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DYNAMICAL ANALYSIS OF THE RICCATI DIFFERENTIAL EQUATION WITH
DELAY

A. M. A. EL-SAYED, S. M. SALMAN, AND S. RAMADAN1

ABSTRACT. In this paper, we consider the delay Riccati differential equation.
Local stability analysis of equilibria is investigated. The equation exhibits a
Hopf bifurcation at a critical parameter value. Numerical simulations are car-
ried out to insure our theoretical findings.

1. INTRODUCTION

Delay differential equations (DDEs) are a type of differential equation in
which the derivative of the unknown function at a certain time is given in
terms of the values of the function at previous times [1, 5, 6, 16, 20]. Stabil-
ity, bifurcations and chaos, a striking and complicated nonlinear phenomenon
in dynamic systems, has received increasing importance during the last two
decades. The delay differential equation was prepared as adequately describ-
ing the dynamic of electrochemical intercalation and of physiological systems,
etc [4,7,9,10,14,18,19].
Consider the initial-value problem of the logistic delay equation [11].

dx

dt
= −ax(t) + ρx(t− τ)(1− x(t− τ)), t ∈ [0, T ],

x(t) = x0, t ≤ τ.
(1.1)
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In [11], the authors studied stability, bifurcation and chaos of equation (1.1).
In this paper we taken a = 1, here we are concerned of the delay Riccati differ-
ential equations with two delays of the form

dx

dt
= −x(t) + 1− ρx(t− τ1)x(t− τ2), t ∈ [0, T ],

x(t) = x0, t ≤ τ1, τ2.

Here we consider the two different cases

(1) τ1 = τ2 = 1,
(2) τ1 = 1, τ2 = 2.

The paper is organized as follows.

(1) In Section 2, we will discuss the dynamic behavior of equation (2.1)
such as local stability of fixed points, bifurcation, the discretized system,
bifurcation diagrame and phase plane.

(2) In Section 3, we will discuss the dynamic behavior of equation (3.1)
such as Local stability and Hopf bifurcation, the discretized system, Local
stability and bifurcation analysis of the discretized system.

(3) Finally in Section 4, we will preform some numerical simulations to con-
firm all the previous analytical with the help of numerical simulations
performed via Matlab.

2. DIFFERENTIAL EQUATION WITH ONE DELAY

Consider the initial value problem

(2.1)
dx

dt
= −x(t) + 1− ρx2(t− 1), t ∈ (0, T ], x(t) = x0, t ≤ 0.

2.1. Local stability of fixed points and existence of bifurcation. In this sec-
tion, we consider the local stability of fixed points of the delay equation (2.1)
[3]. The system has two fixed points which are the solution of the equation
−x+ 1− ρx2 = 0 which has two fixed points

(x1,2)
∗ = (

−1
2ρ

)(1±
√
1 + 4ρ).

Now by checking the eigenvalues of the linearized system at the fixed points.
In this problem, it is easy to check the eigenvalues of the linearized equations
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about the fixed points. At the neighborhood of

(x1,2)
∗ = (

−1
2ρ

)(1±
√
1 + 4ρ).

The linearized equation is

dy

dt
= −y(t) + (1±

√
1 + 4ρ)y(t− 1),

where, y(t) = x(t)− (
−1
2ρ

)(1±
√

1 + 4ρ).

The characteristic equation is of the form

(2.2) λ+ 1− (1±
√

1 + 4ρ)e−λ = 0.

Lemma 2.1. All roots of the characteristic equation

λ+ c+ be−λ = 0,

where c and b are real, have negative real parts if and only if

c > −1, c+ b > 0, b <
√
c2 + ξ2

where ξ is the root of

ξ = −c tan ξ, 0 < ξ < π. If c 6= 0, ξ =
π

2
, ifc = 0.

Applying lemma 2. 1 to equation (2.2) with c = 1, and b = −(1 ±
√
1 + 4ρ)

we have the following Theorem.

Theorem 2.1. The fixed point

(x1,2)
∗ = (

−1
2ρ

)(1±
√
1 + 4ρ) is stable if

−1 < −(1±
√

1 + 4ρ) <
√

1 + ξ2,

and unstable if

−1 > −(1±
√
1 + 4ρ), −(1±

√
1 + 4ρ) >

√
1 + ξ2.
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2.2. Hopf bifurcation. Here we discuss the Hopf bifurcation. We have the fol-
lowing theorem.

Theorem 2.2. When −(1 ±
√
1 + 4ρ) passes through the critical value −(1 ±√

1 + 4ρ) =
√

1 + ξ2, there is a Hopf bifurcation from the equilibrium (x1,2)
∗ =

(−1
2ρ
)(1±

√
1 + 4ρ) to a periodic orbit.

Proof. Let (1 +
√
1 + 4ρ) = K, then, assume that λ = iω0, ω0 ∈ R+ is a pure

imaginary solution of equation (2.2) for some parameter value K = K∗. This
leads to the following equation

iω0+1−K∗e−iω0 = 0, then , 1−K∗ cos(ω0) = 0, ω0−K∗ sin(ω0) = 0, and 1 = K∗ cos(ω0).

Also,
ω0 = K∗ sin(ω0), ω

2
0 + 1 = K2

∗ [cos(ω0)
2 + sin(ω0)

2] = K2
∗ ,

K∗ = ±
√

1 + ω2
0 and ω0 = − tan(ω0).

By Theorem 2. 1 we have K∗ = −
√
1 + ω2

0 is the critical value of K where ω0

is the root of ω0 = − tan(ω0), 0 < ω0 < π .
The condition d(Re(λ))

dK
|K=K∗ is the last condition for occurrence of a Hopf bifur-

cation.
To show that this condition is satisfied, let λ = Z(K) + iω(K) and using (2.2),
we can get Z + iω + 1−Ke−z−iω = 0 and

(2.3) then, Z + 1−Ke−z cos(ω) = 0,

(2.4) ω +Ke−z sin(ω) = 0.

Differentiate (2.3) and (2.4) with respect to K, we obtain

(2.5)
dZ

dK
− e−z cos(ω) +Ke−z cos(ω)

dz

dk
+Ke−z sin(ω)

dω

dK
= 0,

(2.6)
dω

dK
+ e−z sin(ω) +Ke−z cos(ω)

dω

dK
−Ke−z sin(ω) dZ

dK
= 0.

Solving equation (2.5) and equation (2.6) for dZ
dK

, we obtain

d(Re(λ))

dK
|k=k∗ =

d(Re(λ))

dK
|z=0,ω=ω0,k=k∗

=
cos(ω0 +K∗

(1 +K∗ cos(ω0))2 + (K∗ sin(ω0))2
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=
K∗ cos(ω0) +K2

∗
K2
∗ [(1 +K∗ cos(ω0))2 + (K∗ sin(ω0))2]

=
1 +K2

∗
K∗[(1 +K∗ cos(ω0))2 + (K∗ sin(ω0))2]

6= 0.

Similarly, we can prove that there is a Hopf bifurcation from the equilibrium
(x2)

∗ = (−1
2ρ
)(1−

√
1 + 4ρ) to a periodic orbit. �

2.3. The discretized system. In this section, the discretized analogue of the
system (2.1) is obtained via the method of steps as follows. By applying the
method of steps then the equation Let t ∈ (0, 1], then

then, x1 = e−tx0 +

∫ t

0

e−(t−s))(1− ρx2)ds

= e−tx0 + (1− ρx20)(1− e−t)

and

x1(1) = e−1x0 + (1− ρx20)(1− e−1).

Let t ∈ (1, 2], then

x2 = e−(t−1)x0 +

∫ t

1

e−(t−s)(1− ρx2)ds

= e−(t−1)x0 + (1− ρx20)(1− e−(t−1))

and

x2(2) = e−1x0 + (1− ρx20)(1− e−1).

Let t ∈ (2, 3], then

then, x3(3) = e−1x0 + (1− ρx20)(1− e−1).

Repeating the process we can easily deduce that the solution of is given by

xn+1(t) = e−(t−n)xn + (1− ρx2n)(1− e−(t−n)),

Let t −→ n+ 1, then

xn+1 = xne
−1 + (1− ρx2n)(1− e−1).
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3. DIFFERENTIAL EQUATION WITH TWO DIFFERENT DELAYS

Consider the differential-difference equation with two different delays [8,13,
17].

(3.1)
dx

dt
= −x(t) + 1− ρx(t− 1)x(t− 2), x(t) = x0, t ≤ 0

where ρ is a positive parameter.

3.1. Local stability of equation (3.1) and Hopf bifurcation. In this section,
we will consider the local stability of fixed points of the delay equation (3.1)
[12]. The system has the two fixed points

(x1,2)
∗ = (

−1
2ρ

)(1±
√
1 + 4ρ).

At the neighborhood of (x1)
∗ the linearized equation is

dy

dt
= −y(t) + 1

2
(1 +

√
1 + 4ρ)y(t− 1) +

1

2
(1 +

√
1 + 4ρ)y(t− 2)

where y(t) = y(t)− ((−1
2ρ
)(1 +

√
1 + 4ρ)).

Then the characteristic equation is of the form

(3.2) λ+ 1− 1

2
(1 +

√
1 + 4ρ)e−λ − 1

2
(1 +

√
1 + 4ρ)e−2λ = 0.

We notice that is so difficult to discuss the stability at (x1)∗ = (−1
2ρ
)(1+

√
1 + 4ρ),

so we can discuss the Hopf bifurcation [15].

3.2. Hopf bifurcation. Here, we discuss the Hopf bifurcation. We have the
following theorem

Theorem 3.1. When the parameter ρ passes through the critical value

ρ = ρ∗ =
1

4
[(
1 + ω2

0 − (cos(ω0) + ω0 sin(ω0)

cos(ω0) + ω0 sin(ω0)
)2−1], ω0 = tan(2ω0)(1−s cos(ω0))+s sin(ω0),

then there is Hopf bifurcation from the equilibrium (x1)
∗ = (−1

2ρ
)(1 +

√
1 + 4ρ) to

a periodic orbit.

Proof. Let λ = iω0, ω0 ∈ R+ is a pure imaginary solution for (3.3) for some
parameter value ρ = ρ∗. Now we can get

iω0 + 1− 1

2
(1 +

√
1 + 4ρ∗)e

−iω0 − 1

2
(1 +

√
1 + 4ρ∗)e

−2iω0 = 0,

1− 1

2
(1 +

√
1 + 4ρ∗) cos(ω0)−

1

2
(1 +

√
1 + 4ρ∗) cos(2ω0) = 0
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and

ω0 −
1

2
(1 +

√
1 + 4ρ∗) sin(ω0)−

1

2
(1 +

√
1 + 4ρ∗) sin(2ω0) = 0.

Let 1
2
(1 +

√
1 + 4ρ∗) = s, then

(3.3) 1− s cos(ω0)− s cos(2ω0) = 0,

(3.4) ω0 − s sin(ω0)− s sin(2ω0) = 0.

Solving equation (3.3) and equation (3.4), we can get

s =
1 + ω2

0

2(cos(ω0) + ω0 sin(ω0))
,

ρ∗ =
1

4
[(
1 + ω2

0 − (cos(ω0) + ω0 sin(ω0)

cos(ω0) + ω0 sin(ω0)
)2 − 1],

ω0 − s sin(ω0)

1− s cos(ω0)
=

sin(2ω0)

cos(2ω0)
,

ω0 = tan(2ω0)(1− s cos(ω0)) + s sin(ω0).

To show that this condition d(Re(λ))
dρ

|ρ 6= 0 is satisfied, let λ = k(ρ) + iω(ρ) and
using equation (3.2), we can get

k + iω + 1− 1

2
(1 +

√
1 + 4ρ)e−k−iω − 1

2
(1 +

√
1 + 4ρ)e−2(k+iω) = 0,

then, we have

(3.5) k + 1− 1

2
(1 +

√
1 + 4ρ)e−k cos(ω)− 1

2
(1 +

√
1 + 4ρ)e−2k cos(2ω) = 0

and

(3.6) ω +
1

2
(1 +

√
1 + 4ρ)e−k sin(ω) +

1

2
(1 +

√
1 + 4ρ)e−2k sin(2ω) = 0.
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Differentiate equation(3.5) and equation (3.6) with respect to ρ, we obtain

dk

dρ
+

1

2
e−k cos(ω)

dk

dρ
+

1

2
e−k sin(ω)

dω

dρ

− 1

2
e−k cos(ω)

4

2
√
1 + 4ρ

+
1

2
(
√
1 + 4ρ)e−k cos(ω)

dk

dρ

+
1

2
(
√

1 + 4ρ)e−k sin(ω)
dω

dρ
+ e−2k cos(2ω)

dk

dρ

+ e−2k sin(2ω)
dω

dρ
+ (
√
1 + 4ρ)e−2k cos(2ω)

dk

dρ

+ (
√

1 + 4ρ)e−2k sin(2ω)
dω

dρ
− 1

2
e−2k

4

2
√
1 + 4ρ

cos(2ω) = 0,

=
dk

dρ
(1 +

1

2
e−k cos(ω) +

1

2
(
√

1 + 4ρ)e−k cos(ω) + e−2k cos(2ω) + (
√

1 + 4ρ)e−2k cos(2ω))

+
dω

dρ
(
1

2
e−k sin(ω) +

1

2
(
√

1 + 4ρ)e−k sin(ω) + e−2k sin(2ω) + (
√

1 + 4ρ)e−2k sin(2ω))

− e−k cos(ω)√
1 + 4ρ

− e−2k cos(2ω)√
1 + 4ρ

= 0.

(3.7)

dω

dρ
− 1

2
e−k sin(ω)

dk

dρ
+

1

2
e−k cos(ω)

dω

dρ

+
1

2
e−k sin(ω)

4

2
√
1 + 4ρ

− 1

2
(
√

1 + 4ρ)e−k sin(ω)
dk

dρ

+
1

2
(
√

1 + 4ρ)e−k cos(ω)
dω

dρ
− e−2k sin(2ω)dk

dρ

+ e−2k cos(2ω)
dω

dρ
− (
√
1 + 4ρ)e−2k sin(2ω)

dk

dρ

+ (
√

1 + 4ρ)e−2k cos(2ω)
dω

dρ
+

1

2
e−2k

4

2
√
1 + 4ρ

sin(2ω) = 0,

=
dk

dρ
(−1

2
e−k sin(ω)− 1

2
(
√

1 + 4ρ)e−k sin(ω)− e−2k sin(2ω)− (
√

1 + 4ρ)e−2k cos(2ω))

+
dω

dρ
(1 +

1

2
e−k cos(ω) +

1

2
(
√

1 + 4ρ)e−k cos(ω) + e−2k cos(2ω) + (
√

1 + 4ρ)e−2k cos(2ω))

+
e−k sin(ω)√

1 + 4ρ
+
e−2k sin(2ω)√

1 + 4ρ
= 0.

(3.8)
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Solving equation (3.7) and equation (3.8) for dk
dρ

, we obtain

d(Re(λ))

dρ
|ρ=ρ∗=

dk

dρ
|k=0,ω=ω0,ρ=ρ∗ .

�

3.3. The discretized system. In this section we will study the discrete-time
version of The system (3.1) by the following steps, the system can be written as

dx

dt
= −x(t) + 1− ρx(t− 1)y(t− 1),

y(t) = x(t− 1),

x(t) = x0, t ≤ 0.

The discretized model of the system (3.1) is obtained via the method of steps as

xn+1 = xne
−1 + (1− ρxnyn)(1− e−1),

yn = xn.
(3.9)

3.4. Local stability and bifurcation analysis of the discretized system. The
system (3.9) has two fixed points (x∗1,2, y

∗
1,2) = (−1±

√
1+4ρ

2ρ
, −1±

√
1+4ρ

2ρ
). Next, we

calculate the Jacobian matrix at the first fixed point (x∗1, y
∗
1)

J(x∗, y∗) =

(
e−1 − ρy∗(1− e−1) −ρx∗(1− e−1)

1 0

)
.

Let us rename −ρx∗(1−e−1) = z , and e−1−ρy∗(1−e−1) = m. The characteristic
equation

λ2 −mλ− z = 0,

has two roots

λ1,2 =
m±

√
m2 + 4z

2
.

Lemma 3.1. [2] Let F (λ) = λ2 + Pλ+Q. Suppose that F (1) > 0, and F (λ) = 0

has two roots λ1 and λ2. Then

(1) F (−1) > 0 and Q < 1 if and only if |λ1| < 1 and |λ2| < 1 ;
(2) F (−1) < 0 if and only if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1);
(3) F (−1) > 0 and Q > 1 if and only if |λ1| > 1 and |λ2| > 1;
(4) F (−1) = 0 and P 6= 0, 2 if and only if λ1 = −1 and |λ2| 6= 1;
(5) P 2−4Q < 0 and Q = 1 if and only if λ1 and λ2 are complex and |λ1,2| = 1.
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Applying Lemma 3.1, we get

F (λ) = λ2 −mλ− z = λ2 + Pλ+Q = 0,

P = −m and Q = −z. Now, we have

F (1) = 1−m− z > 0, 1 > m+ z.

Applying condition 1 of Lemma 3.1 we obtain

(3.10) F (−1) = 1 +m− z > 0, 1 +m > z,

Q < 1⇒ −z < 1, z > −1 where − ρx∗(1− e−1) = z.

Substitute the value of x∗, we get

−ρ[−1 +
√
1 + 4ρ

2ρ
](1− e−1)

(3.11) = (
1−
√
1 + 4ρ

2
)(1− e−1) > −1.

If (3.10) and (3.11) satisfied, then (x∗1, y
∗
1) is stable.

The same can be done for the seconde fixed point.

4. NUMERICAL SIMULATIONS

We confirm all the previous analytical findings with the help of numerical sim-
ulations performed via Matlab. In all numerical simulations the initial condition
is taken as (x0, y0) = (0.4, 0.4) and the bifurcation parameter is taken as ρ where
4 < ρ < 5.

Figure 1 confirms the analysis of Section 3.4 by the bifurcation diagram and the
graph of Lyapunov exponent.
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(a) (b)

FIGURE 1

Figure 2 represents Phase portraits of system (3.9) for different values of ρ.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

FIGURE 2

Figure 3 confirms the analysis of Section 2.3 by the bifurcation diagram and
the graph of Lyapunov exponent where ρ is the bifurcation parameter.
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(a) (b)

FIGURE 3. Bifurcation diagram and the graph of Lyapunov expo-
nent of system (3.9) .

5. CONCLUSION

In this work, we have considered the Riccati differential equation with delay
in view of its dynamical analysis. At first, we discussed the dynamic behavior of
differential equation of delay, we get out its fixed points then we studied their
local stability and existence of bifurcation by checking the eigenvalues of the
linearized equations about the fixed points and its related characteristic equa-
tion. At second, we show that there is Hopf bifurcation with restricted condition
for occurrence. Then, we applied the method of steps to get the discretized sys-
tem. Local stability and bifurcation analysis of the discretized system. Finally,
we have to confirm our analytical findings by numerical simulations, which in-
cluding phase portraits, bifurcation diagram and its corresponding Lyapunov
exponent.
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