ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.10, 8629–8634 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.10.88

THE UPPER PATH INDUCED MONOPHONIC NUMBER OF GRAPHS

I. ANNALIN SELCY¹ AND P. ARUL PAUL SUDHAHAR

ABSTRACT. A monophonic set is called a path induced monophonic set of G if $\langle M \rangle$ has a Hamiltonian path. The minimum cardinality of a path induced monophonic set is called path induced monophonic number of G and is denoted by pim(G). A path induced monophonic set with |M| = pim(G) is called a minimum path induced monophonic set of G or pim-set of G. A path induced monophonic set of G or pim-set of G. A path induced monophonic set if no proper subset of M is a path induced monophonic set of G. The upper path induced monophonic number $pim^+(G)$ is the maximum cardinality of a minimal path induced monophonic set of G. Some general properties satisfied by this concept are studied. For any integers $3 < a \leq b$ (b > a + 2), there exists a connected graph G such that pim(G) = a and $pim^+(G) = b$.

1. INTRODUCTION

By a graph G = (V,E) we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graph with at least three vertices. For basic theoretic terminology we refer to Harary [2]. For two vertices u and v in a connected graph G, the *distance* d(u, v) is the length of a shortest u-v path in G. An u-v path of length d(u, v) is called an u-v geodesic. For a vertex v of G,

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 05C12.

Key words and phrases. monophonic path, monophonic number, path induced monophonic number, upper path induced monophonic number.

8630 I. ANNALIN SELCY AND P. ARUL PAUL SUDHAHAR

the *eccentricity* e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices is the *radius*, *radG* and the maximum eccentricity is the diameter, diamG of G. For subsets A and B of V(G), the distance d(A, B) is defined as $d(A, B) = min\{d(x, y) : x \in A, y \in B\}$. An *u*-*v* path of length d(A, B) is called an A-B geodesic joining the sets A, B, where $u \in A$ and $v \in B$. A vertex x is said to lie on an A - B geodesic if x is a vertex of an A-B geodesic. For A = (u, v) and B = (z, w) with uv and zw edges, we write an A-B geodesic as uv - zw geodesic and d(A, B) as d(uv, zw). The maximum degree of G, denoted by $\triangle(G)$, is given by $\triangle(G) = max\{deg_G(v) : v \in V(G)\}, N(v) =$ $\{u \in V(G) : uv \in E(G)\}$ is called the *neighborhood* of the vertex v in G. A vertex v is an *extreme vertex* of a graph G if the subgraph induced by its neighbors is complete. An edge e of a graph G is called an *extreme edge* of G, if one of its ends is an extreme vertex of G. A chord of a path $u_0, u_1, u_2, ..., u_h$ is, an edge $u_i u_j$ with $j \ge i+2$. An u-v path is called a monophonic path if it is a chordless path. A monophonic set of G is a set $M \subseteq V$ such that every vertex of G lies on a monophonic path joining some pair of vertices in M. A monophonic set $M \subseteq V$ is called a *path induced monophonic set* of G if < M > has a Hamiltonian path. The minimum cardinality of a path induced monophonic set is called *path* induced monophonic number of G, denoted by pim(G). A path induced monophonic set with |M| = pim(G) is called a minimum path induced monophonic number of G or *pim*-set of G.

The following theorems are used in sequel.

Theorem 1.1. [1] Each extreme vertex of *G* belongs to every path induced monophonic set.

Theorem 1.2. [1] Let G be a path induced monophonic graph with a cut-vertex x. Then x belongs to every path induced monophonic graph set of G.

Theorem 1.3. [1] For a path $G = P_p$ $(p \ge 2)$, pim(G) = p.

2. The Upper Path Induced Monophonic Number of some Graphs

Definition 2.1. Let G be a connected graph. A path induced monophonic set M in a connected graph G is called a minimal path induced monophonic set if no proper subset of M is a path induced monophonic set of G. The upper path

induced monophonic number $pim^+(G)$ is the maximum cardinality of a minimal path induced monophonic set of G.

Example 1. For the graph G given in Figure 1, $M_1 = \{v_1, v_2, v_3, v_4, v_5\}$ and $M_2 = \{v_1, v_2, v_8, v_7, v_6, v_4, v_5\}$ are the only two minimal path induced monophonic sets of G. Therefore $pim^+(G) = 7$.

Theorem 2.1. For a connected graph G, $2 \le pim(G) \le pim^+(G) \le p$.

Proof. Any path induced monophonic set needs at least two vertices and so $pim(G) \ge 2$. Since every minimum path induced monophonic set is a minimal path induced monophonic set, $pim(G) \le pim^+(G)$. Also, since V(G) induces a minimal path induced monophonic set of G, it is clear that $pim^+(G) \le p$. Thus $2 \le pim(G) \le pim^+(G) \le p$.

Remark 2.1. For the graph $G = P_3$, pim(G) = 3. For the path $G = P_p$, $pim^+(G) = p$. Also, all the inequalities in Theorem 2.1 are strict. For the graph G given in Figure 1, pim(G) = 5, $pim^+(G) = 7$ and p = 8 so that $2 < pim(G) < pim^+(G) < p$.

Theorem 2.2. Let *G* be a path induced monophonic graph. Then pim(G) = p if and only if $pim^+(G) = p$.

Proof. Let $pim^+(G) = p$. Then M = V(G) is the unique minimal path induced monophonic set of G. Since no proper subset of M is a path induced monophonic set, it is clear that M is the unique minimum path induced monophonic set of G and so pim(G) = p. The converse follows from Theorem 2.1.

Theorem 2.3. Let G be a path induced monophonic graph. Then every extreme vertex of a connected graph G belongs to every minimal path induced monophonic set of G.

Proof. Since every minimal path induced monophonic set is a path induced monophonic set, the result follows from Theorem 1.1. \Box

Corollary 2.1. For the complete graph $G = K_p$, $pim^+(G) = p$.

Proof. This follows from Theorem 2.2.

Corollary 2.2. For any path $G = P_p$, $pim^+(G) = pim(G) = p$.

Proof. This follows from Theorem 1.2 and Theorem 2.2.

Theorem 2.4. For the complete bipartite graph $G = K_{m,n}$ $(2 \le m \le n)$, $pim^+(G) = 4$.

Proof. Without loss of generality, let $m \le n$. Let $U = \{u_1, u_2, ..., u_m\}$ and $V = \{v_1, v_2, ..., v_n\}$ be a bipartition of *G*. Let *M* be any path induced monophonic set of *G*. We prove that *M* contains at least two vertices from *U* and at least two vertices from *V*. Suppose that *M* contains at most one vertex from *U* and at most one vertex from *V*. Then *M* is not a path induced monophonic set of *G*, which is a contradiction. Therefore *M* contains at least two vertices from *U* and at least two vertices from *V*. We prove that $pim^+(G) = 4$. Suppose $pim^+(G) \ge 4$. Then there exists a minimal path induced monophonic set M_1 of *G* with $|M_1 \ge 5$. Since M_1 contains at least two vertices from *U* and at least two vertices from *V*, without loss of generality, let $u_1, u_2, u_3, v_1, v_2 \in M_1$. Then $M_2 = M_1 - \{u_3\}$ is a path induced monophonic set of *G* with $M_2 \subseteq M_1$, which is a contradiction to M_1 a miniminal path induced monophonic set of *G*. Therefore $pim^+(G) = 4$.

Theorem 2.5. For the cycle $G = C_p$, $pim^+(G) = 3$.

Proof. Let $C_p : v_1, v_2, v_3, ..., v_p, v_1$. Let $M = \{x, y, z\}$ be a set of vertices of G such that $xy, yz \in E(G)$. Then M is a minimal path induced monophonic set of G

so that $pim^+(G) \ge 3$. We show that $pim^+(G) = 3$. On the contrary suppose that $pim^+(G) \ge 4$. Then there exists a minimal path induced monophonic set M' of G such that $|M'| \ge 4$. If $\langle M' \rangle$ is connected, then $M \subset M'$. If $\langle M' \rangle$ is not connected then $\langle M' \rangle$ has no Hamiltonian path, which is a contradiction. Therefore M' is not a minimal path induced monophonic set of G. Hence $pim^+(G) = 3$.

Theorem 2.6. For the wheel $G = K_1 + C_{p-1}$ $(p \ge 4)$, $pim^+(G) = 3$.

Proof. The *pim*-set of *G* are $M = \{x, v, w\}$ where $uv, vw \in E(G)$ and $S = \{u, x, v\}$ where $ux, vx \in E(G)$ and $uv \notin E(G)$ so that $pim^+(G) = 3$. We prove that $pim^+(G) = 3$. Suppose that $pim^+(G) \ge 4$. Then there exists a minimal path induced monophonic set M_1 of *G* such that $|M_1| \ge 4$. Since $\langle M_1 \rangle$ contains a Hamiltonian path, then either $M \subset M_1$ or $S \subset M_1$, which is a contradiction. Therefore $pim^+(G) = 3$.

Theorem 2.7. For any integers $3 < a \le b$ (b > a + 2), there exists a connected graph *G* such that pim(G) = a and $pim^+(G) = b$.

Proof. If a = b, let $G = P_p$. Then by Theorem 1.3 and Corollary 2.1, $pim(G) = a = pim^+(G)$.

Let 3 < a < b. Let $P_{a-2} : v_1, v_2, ..., v_{a-2}$ be a path on a - 2 vertices. Let $Q_{b-a} : u_1, u_2, ..., u_{b-4}$ be a path on b - 4 vertices. Let G be the graph obtained from P_{a-2} and Q_{b-a-4} by adding the vertices x, y and introducing the edges $xv_1, yv_{a-2}, u_{b-4}v_1$ and u_1v_{a-2} . Let $M = \{x, y, v_1, v_2, ..., v_{a-2}\}$. Then M is a path induced monophonic set of G so that $pim(G) \leq a$. We prove that pim(G) = a. Suppose that $pim(G) \leq a - 1$. Then there exists a path induced monophonic set M' such that $|M'| \leq a - 1$. By Theorem 1.1, $x, y \in M'$. Since b > 2a - 2, < M' > has no Hamiltonian path, which is a contradiction. Then pim(G) = a.

Next, we show that $pim^+(G) = b$. Let $M_2 = \{x, y, u_1, u_2, ..., u_{b-4}, v_1, v_{a-2}\}$. Then M_2 is a path induced monophonic set of G. We prove that M_2 is a minimal path induced monophonic set of G. If not suppose that there exists a path induced monophonic set M_3 such that $M_3 = M_2$. Since $x, y \in M_3$ and $\langle M_3 \rangle$ has a Hamiltonian path, we have $M_3 \subset M_2$, which is a contradiction. Therefore M_3 is a minimal path induced monophonic set of G so that $pim^+(G) \geq b$. We prove that $pim^+(G) = b$. Suppose that $pim^+(G) \geq b + 1$. Then there exists a minimal path induced monophonic set M such that $|M| \geq b + 1$. Since

 $x, y \in M$ then M has no Hamiltonian path, which is a contradiction. Therefore $pim^+(G) = b$.

References

- [1] I. ANNALIN SELCY, P. ARUL PAUL SUDHAHAR, S. ROBINSON CHELLATHURAI: *Path induced monophonic graphs*, 2nd The International journal of analytical and experimental modal analysis, **11**(12) (2019), 24-33.
- [2] F. BUCKLEY, F. HARARY: Distance in Graphs, Addition- Wesley, Redwood City, CA, 1990.

DEPARTMENT OF MATHEMATICS PONJESLY COLLEGE OF ENGINEERING NAGERCOIL-629 003 *Email address*: iaselcy@mail.com

DEPARTMENT OF MATHEMATICS RANI ANNA GOVERNMENT ARTS COLLEGE (W) TIRUNELVELI-627 008 Email address: arulpaulsudhar@gmail.com