

Advances in Mathematics: Scientific Journal **9** (2020), no.10, 8605–8613 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.10.85

NEUTROSOPHIC STRONGLY α -GENERALIZED SEMI CLOSED SETS

V. BANU PRIYA, S. CHANDRASEKAR¹, AND M. SURESH

ABSTRACT. The purpose of this paper is to introduce and study the concepts of Neutrosophic strongly α -generalized semi-closed sets and Neutrosophic strongly α -generalized semi-open sets. Some of their properties are explored.

1. INTRODUCTION AND PRELIMINARIES

A.A. Salama [9] introduced Neutrosophic topological spaces by using Smarandache's [4,5] Neutrosophic sets. I.Arokiarani et al. [1] introduced Neutrosophic α -closed sets. P. Ishwarya et al. [6] introduced and studied about Neutrosophic semi-open sets in Neutrosophic topological spaces. Neutrosophic Generalized semi-closed sets are introduced by V.K. Shanthi et al. [10] and then D. Jayanthi [7] initiated Neutrosophic αg closed sets. V. Banu Priya et al. [2] introduced Neutrosophic αgs -closed sets. Aim of this present paper is, to introduce and investigate about new kind of Neutrosophic closed sets called Neutrosophic strongly α -generalized semi-closed sets and Neutrosophic strongly α generalized semi open sets and its properties are discussed in detail.

Definition 1.1. [4,5] Let X be a non empty set and Neutrosophic sets A and B in the form $A = \{ \langle x, \eta_A(x), \sigma_A(x), \nu_A(x) \rangle \mid x \in X \}, B = \{ \langle x, \eta_B(x), \sigma_B(x), \nu_B(x) \rangle \mid x \in X \}$ then

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 03E72.

Key words and phrases. Neutrosophic topology, Neutrosophic strongly α -generalized semi closed sets, Neutrosophic strongly α -generalized semi open sets.

- (1) the complement of the set A, A^c defined as $A^c = \{\langle x, \nu_A(x), 1 \sigma_A(x), \eta_A(x) \rangle \mid x \in X\};$
- (2) $A \subseteq B$ defined as $A \subseteq B \Leftrightarrow \eta_A(x) \leqslant \eta_B(x), \sigma_A(x) \leqslant \sigma_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$;
- (3) $A \cap B$ defined as $A \cap B = \langle x, \eta_A(x) \land \eta_B(x), \sigma_A(x) \land \sigma_B(x), \nu_A(x) \lor \nu_B(x) \rangle$;
- (4) $A \cup B$ defined as $A \cup B = \langle x, \eta_A(x) \lor \eta_B(x), \sigma_A(x) \lor \sigma_B(x), \nu_A(x) \land \nu_B(x) \rangle$.

Definition 1.2. [9] A Neutrosophic topology on a non empty set X is a family τ_N of Neutrosophic subsets in X satisfying the following axioms:

- (1) $0_N, 1_N \in \tau_N;$
- (2) $G_1 \cap G_2 \in \tau_N$ for any $G_1, G_2 \in \tau_N$;
- (3) $\cup G_i \in \tau_N$ for any family $\{G_i \mid i \in J\} \subseteq \tau_N$;

the pair (X, τ_N) is called a Neutrosophic topological space. The elements in τ_N are called as Neutrosophic open sets. The Neutrosophic set A is closed if and only if A^c is Neutrosophic open.

Definition 1.3. Let (X, τ_N) be Neutrosophic topological spaces. The Neutrosophic closure and Neutrosophic interior of A are defined by

- (1) N- $cl(A) = \cap \{K \mid K \text{ is a Neutrosophic closed set in } X \text{ and } A \subseteq K\};$
- (2) N-int $(A) = \bigcup \{ G \mid G \text{ is a Neutrosophic open set in } X \text{ and } G \subseteq A \}.$

Definition 1.4. Let (X, τ_N) be a Neutrosophic topological space. The subset A is:

- (1) Neutrosophic regular closed set [1] (N-RCS in short) if A = N-cl(N-int(A)).
- (2) Neutrosophic α closed set [1] (N- α CS in short) if N-cl(N-int(N-cl((A))) \subseteq (A).
- (3) Neutrosophic semi closed set [6] (N-SCS in short) if N-int(N-cl $(A)) \subseteq A$.
- (4) Neutrosophic pre closed set [11] (N-PCS in short) if N-cl(N-int(A)) $\subseteq A$.
- (5) Neutrosophic semipreclosed set [8](N-SPCS in short) if N-int(N-cl(N-int(A) ⊆ A.
- (6) Neutrosophic generalised closed set [3] (N-GCS in short) if N-cl(A) ⊆ U whenever A ⊆ U and U is a N-OS in X.
- (7) Neutrosophic generalised semi closed set [10] (N-GSCS in short) if N- $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is a N-OS in X.
- (8) Neutrosophic α generalised closed set [7] (N- αGCS in short) if N- $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a N-OS in X.

8606

(9) Neutrosophic α generalised semi closed set [2] (N- $\alpha GSCS$ in short) if N- $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a N-SOS in X.

2. Neutrosophic strongly α -generalized semi closed sets

Definition 2.1. A NS A in (X, τ) is said to be a Neutrosophic strongly α - generalized semi-closed set (briefly $Ns \alpha$ GSCS) $N\alpha cl(A) \subseteq U^*$ whenever $A \subseteq U^*$ and U^* is a NGSOS in (X, τ) and the family of all $Ns\alpha GSCS$ of a $NTS(X, \tau)$ is denoted by $Ns\alpha GSC(X)$.

Example 1. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a *NT* on *X*, where $V = \langle x, (\frac{7}{10}, \frac{1}{2}, \frac{3}{10}), (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}) \rangle$. Then the *NS* $A = \langle x, (\frac{1}{5}, \frac{1}{2}, \frac{4}{5}), (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}) \rangle$ is a *Ns* α *GSCS* in (X, τ) .

Theorem 2.1. Every NCS in (X, τ) is a Ns α GSCS but not conversely.

Proof. Assume that A is a NCS in (X, τ) . Let us consider a $NS A \subseteq U^*$ where U^* is a NGSOS in X. Since $N\alpha cl(A) \subseteq Ncl(A)$ and A is a NCS in X, $N\alpha cl(A) \subseteq Ncl(A) = A \subseteq U^*$ and U^* is NGSOS. That is $N\alpha cl(A) \subseteq U$. Therefore, A is $Ns\alpha GSCS$ in X.

Example 2. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{4}{5}, \frac{1}{2}, \frac{1}{5}), (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}) \rangle$. Then the NS $A = \langle x, (\frac{1}{10}, \frac{1}{2}, \frac{9}{10}), (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}) \rangle$ is Ns α GSCS but not a NCS in X.

Theorem 2.2. Every $N\alpha CS$ in (X, τ) is a $Ns\alpha GSCS$ in (X, τ) but not conversely.

Proof. Let A be a $N\alpha CS$ in X. Let us consider a $NS \ A \subseteq U^*$ is a NGSOS in (X, τ) . Since A is a $N\alpha CS$, $N\alpha cl(A) = A$. Hence $N\alpha cl(A) \subseteq U^*$ whenever $A \subseteq U^*$ and U^* is NGSOS. Therefore, A is a $Ns\alpha GSCS$ in X. \Box

Example 3. Let $X = \{a, b\}$. Let $\tau = \{0_N, V_1, V_2, , 1_N\}$ be a *NT* on *X*, where $V_1 = \langle x, (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}) \rangle$ and $V_2 = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}), (\frac{1}{5}, \frac{1}{2}, \frac{7}{10}) \rangle$. Consider a *NS* $A = \langle x, (\frac{4}{5}, \frac{1}{2}, \frac{1}{10}), (\frac{4}{5}, \frac{1}{2}, \frac{1}{10}) \rangle$ which is *Ns* α *GSCS* but not *N* α *CS*, since $Ncl(Nin(NclA))) = 1_N \not\subseteq A$.

Theorem 2.3. Every NRCS in (X, τ) is a Ns α GSCS in (X, τ) but not conversely. Proof. Let A be a NRCS in (X, τ) . Since every NRCS is a NCS, A is a NCS in X. Hence by Theorem 2.1, A is a Ns α GSCS in X. **Example 4.** Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a *NT* on *X*, where $V = \langle x, (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}), (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}) \rangle$. Consider ANS $A = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{5}, \frac{1}{2}, \frac{4}{5}) \rangle$ which is a $Ns \alpha GSCS$ but not NRCS in X as $Ncl(Nint(A)) = 0_N \subset A$.

Theorem 2.4. Every $Ns\alpha GSCS$ in (X, τ) is a $N\alpha GSCS$ in (X, τ) but not conversely.

Proof. Assume that A is a $Ns\alpha GSCS$ in (X, τ) . Let us consider $NS \ A \subseteq U^*$ where U^* is a NSOS in X. Since every NSOS is a NGSOS and by hypothesis $N\alpha cl(A) \subseteq U^*$, whenever $A \subseteq U^*$ and U^* is a NGSOS in X. We have $N\alpha cl(A) \subseteq$ U^* , whenever $A \subseteq U^*$ and U^* is a NSOS in X. Hence A is a $N\alpha GSCS$ in X. \Box

Example 5. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a *NT* on *X*, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{2}{5}), (\frac{4}{5}, \frac{1}{2}, \frac{1}{5}) \rangle$. Then the *NS* $A = \langle x, (\frac{1}{2}, \frac{1}{2}, \frac{3}{10}), (\frac{1}{5}, \frac{1}{2}, \frac{3}{10}) \rangle$ is a *N* α *GSCS* but not a *N* α *GSCS* in *X*.

Remark 2.1. A NP closedness is independent of $Ns\alpha GS$ closedness.

Example 6. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{4}{5}, \frac{1}{2}, \frac{1}{5}), (\frac{1}{5}, \frac{1}{2}, \frac{3}{10}) \rangle$. Then the NS $A = \langle x, (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}\frac{2}{5}) \rangle$ is NPCS but not Ns $\alpha GSCS$.

Example 7. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}) \rangle$. Then the NS $A = \langle x, (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}), (\frac{3}{10}, \frac{1}{2}, \frac{7}{10}) \rangle$ is $Ns\alpha GSCS$ but not a NPCS.

Remark 2.2. A NSP closedness is independent of $Ns\alpha GS$ closedness.

Example 8. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a *NT* on *X*, where $V = \langle x, (\frac{3}{5}, \frac{1}{2}, \frac{1}{5}), (\frac{3}{10}, \frac{1}{2}, \frac{1}{5}) \rangle$. Then the *NS* $A = \langle x, (\frac{7}{10}, \frac{1}{2}, \frac{1}{10}), (\frac{2}{5}, \frac{1}{2}, \frac{1}{10}) \rangle$ is *NSPCS* but not *Ns* α *GSCS*.

Example 9. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{5}, \frac{1}{2}, \frac{1}{5}), (\frac{3}{10}, \frac{1}{2}, \frac{1}{5}) \rangle$. Then the NS $A = \langle x, (\frac{1}{10}, \frac{1}{2}, \frac{7}{10}), (\frac{1}{10}, \frac{1}{2}, \frac{1}{2}) \rangle$ is Ns α GSCS but not NSPCS.

Remark 2.3. A $N\gamma CS$ in (X, τ) need not be a $Ns\alpha GSCS$.

Example 10. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}), (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}) \rangle$. Then the NS $A = \langle x, (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}), (\frac{2}{5}, \frac{1}{2}, \frac{2}{5}) \rangle$ is N γ CS but not Ns α GSCS.

8608

The relations between various types of Neutrosophic closed sets are given in the following diagram.

The reverse implications are not true in general.

Remark 2.4. The intersection of any two $Ns\alpha GSCS$ is not a $Ns\alpha GSCS$ in general as can be seen in the following example.

Example 11. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a *NT* on *X*, where $V = \langle x, (\frac{1}{5}, \frac{1}{2}, \frac{4}{5}), (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}) \rangle$. Then the *NS* $A = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}), (\frac{7}{10}, \frac{1}{2}, \frac{3}{10}) \rangle$ and $B = \langle x, (\frac{9}{10}, \frac{1}{2}, \frac{1}{10}), (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}) \rangle$ are *Ns* α *GSCS* in *X*. Now $A \cap B = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}), (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}) \rangle$ $\subseteq U^* = \langle x, (\frac{2}{5}, \frac{1}{2}, \frac{3}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{2}{5}) \rangle$ and U^* is *NGSOS* in *X*. But *N* α *cl* $(A \cap B) = 1_N \notin U^*$. Therefore, $A \cap B$ is not a *Ns* α *GSCS* in *X*.

Theorem 2.5. Let (X, τ) be a NTS. Then for every $A \in Ns\alpha GSC(X)$ and for every NS B in X, $A \subseteq B \subseteq N\alpha cl(A)$ implies $B \in Ns\alpha GSC(X)$.

Proof. Let $B \subseteq U^*$ where U^* is a NGSOS in X. Since $A \subseteq B, A \subseteq U^*$. Since A is a $Ns\alpha GSCS$ in $X, N\alpha cl(A) \subseteq U^*$. By hypothesis $B \subseteq N\alpha cl(A)$. This implies $N\alpha cl(B) \subseteq N\alpha cl(A) \subseteq U^*$. Therefore, $N\alpha cl(B) \subseteq U^*$. Hence B is a $Ns\alpha GSCS$ in X.

The independent relations between various types of Neutrosophic closed sets are given in the following diagram.

V. BANU PRIYA, S. CHANDRASEKAR, AND M. SURESH

In this diagram, $A \nleftrightarrow B$ denotes A and B are independent and $A \nrightarrow B$ denotes A need not be B.

Theorem 2.6. If A is a NGSOS and a Ns α GSCS, then A is a N α CS in X.

Proof. Let A be a NGSOS in X. Since $A \subseteq A$, by hypothesis $N\alpha cl(A) \subseteq A$. But always $A \subseteq N\alpha cl(A)$. Therefore, $N\alpha cl(A) = A$. Hence A is a $N\alpha CS$ in X. \Box

Theorem 2.7. Let (X, τ) be a NTS. Then A is a Ns α GSCS if and only if $A\bar{q}F$ implies N α cl $(A)\bar{q}F$ for every NGSCS F of X.

Proof. Necessary Part: Let F be a NGSCS and $A\bar{q}F$. Then $A \subseteq \hat{F}$ where \hat{F} is a NGSOS in X. By assumption $N\alpha cl(A) \subseteq \hat{F}$. Hence $N\alpha cl(A)\bar{q}F$.

Sufficient Part: Let F be NGSCS in X such that $A \subseteq \acute{F}$. By hypothesis, $A\bar{q}F$ implies $N\alpha cl(A)\bar{q}F$. This implies $N\alpha cl(A) \subseteq \acute{F}$ whenever $A \subseteq \acute{F}$ and \acute{F} is a NGSOS in X. Hence A is a $Ns\alpha GSCS$ in X.

3. Neutrosophic strongly α -generalized semi open sets

In this section we introduce Neutrosophic strongly α -generalized semi-open sets and study some of its properties.

Definition 3.1. A NS A is said to be Neutrosophic strongly α -generalized semiopen set (briefly Ns α GSOS) in (X, τ) if the complement A^c is a Ns α GSCS in X. The family of all Ns α GSOS of a NTS (X, τ) is denoted by Ns α GSO(X).

Theorem 3.1. For any $NTS(X, \tau)$, every NOS is a $Ns\alpha GSOS$ but not conversely.

8610

Proof. Let A be a NOS in X. Then A^c is a NCS in X. By Theorem 2.1, A^c is a $Ns\alpha GSCS$ in X. Hence A is a $Ns\alpha GSOS$ in X.

Example 12. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{4}{5}, \frac{1}{2}, \frac{1}{5}), (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}) \rangle$. Consider the NS $A = \langle x, (\frac{9}{10}, \frac{1}{2}, \frac{1}{10}), (\frac{7}{10}, \frac{1}{2}, \frac{3}{10}) \rangle$. Since A^c is a Ns α GSOS but not NOS in X.

Theorem 3.2. In any $NTS(X, \tau)$ every $N\alpha OS$ is a $Ns\alpha GSOS$ but not conversely.

Proof. Let A be a $N\alpha OS$ in X. Then A^c is a $N\alpha CS$ in X. By Theorem 2.2, A^c is a $Ns\alpha GSCS$ in X. Hence A is a $Ns\alpha GSOS$ in X.

Example 13. Let $X = \{a, b\}$. Let $\tau = \{0_N, V_1, V_2, 1_N\}$ be a NT on X, where $V_1 = \langle x, (\frac{2}{5}, \frac{1}{2}, \frac{1}{2}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}) \rangle$ and $V_2 = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{3}{5}), (\frac{1}{5}, \frac{1}{2}, \frac{7}{10}) \rangle$. Then the NS $A = \langle x, (\frac{1}{10}, \frac{1}{2}, \frac{4}{5}), (\frac{1}{10}, \frac{1}{2}, \frac{4}{5}) \rangle$ is a Ns α GSOS in X but not a N α OS in X.

Theorem 3.3. In any NTS (X, τ) , every NROS is a Ns α GSOS but not conversely.

Proof. Let A be a NROS in X. Then A^c is a NRCS in X. By Theorem 2.3, A^c is a $Ns\alpha GSCS$ in X. Hence A is a $Ns\alpha GSOS$ in X.

Example 14. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}), (\frac{3}{5}, \frac{1}{2}, \frac{2}{5}) \rangle$. Then the NS $A = \langle x, (\frac{7}{10}, \frac{1}{2}, \frac{3}{10}), (\frac{4}{5}, \frac{1}{2}, \frac{1}{5}) \rangle$ is a Ns α GSOS in X but not a NROS in X.

Theorem 3.4. In any $NTS(X, \tau)$, every $Ns\alpha GSOS$ is a $N\alpha GSOS$ but not conversely.

Proof. Let A be a $Ns\alpha GSOS$ in X. Then A^c is a $Ns\alpha GSCS$ in X. By Theorem 2.4, A^c is a $N\alpha GSCS$ in X. Hence A is a $N\alpha GSOS$ in X.

Example 15. Let $X = \{a, b\}$. Let $\tau = \{0_N, V, 1_N\}$ be a NT on X, where $V = \langle x, (\frac{3}{10}, \frac{1}{2}, \frac{2}{5}), (\frac{4}{5}, \frac{1}{2}, \frac{1}{5}) \rangle$. Then the NS $A = \langle x, (\frac{1}{5}, \frac{1}{2}, \frac{1}{2}), (\frac{3}{10}, \frac{1}{2}, \frac{3}{10}) \rangle$ is a N α GSOS in X but not a Ns α GSOS in X.

Remark 3.1. The union of any two $Ns\alpha GSOS$ is not a $Ns\alpha GSOS$ in general.

Example 16. Let $X = \{a, b\}$. Let $\tau = \{0_N, V_1, V_2, 1_N\}$ be a NT on X, where $V_1 = \langle x, (\frac{1}{5}, \frac{1}{2}, \frac{4}{5}), (\frac{2}{5}, \frac{1}{2}, \frac{3}{5}) \rangle$. $V_2 = \langle x, (\frac{1}{10}, \frac{1}{2}, \frac{9}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{2}{5}) \rangle$ are $Ns\alpha GSOS$ in X.Now $V_1 \cup V_2 = \langle x, (\frac{3}{5}, \frac{1}{2}, \frac{3}{10}), (\frac{1}{2}, \frac{1}{2}, \frac{2}{5}) \rangle$ is not a $Ns\alpha GSOS$ in X.

Theorem 3.5. A NS A of a NTS (X, τ) is a Ns α GSOS if and only if $F \subseteq \alpha int(A)$ whenever F is a NGSCS in X and $F \subseteq A$.

Proof. Necessary Part: Let A be a $Ns\alpha GSOS$ in X. Let F be a NGSCS in X and $F \subseteq A$. Then \acute{F} is a NGSOS in X such that $A' \subseteq \acute{F}$. Since A' is a $Ns\alpha GSCS$, we have $N\alpha cl(A') \subseteq \acute{F}$. Hence $(N\alpha int(A')) \subseteq \acute{F}$. Therefore, $F \subseteq N\alpha int(A)$. Sufficient Part: Let A be a NS in X and let $F \subseteq N\alpha int(A)$ whenever F is a NGSCS in X and $F \subseteq A$. Then $A' \subseteq \acute{F}$ and \acute{F} is a NGSOS. By hypothesis, $(N\alpha int(A')) \subseteq \acute{F}$, which implies $N\alpha cl(A') \subseteq \acute{F}$. Therefore, A is a $Ns\alpha GSCS$ in X. \Box

Theorem 3.6. If A is a Ns α GSOS in (X, τ) , then A is a NGSOS in (X, τ) .

Proof. Let A be a $Ns\alpha GSOS$ in X. This implies A is a $N\alpha GSOS$ in X. Since every $N\alpha GSOS$ is a NGSOS, A is a NGSOS in X.

REFERENCES

- I. AROKIARANI, R. DHAVASEELAN, S. JAFARI, M. PARIMALA: On Some New Notions and Functions In Neutrosophic Topological Spaces, Neutrosophic Sets and Systems, 16 (2017), 16–19.
- [2] V. BANU PRIYA, S. CHANDRASEKAR: Neutrosophic α generalized semi closed set, Neutrosophic Sets and Systems, 28 (2019), 162–170.
- [3] R. DHAVASEELAN, S. JAFARI: *Generalized Neutrosophic Closed Sets*, New Trends in Neutrosophic Theory and Applications, **2** (2018), 261–273.
- [4] F. SMARANDACHE: Neutrosophic and Neutrosophic Logic, Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability and Statistics, University of New Mexico-Gallup, 2002.
- [5] F. SMARADACHE: Neutrosophic Set, Generalization of Intuitionistic Fuzzy set, Journal of Defense Resourses Management, 1 (2010), 107–116.
- [6] P. ISHWARYA, K. BAGEERATHI: On Neutrosophic semi-open sets in Neutrosophic Topological Spaces, International Journal of Mathematics Trends and Technology, 37(3) (2016), 214–223.
- [7] D. JAYANTHI: *α* Generalized Closed Sets in Neutrosophic Topological Spaces, International Journal of Mathematics Trends and Technology, Special Issue-ICRMIT, (2018), 88–91.
- [8] R. THOMAS, S. ANILA: On Neutrosophic Semi-preopen Sets and Semi-preclosed Sets in a Neutrosophic Topological Space, International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(5) (2018), 138–143.

- [9] A. A. SALAMA, S. A. ALBLOWI: *Neutrosophic Set and Neutrosophic Topological Spaces*, IOSR Journal of Mathematics, **3**(4) (2012), 31–35.
- [10] V. K. SHANTHI, S. CHANDRASEKAR, K. SAFINA BEGAM: Neutrosophic Generalized Semi Closed Sets In Neutrosophic Topological Spaces, International Journal of Research in Advent Technology, 6(7) (2018), 1739–1743.
- [11] V. VENKATESWARA RAO, Y. SRINIVASA RAO: Neutrosophic Pre-open Sets and Preclosed Sets in Neutrosophic Topology, International Journal of ChemTech Research, 10(10) (2017), 449–458.

DEPARTMENT OF MATHEMATICS RMK COLLEGE OF ENGINEERING AND TECHNOLOGY PUDUVOYAL, TIRUVALLUR, TAMIL NADU, INDIA *Email address*: spriya.maths@gmail.com

PG AND RESEARCH DEPARTMENT OF MATHEMATICS ARIGNAR ANNA GOVERNMENT ARTS COLLEGE NAMAKKAL, TAMIL NADU, INDIA *Email address*: chandrumat@gmail.com

DEPARTMENT OF MATHEMATICS R.M.D. ENGINEERING COLLEGE KAVARAIPETTAI, TIRUVALLUR, TAMIL NADU, INDIA *Email address*: sureshmaths2209@gmail.com