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THE UPPER PATH INDUCED MONOPHONIC NUMBER OF GRAPHS

I. ANNALIN SELCY1 AND P. ARUL PAUL SUDHAHAR

ABSTRACT. A monophonic set is called a path induced monophonic set of G

if 〈M〉 has a Hamiltonian path. The minimum cardinality of a path induced
monophonic set is called path induced monophonic number of G and is denoted
by pim(G). A path induced monophonic set with |M | = pim(G) is called a
minimum path induced monophonic set of G or pim-set of G. A path induced
monophonic set M in a connected graph G is called a minimal path induced
monophonic set if no proper subset of M is a path induced monophonic set
of G. The upper path induced monophonic number pim+(G) is the maximum
cardinality of a minimal path induced monophonic set of G. Some general
properties satisfied by this concept are studied. For any integers 3 < a ≤ b

(b > a + 2), there exists a connected graph G such that pim(G) = a and
pim+(G) = b.

1. INTRODUCTION

By a graph G = (V,E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q re-
spectively. We consider connected graph with at least three vertices. For basic
theoretic terminology we refer to Harary [2]. For two vertices u and v in a
connected graph G, the distance d(u, v) is the length of a shortest u-v path in
G. An u-v path of length d(u, v) is called an u-v geodesic. For a vertex v of G,
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the eccentricity e(v) is the distance between v and a vertex farthest from v. The
minimum eccentricity among the vertices is the radius, radG and the maximum
eccentricity is the diameter, diamG of G. For subsets A and B of V (G), the dis-
tance d(A,B) is defined as d(A,B) = min{d(x, y) : x ∈ A, y ∈ B}. An u–v path
of length d(A,B) is called an A-B geodesic joining the sets A,B, where u ∈ A

and v ∈ B. A vertex x is said to lie on an A - B geodesic if x is a vertex of an
A-B geodesic. For A = (u, v) and B = (z, w) with uv and zw edges, we write an
A-B geodesic as uv - zw geodesic and d(A,B) as d(uv, zw). The maximum degree
of G, denoted by 4(G), is given by 4(G) = max{degG(v) : v ∈ V (G)}, N(v) =

{u ∈ V (G) : uv ∈ E(G)} is called the neighborhood of the vertex v in G. A vertex
v is an extreme vertex of a graph G if the subgraph induced by its neighbors is
complete. An edge e of a graph G is called an extreme edge of G, if one of its
ends is an extreme vertex of G. A chord of a path u0, u1, u2, ..., uh is, an edge
uiuj with j ≥ i+2. An u – v path is called a monophonic path if it is a chordless
path. A monophonic set of G is a set M ⊆ V such that every vertex of G lies
on a monophonic path joining some pair of vertices in M . A monophonic set
M ⊆ V is called a path induced monophonic set of G if < M > has a Hamiltonian
path. The minimum cardinality of a path induced monophonic set is called path
induced monophonic number of G, denoted by pim(G). A path induced mono-
phonic set with | M |= pim(G) is called a minimum path induced monophonic
number of G or pim-set of G.

The following theorems are used in sequel.

Theorem 1.1. [1] Each extreme vertex of G belongs to every path induced
monophonic set.

Theorem 1.2. [1] Let G be a path induced monophonic graph with a cut-vertex
x. Then x belongs to every path induced monophonic graph set of G.

Theorem 1.3. [1] For a path G = Pp (p ≥ 2), pim(G) = p.

2. THE UPPER PATH INDUCED MONOPHONIC NUMBER OF SOME GRAPHS

Definition 2.1. Let G be a connected graph. A path induced monophonic set
M in a connected graph G is called a minimal path induced monophonic set if
no proper subset of M is a path induced monophonic set of G. The upper path
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induced monophonic number pim+(G) is the maximum cardinality of a minimal
path induced monophonic set of G.

Example 1. For the graph G given in Figure 1, M1 = {v1, v2, v3, v4, v5} and M2 =

{v1, v2, v8, v7, v6, v4, v5} are the only two minimal path induced monophonic sets of
G. Therefore pim+(G) = 7.

Theorem 2.1. For a connected graph G, 2 ≤ pim(G) ≤ pim+(G) ≤ p.

Proof. Any path induced monophonic set needs at least two vertices and so
pim(G) ≥ 2. Since every minimum path induced monophonic set is a minimal
path induced monophonic set, pim(G) ≤ pim+(G). Also, since V (G) induces a
minimal path induced monophonic set of G, it is clear that pim+(G) ≤ p. Thus
2 ≤ pim(G) ≤ pim+(G) ≤ p. �

Remark 2.1. For the graph G = P3, pim(G) = 3. For the path G = Pp, pim+(G) =

p. Also, all the inequalities in Theorem 2.1 are strict. For the graph G given in
Figure 1, pim(G) = 5, pim+(G) = 7 and p = 8 so that 2 < pim(G) < pim+(G) <

p.

Theorem 2.2. Let G be a path induced monophonic graph. Then pim(G) = p if
and only if pim+(G) = p.
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Proof. Let pim+(G) = p. Then M = V (G) is the unique minimal path induced
monophonic set of G. Since no proper subset of M is a path induced mono-
phonic set, it is clear that M is the unique minimum path induced monophonic
set of G and so pim(G) = p. The converse follows from Theorem 2.1. �

Theorem 2.3. Let G be a path induced monophonic graph. Then every extreme
vertex of a connected graph G belongs to every minimal path induced mono-
phonic set of G.

Proof. Since every minimal path induced monophonic set is a path induced
monophonic set, the result follows from Theorem 1.1. �

Corollary 2.1. For the complete graph G = Kp, pim+(G) = p.

Proof. This follows from Theorem 2.2. �

Corollary 2.2. For any path G = Pp, pim+(G) = pim(G) = p.

Proof. This follows from Theorem 1.2 and Theorem 2.2. �

Theorem 2.4. For the complete bipartite graph G = Km,n (2 ≤ m ≤ n),
pim+(G) = 4.

Proof. Without loss of generality, let m ≤ n. Let U = {u1, u2, ..., um} and V =

{v1, v2, ..., vn} be a bipartition of G. Let M be any path induced monophonic
set of G. We prove that M contains at least two vertices from U and at least
two vertices from V . Suppose that M contains at most one vertex from U and
at most one vertex from V . Then M is not a path induced monophonic set of
G, which is a contradiction. Therefore M contains at least two vertices from
U and at least two vertices from V . We prove that pim+(G) = 4. Suppose
pim+(G) ≥ 4. Then there exists a minimal path induced monophonic set M1 of
G with | M1 ≥ 5. Since M1 contains at least two vertices from U and at least
two vertices from V , without loss of generality, let u1, u2, u3, v1, v2 ∈ M1. Then
M2 = M1−{u3} is a path induced monophonic set of G with M2 ⊆M1, which is
a contradiction to M1 a miniminal path induced monophonic set of G. Therefore
pim+(G) = 4. �

Theorem 2.5. For the cycle G = Cp, pim+(G) = 3.

Proof. Let Cp : v1, v2, v3, ..., vp, v1. Let M = {x, y, z} be a set of vertices of G such
that xy, yz ∈ E(G). Then M is a minimal path induced monophonic set of G
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so that pim+(G) ≥ 3. We show that pim+(G) = 3. On the contrary suppose
that pim+(G) ≥ 4. Then there exists a minimal path induced monophonic set
M ′ of G such that | M ′ |≥ 4. If < M ′ > is connected, then M ⊂ M ′. If
< M ′ > is not connected then < M ′ > has no Hamiltonian path, which is a
contradiction. Therefore M ′ is not a minimal path induced monophonic set of
G. Hence pim+(G) = 3. �

Theorem 2.6. For the wheel G = K1 + Cp−1 (p ≥ 4), pim+(G) = 3.

Proof. The pim-set of G are M = {x, v, w} where uv, vw ∈ E(G) and S =

{u, x, v} where ux, vx ∈ E(G) and uv 6∈ E(G) so that pim+(G) = 3. We prove
that pim+(G) = 3. Suppose that pim+(G) ≥ 4. Then there exists a minimal path
induced monophonic set M1 of G such that | M1 |≥ 4. Since < M1 > contains
a Hamiltonian path, then either M ⊂ M1 or S ⊂ M1, which is a contradiction.
Therefore pim+(G) = 3. �

Theorem 2.7. For any integers 3 < a ≤ b (b > a + 2), there exists a connected
graph G such that pim(G) = a and pim+(G) = b.

Proof. If a = b, let G = Pp. Then by Theorem 1.3 and Corollary 2.1, pim(G) =

a = pim+(G).
Let 3 < a < b. Let Pa−2 : v1, v2, ..., va−2 be a path on a − 2 vertices. Let

Qb−a : u1, u2, ..., ub−4 be a path on b − 4 vertices. Let G be the graph obtained
from Pa−2 and Qb−a−4 by adding the vertices x, y and introducing the edges
xv1, yva−2, ub−4v1 and u1va−2. Let M = {x, y, v1, v2, ..., va−2}. Then M is a path
induced monophonic set of G so that pim(G) ≤ a. We prove that pim(G) = a.
Suppose that pim(G) ≤ a− 1. Then there exists a path induced monophonic set
M ′ such that |M ′ |≤ a−1. By Theorem 1.1, x, y ∈M ′. Since b > 2a−2, < M ′ >

has no Hamiltonian path, which is a contradiction. Then pim(G) = a.
Next, we show that pim+(G) = b. Let M2 = {x, y, u1, u2, ..., ub−4, , v1, va−2}.

Then M2 is a path induced monophonic set of G. We prove that M2 is a minimal
path induced monophonic set of G. If not suppose that there exists a path
induced monophonic set M3 such that M3 = M2. Since x, y ∈ M3 and < M3 >

has a Hamiltonian path, we have M3 ⊂ M2, which is a contradiction. Therefore
M3 is a minimal path induced monophonic set of G so that pim+(G) ≥ b. We
prove that pim+(G) = b. Suppose that pim+(G) ≥ b + 1. Then there exists
a minimal path induced monophonic set M such that | M |≥ b + 1. Since
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x, y ∈ M then M has no Hamiltonian path, which is a contradiction. Therefore
pim+(G) = b. �
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