θ with θ(p1 + p2) = θ(p1)θ(p2).
Suppose that there exists x0 ∈ X such that x0 � Tx0, and assume that either T

is continuous or (2.8) is satisfied.
Then T has a fixed point. Further if for x, y ∈ X, there exists z ∈ X such that

z � x or z � y, then T has a unique fixed point.

Corollary 2.4. Let (X,�) be a partially ordered set. Suppose that there exists a
b-metric d on X such that (X, d) is complete. Let T : X → X be a non-decreasing
mapping such that for all x, y ∈ X with y � x

(2.11) sd(Tx, Ty) ≤ 1

1 + s
[d(x, Ty) + d(y, Tx)])− ϕ(d(x, Ty), d(y, Tx))

where ϕ : [0,∞) × [0,∞) → [0,∞) is continuous and ϕ(u, v) = 0 if and only if
u = v = 0.

Suppose that there exists x0 ∈ X such that x0 � Tx0, and assume that either T
is continuous or (2.8) is satisfied.
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Then T has a fixed point. Further if for x, y ∈ X, there exists z ∈ X such that
z � x or z � y, then T has a unique fixed point.

Proof. Let θ(t) = et,∀t > 0, and let ϕ(u, v) = ln(ψ(θ( 1
1+s

u), θ( 1
1+s

v))), ∀u, v > 0

such that ψ : [1,∞)× [1,∞) → [1,∞) is continuous and ψ(µ, ν) = 1 if and only
if µ = ν = 1.

Then we have

ϕ(u, v) = 0

⇔ ln(ψ(θ(
1

1 + s
u), θ(

1

1 + s
v)) = 0

⇔ψ(θ(
1

1 + s
u), θ(

1

1 + s
v)) = 1

⇔θ( 1

1 + s
u) = θ(

1

1 + s
v) = 1

⇔u = v = 0.

It follows from (2.11) that for all x, y ∈ X with y � x and d(Tx, Ty) > 0

θ(sd(Tx, Ty)) = esd(Tx,Ty)

≤e
1

1+s
[d(x,Ty)+d(y,Tx)]−ϕ(d(x,Ty),d(y,Tx))

=
e

1
1+s

[d(x,Ty)+d(y,Tx)]

eϕ(d(x,Ty),d(y,Tx))

=
θ( 1

1+s
[d(x, Ty) + d(y, Tx)])

ψ(θ( 1
1+s

d(x, Ty)), θ( 1
1+s

d(y, Tx)))
.

By Corollary 2.3, T has a unique fixed point. �

Remark 2.1. Corollary 2.4 reduces to Theorem 3.2 of [8] by taking s = 1. Also,
by taking s = 1 in Corollary 2.2, we have an extension of Theorem 1.1 to partially
ordered sets with metric spaces.

We give an example to illustrate Theorem 2.1.

Example 2. Let X = { 1
n

: n = 1, 2, 3, · · · } ∪ {0} and ρ(x, y) =| x − y | and
d(x, y) =| x− y |2 .
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Define
y � x⇔ x ≤ y.

Then (X,�) is partially ordered set, and (X, ρ) is a complete metric space and
(X, d) is a complete b-metric space with s = 2.

Obviously, we have that for any non-decreasing sequence {xn} ⊂ X with lim
n→∞

xn

= x ∈ X,
xn � x, ∀n = 1, 2, 3, · · · .

Thus condition (2.8) holds.

Define a map T : X → X by

Tx =

 1
n+1

(x = 1
n
, n = 1, 2, 3, · · · ),

0 (x = 0).

and a function θ : (0,∞)→ (1,∞) by

θ(t) = et.

For x0 = 1, Tx0 = T1 = 1
2
, and so Tx0 ≤ x0, which yields

x0 � Tx0.

Let ψ(u, v) = u
v6
, ∀u, v ≥ 1. We now show that (2.1) hold with respect to ξwc.

Consider the following two case.

Case 1. Let x = 0, y = 1
n
. Then

ξ(θ(
1

3
d(0, T

1

n
)), θ(

1

3
[d(0, T

1

n
) + d(

1

n
, T0)]))

=
θ(1

3
[d(0, T 1

n
) + d( 1

n
, T0)])

θ(2d(T0, T 1
n
))ψ(θ(1

3
d(0, T 1

n
)), θ(1

3
d( 1

n
, T0)))

=
θ(1

3
[ 1
(n+1)2

+ 1
n2 ])

θ( 2
n2 )ψ(θ(1

3
1

(n+1)2
)), θ(1

3
1
n2 )

=
e

1
3
[ 1
(n+1)2

+ 1
n2

]

e
2
n2 e

1
3

1
(n+1)2 e

−2

n2

=e
1

3n2 ≥ 1 ∀n = 1, 2, 3, · · · .

Thus we have
θ(1

3
[d(0, T 1

n
) + d( 1

n
, T0)])

ψ(θ(1
3
d(0, T 1

n
)), θ(1

3
d( 1

n
, T0)))

≥ θ(2d(T0, T
1

n
)) ∀n = 1, 2, 3, · · · .
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Case 2. Let x = 1
n

and y = 1
m

(m > n). Then

ξ(θ(
1

3
d(T

1

n
, T

1

m
)), θ(

1

3
[d(

1

n
, T

1

m
) + d(

1

m
,T

1

n
)]))

=
θ(1

3
[d( 1

n
, T 1

m
) + d( 1

m
, T 1

n
)])

θ(2d(T 1
n
, T 1

m
))ψ(θ(1

3
d( 1

n
, T 1

m
)), θ(1

3
d( 1

m
, T 1

n
)))

=
θ(1

3
[| 1

n
− 1

(m+1)
|2 + | 1

m
− 1

n+1
|2])

θ(2 | 1
n+1
− 1

m+1
|2)ψ(θ(1

3
[ 1
n
− 1

(m+1)
|2)), θ(1

3
| 1
m
− 1

n+1
|2)

=
e

1
3
[| 1
n
− 1

(m+1)
|2+| 1

m
− 1
n+1
|2])

e2|
1

n+1
− 1
m+1

|2e
1
3
| 1
n
− 1

(m+1)
|2e−2|

1
m
− 1
n+1
|2

=e
1
3
| 1
m
− 1

(n+1)
|2 ≥ 1 ∀m > n = 1, 2, 3, · · · .

Hence all condition of Theorem 2.2 is satisfied, T has a fixed point.
Note that Corollary 2.2 is not applicable here. In fact, if x = 0 and y = 1

n
, then

sd(T0, T
1

n
) ≤ k

1 + s
[d(0, T

1

n
) + d(

1

n
, T0)]

which implies
2

(n+ 1)2
≤ k

3
[

1

n2
+

1

(n+ 1)2
].

Hence

k

3
≥

2
(n+1)2

1
n2 + 1

(n+1)2

=
2n4 + 4n3 + 2n2

2n4 + 6n3 + 7n2 + 4n+ 1
∀n = 1, 2, 3, · · · .

Thus k ≥ 3, which is a contradiction. Hence Corollary 2.2 is not satisfied.

Also, Corollary 2.1 does not hold. In fact, let x = 0, y = 1
n

and θ(t) = et,∀t > 0,
then

θ(sd(T0, Tx)) ≤ θ(
k

1 + s
[d(x, T

1

n
) + d(

1

n
, T0)]).

Thus
e

2
(n+1)2 ≤ e

k
3
[ 1
n2

+ 1
(n+1)2

]

and so

e
k
3 ≥ e

2
(n+1)2

n2(n+1)2

2n2+2n+1 = e
2n2

2n2+2n+1 ∀n = 1, 2, 3, · · · .

Hence
e
k
3 ≥ e1, and hence k ≥ 3

which is a contradiction. Thus Corollary 2.1 is not applicable here.
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3. APPLICATION TO DIFFERENTIAL EQUATIONS

Let I = [0, T ] ⊂ R be a closed interval, where T > 0, and let C(I,R) be the
class of all continuous function from I into R.

Let ρ(x, y) = sups∈I | x(s)−y(s) | ∀x, y ∈ C(I,R), and d(x, y) = [ρ(x, y)]2 ∀x, y ∈
C(I,R).

Then (C(I,R), d) is a complete b-metric space with s = 2, and (C(I,R),�) is
a partially ordered set with the partial order given by

∀x, y ∈ C(I,R), x � y ⇐⇒ x(s) ≤ y(s) ∀s ∈ I.

Consider the following ordinary differential equation:

(3.1) u′(s) = f(s, u(s)), ∀s ∈ I, u(0) = u(T )

where f : I× R→ R is a continuous function.

A function a ∈ C1(I,R) is a lower solution for the ordinary differential equa-
tion (3.1) if and only if

a′(s) ≤ f(s, a(s)) ∀s ∈ I, a(0) ≤ a(T ).

Note that if, for some λ > 0

G(t, s) =

 eλ(T+s−t)

eλT−1 (0 ≤ s < t ≤ T ),

eλ(s−t)

eλT−1 (0 ≤ t < s ≤ T )

then

sup
t∈I

∫ T

0

G(t, s)ds =
1

λ
.

In fact,

sup
t∈I

∫ T

0

G(t, s)ds = sup
t∈I

∫ t

0

eλ(T+s−t)

eλT − 1
ds+

∫ T

t

eλ(s−t)

eλT − 1
ds

= sup
t∈I

1

eλT − 1

[
(
1

λ
eλ(T+s−t)

]t
0

+
[1

λ
eλ(s−t)

]T
t

=
1

λ(eλT − 1)
(eλT − 1)

=
1

λ
.
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Lemma 3.1. [12] If a ∈ C1(I,R) is a lower solution for the ordinary differential
equation (3.1), then a � Fa where F : C(I,R)→ C(I,R) is a map defined by

(3.2) (Fu)(t) =

∫ T

0

G(t, s)[f(s, u(s)) + λu(s)]ds.

Theorem 3.1. Suppose that there exists λ > 0 such that for x, y ∈ R with x ≤ y

θ(2[f(s, y) + λy − (f(s, x) + λx)])

≤[θ(
1

3
[(f(s, x) + λx)− λy + (f(s, y) + λy)− λx])]k

(3.3)

where k ∈ (0, 1) and θ ∈ Θ124.
Then the differential equation (3.1) has a unique solution, whenever it has a

lower solution.

Proof. Let F : C(I,R) → C(I,R) be a map defined by (3.2). Let u, v ∈ C(I,R)

with v � u. Then from (3.3)

θ(f(s, u(s)) + λu(s)− [f(s, v(s)) + λv(s)]) > 1.

Hence

f(s, u(s)) + λu(s)− [f(s, v(s)) + λv(s)] > 0

and hence

f(s, u(s)) + λu(s) > f(s, v(s)) + λv(s).

Thus we have that for each t ∈ I

(Fv)(t)

=

∫ T

0

G(t, s)[f(s, v(s)) + λv(s)]ds

<

∫ T

0

G(t, s)[f(s, u(s)) + λu(s)]ds

=(Fu)(t)

which implies

Fv ≺ Fu.

Thus F is non-decreasing and 0 ≺ d(Fu, Fv).
Let a(t) ∈ C ′(I,R) be a lower solution for (3.1). By Lemma 3.1, a � Fa.
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Let v � u. Then we have that

1 <θ(2d(Fu, Fv))

=θ(2 sup
t∈I
| (Fu)(t)− (Fv)(t) |2)

=θ(2 sup
t∈I

[

∫ T

0

G(t, s)[f(s, u(s)) + λu(s)− f(s, v(s))− λv(s)]ds]2)

≤[θ(
1

3
sup
t∈I

[

∫ T

0

G(t, s)[f(s, u(s)) + λu(s)]ds− λv(t)]2

+
1

3
sup
t∈I

[

∫ T

0

G(t, s)[f(s, v(s)) + λv(s)]ds− λu(t)]2)]k

≤[θ(
1

3
[sup
t∈I

[(Fu)(t)− λv(t)

∫ T

0

G(t, s)ds]2

+ [(Fv)(t)− λu(t)

∫ T

0

G(t, s)ds]2])]k

=[θ(sup
t∈I

1

3
[((Fu)(t)− v(t))2 + ((Fv)(t)− u(t))2])]k

≤[θ(
1

3
[d(Fu, v) + d(Fv, u)])]k

which implies

1 ≤
[θ(1

3
[d(Fu, v) + d(Fv, u)])]k

θ(2d(Fu, Fv))

=ξb(θ(2d(Fu, Fv)), θ(
1

3
[d(Fu, v) + d(Fv, u)]))

=ξb(θ(sd(Fu, Fv)), θ(
1

1 + s
[d(Fu, v) + d(Fv, u)])),

∀u, v ∈ C(I,R) with v � u. Hence (2.1) holds.

We show that (2.11) holds.
Let {xn} ⊂ C(I,R) be a non-decreasing sequence such that

(3.4) lim
n→∞

d(x, xn) = 0

where x ∈ C(I,R). Then we have that for all t ∈ I

(3.5) x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · .
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It follows from (3.4) and (3.5) that

xn(t) ≤ x(t) ∀t ∈ I, n = 1, 2, 3, · · · .

Thus

xn � x ∀n = 1, 2, 3, · · · .

Let u, v ∈ C(I,R). Then u(t), v(t) ∈ R ∀t ∈ I, and so there exists z ∈ C(I,R)

such that

∀t ∈ I, either z(t) ≤ u(t) or z(t) ≤ v(t)

which yields

either z � u or z � v.

All conditions of Theorem 2.3 are satisfied with condition (2.8). By Theorem
2.3, F has a unique fixed point, say u∗ ∈ C(I,R). Hence u∗ ∈ C1(I,R) is a
unique solution of differential equation (3.1). �
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