ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.10, 7775–7781 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.10.9 Spec. Issue on ACMAMP-2020

TRANSLATION OF Q-FUZZY SUBRING AND ANTI Q-FUZZY SUBRING

B. ANITHA

ABSTRACT. In this paper, the concept of Q-fuzzy translation of Q-fuzzy subring (ideal), anti Q-fuzzy subring are presented and further, some important notions and basic algebraic properties are discussed. Also we studied the homomorphic behavior of Q-fuzzy translation of Q-fuzzy subring and Anti Q-fuzzy subring.

1. INTRODUCTION

The pioneering work of Zadeh on the fuzzy subset of a set in [8] and Rosenfeld on fuzzy subgroups of a group in [4] led to the fuzzification of algebraic structures. For example in [2, 3], Liu introduced the notion of fuzzy ideal of a ring. Biswas in [1] gave the idea of Anti fuzzy subgroups. The notion of translates of fuzzy set has been defined by the author in [5]. The same author in [6] introduced the translates of anti fuzzy subrings and ideals. The notion of translation of anti *S*-fuzzy subhemiring was introduced by the authors in [7]. In this paper, we study the translation of *Q*-fuzzy subring and anti *Q*-fuzzy subring.

2. PRELIMINARIES

Definition 2.1. Let X be a non-empty set and Q be a non-empty set. A Q-fuzzy subset A of X is a function $A : X \times Q \rightarrow [0, 1]$.

²⁰²⁰ Mathematics Subject Classification. 03E72.

Key words and phrases. Q-fuzzy set (QFS), Q-fuzzy subring (QFSR), anti Q-fuzzy subring (AQFSR) and Q-fuzzy ideals (QFI), Homomorphism and Anti-Homomorphism.

B. ANITHA

Definition 2.2. Let R be a ring. A Q-fuzzy subset A of R is said to be a Q-fuzzy subring (QFSR) of R if it satisfies the following conditions.

- (i) $A(x-y,q) \ge \min\{A(x,q), A(y,q)\}$
- (ii) $A(xy,q) \ge \min\{A(x,q), A(y,q)\}$, for all $x, y \in R$ and $q \in Q$.

Definition 2.3. Let R be a ring. A Q-fuzzy subset A in R is called anti Q-fuzzy subring (AQFSR) of R if

- (i) $A(x y, q) \le \max\{A(x, q), A(y, q)\}$
- (*ii*) $A(xy,q) \le \max\{A(x,q), A(y,q)\}$, for all $x, y \in R$.

Definition 2.4. A *Q*-fuzzy subset A of R is called

(a) Q-fuzzy left ideal (QFLI) of R if

(i) $A(x-y,q) \ge \min\{A(x,q), A(y,q)\}$

(*ii*) $A(xy,q) \ge A(y,q)$, for all $x, y \in R$ and $q \in Q$.

- (b) Q-fuzzy right ideal (QFRI) of R if
 - (i) $A(x-y,q) \ge \min\{A(x,q), A(y,q)\}$
 - (*ii*) $A(xy,q) \ge A(x,q)$
- (c) Q-fuzzy ideal (QFI) of R if
 - (i) $A(x y, q) \ge \min\{A(x, q), A(y, q)\}$
 - (ii) $A(xy,q) \ge \max\{A(x,q), A(y,q)\}$, for all $x, y \in R$ and $q \in Q$.

Definition 2.5. A *Q*-fuzzy subset A of a ring R is called

(a) Anti fuzzy left ideal (AFLI) of R if

- (i) $A(x-y,q) \le \max\{A(x,q), A(y,q)\}$
- (*ii*) $A(xy,q) \leq A(y,q)$, for all $x, y \in R$ and $q \in Q$.
- (b) Anti fuzzy right ideal (AFRI) of R if
 - (i) $A(x-y,q) \le \max\{A(x,q), A(y,q)\}$
 - (*ii*) $A(xy,q) \leq A(x,q)$, for all $x, y \in R$ and $q \in Q$.
- (c) Anti fuzzy ideal (AFI) of R if

(i) $A(x - y, q) \le \max\{A(x, q), A(y, q)\}$

(*ii*) $A(xy,q) \leq \min\{A(x,q), A(y,q)\}$, for all $x, y \in R$ and $q \in Q$.

Definition 2.6. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two subring. Then the function $f : R \to R'$ is called a ring homomorphism if it satisfies the following conditions.

- (i) f(x+y) = f(x) + f(y)
- (*ii*) $f(xy) = f(x) \cdot f(y)$, for all $x, y \in R$.

7776

Definition 2.7. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two subrings. Then the function $f : R \to R'$ is called a ring anti-homomorphism if it satisfies the following conditions.

(i) f(x+y) = f(y) + f(x)(ii) $f(xy) = f(y) \cdot f(x)$, for all $x, y \in R$.

Definition 2.8. Let A be a Q-fuzzy subset of R and $\alpha \in [0, 1 - \sup\{A(x,q) : x \in R, 0 < A(x,q) < 1\}]$. Then $T = T_{\alpha}^{A}$ is called a Q-fuzzy translation of A if $T(x,q) = A(x,q) + \alpha$, for all $x \in R$.

3. Translation of Q-fuzzy Subring and Anti Q-fuzzy Subring

Theorem 3.1. If A is a QFSR of the ring R then $T = T_{\alpha}^{A}$ is also QFSR of R.

Proof. Let $x, y \in R$ and $q \in Q$ be any elements, we have

$$T(x - y, q) = A(x - y, q) + \alpha \ge \min\{A(x, q), A(y, q)\} + \alpha$$

= min{A(x, q) + \alpha, A(y, q) + \alpha} = min{T(x, q), T(y, q)}
T(xy, q) = A(xy, q) + \alpha \ge min{A(x, q), A(y, q)} + \alpha
= min{A(x, q) + \alpha, A(y, q) + \alpha} = min{T(x, q), T(y, q)}.

Therefore T is a QFSR of R.

Theorem 3.2. If A is a QFI of the ring R, then $T = T_{\alpha}^{A}$ is also QFI of R.

Proof. Let $x, y \in R$ and $q \in Q$ be any elements, then we have (3.1)

$$T(x - y, q) = A(x - y, q) + \alpha \ge \min\{A(x, q), A(y, q)\} + \alpha$$

= min{A(x, q) + \alpha, A(y, q) + \alpha} = min{T(x, q), T(y, q)}
$$T(xy, q) = A(xy, q) + \alpha \ge A(y, q) + \alpha = T(y, q) \qquad (\text{as } A \text{ is } QFLI \text{ of } R)$$

(3.2) $T(xy,q) = A(xy,q) + \alpha \ge A(x,q) + \alpha = T(x,q)$ (as *A* is *QFRI* of *R*) From (3.1) and (3.2) we get

$$T(xy,q) \ge \max\{T(x,q), T(y,q)\}$$

Thus T is a QFI of R.

B. ANITHA

Theorem 3.3. If A is AQFSR of R, then $T = T_{\alpha}^{A}$ is also AQFSR of R.

Proof. It is trivial.

Theorem 3.4. If A is AQFI of R, then $T = T_{\alpha}^{A}$ is also AQFI of R.

Proof. It is trivial.

Theorem 3.5. If T_1 and T_2 are two Q-fuzzy translation of Q-fuzzy subring A of a ring R then their intersection $T_1 \cap T_2$ is also a Q-fuzzy translation of R.

Proof. Let T_1 and T_2 be two Q-fuzzy translation of Q-fuzzy subring A of R. Then

$$(T_1 \cap T_2)(x,q) = T_1(x,q) \cap T_2(x_2,q) = (A(x,q) + \alpha_1) \cap (A(x,q) + \alpha_2)$$

= min{A(x,q) + \alpha_1, A(x,q) + \alpha_2} = A(x,q) + min(\alpha_1, \alpha_2).

Therefore $T_1 \cap T_2$ is *Q*-fuzzy translation of *Q*-fuzzy subring *A* of *R*.

Theorem 3.6. The intersection of a family of Q-fuzzy translation of Q-fuzzy subring A of a ring R is a Q-fuzzy translation of R.

Proof. It is trivial.

Theorem 3.7. If T_1 and T_2 are two *Q*-fuzzy translation of QFSR *A* of *R* then their union $T_1 \cup T_2$ is also a *Q*-fuzzy translation of *R*.

Proof. Let T_1 and T_2 be two Q-fuzzy translation of Q-fuzzy subring A of R. Then

$$(T_1 \cup T_2)(x,q) = T_1(x,q) \cup T_2(x_2,q) = (A(x,q) + \alpha_1) \cup (A(x,q) + \alpha_2)$$

= max{ $A(x,q) + \alpha_1, A(x,q) + \alpha_2$ } = $A(x,q) + \max(\alpha_1, \alpha_2).$

Therefore $T_1 \cup T_2$ is a *Q*-fuzzy translation of *Q*-fuzzy subring *A* of *R*.

Theorem 3.8. The union of a family of Q-fuzzy translation of Q-fuzzy subring A of a ring R is a Q-fuzzy translation of R.

Proof. It is trivial.

Theorem 3.9. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two rings and Q be a non-empty set. If $f : R \to R'$ is a homomorphism, then the Q-fuzzy translation is a homomorphism, then the Q-fuzzy translation of a Q-fuzzy subring A of R under the homomorphic image is a Q-fuzzy subring of f(R) = R'.

7778

 \square

Proof. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two rings and Q be a non-empty set and $f : R \to R'$ be a homomorphism.Let $T = T_{\alpha}^{A}$ be the Q-fuzzy translation of a Q-fuzzy subring A of R and $V = f(T_{\alpha}^{A})$ be the homomorphic image of T under f. We have to verify that V is a Q-fuzzy subring of R'. Let $f(x,q), f(y,q) \in R'$. Then

$$V(f(x) - f(y), q) = V(f(x - y), q) \ge T^A_\alpha(x - y, q) = A(x - y, q) + \alpha$$
$$\ge (A(x, q) \land A(y, q)) + \alpha = (A(x, q) + \alpha) \land (A(y, q) + \alpha)$$
$$= T^A_\alpha(x, q) \land T^A_\alpha(y, q).$$

Therefore $V(f(x) - f(y), q) \ge V(f(x), q) \land V(f(y), q)$,

$$V(f(x)f(y),q) = V(f(xy),q) \ge T^A_\alpha(xy,q) = T^A_\alpha(x,q) \wedge T^A_\alpha(y,q),$$

and further, $V(f(x)f(y),q) \ge V(f(x),q) \land V(f(y),q)$. Thus V is Q-fuzzy subring of R'.

Theorem 3.10. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two rings. If $f : R \to R'$ is a homomorphism then the Q-fuzzy translation of a Q-fuzzy subring V of R' under the homomorphic pre-image is a Q-fuzzy subring of R.

Proof. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two rings and $f : R \to R'$ be a homomorphism. Let T^V_{α} be the translation of Q-fuzzy subring V of R' and A be the homomorphic pre-image of T^V_{α} under f. We have to prove that A is a Q-fuzzy subring of R. Let x and y be in R and q be in Q. Then

$$A(x - y, q) = T^V_{\alpha}(f(x - y), q) = T^V_{\alpha}(f(x) - f(y), q)$$

= $V[f(x) - f(y), q] + \alpha \ge [V(f(x), q) \land V(f(y), q)] + \alpha$
 $\ge [V(f(x), q) + \alpha] \land [V(f(y), q) + \alpha]$
= $T^V_{\alpha}(f(x), q) \land T^V_{\alpha}(f(y), q) = A(x, q) \land A(y, q).$

Similarly, $A(xy,q) \ge A(x,q) \land A(y,q)$. Therefore, A is a Q-fuzzy subring of R. \Box

Theorem 3.11. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two rings. If $f : R \to R'$ is an anti-homomorphism, then the translation of a Q-fuzzy subring A of R under the anti-homomorphic image is a Q-fuzzy subring of f(R) = R'.

Proof. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two rings and $f : R \to R'$ be an antihomomorphism. That is f(x + y) = f(y) + f(x) and $f(xy) = f(y) \cdot f(x)$, for all $x, y \in R$. Let T^A_{α} be the translation of a Q-fuzzy subring A of R and V be the B. ANITHA

anti-homomorphic image of T^A_{α} under f. We have to prove that V is a Q-fuzzy subring of f(R) = R'. Now, for f(x) and f(y) in R' and q in Q we have

$$V[((f(x) - f(y)), q) = V[f(y - x), q] \ge T^A_\alpha(y - x, q) = A(y - x, q) + \alpha$$
$$\ge (A(y, q) \land A(x, q)) + \alpha = (A(x, q) + \alpha) \land (A(y, q) + \alpha)$$
$$= T^A_\alpha(x, q) \land T^A_\alpha(y, q) = V[f(x), q] \land V[f(y), q]$$

for all $f(x), f(y) \in R'$ and $q \in Q$. Further,

$$V[((f(x) \cdot f(y)), q) = V[f(yx), q] \ge T^A_\alpha(yx, q) = A(yx, q) + \alpha$$
$$\ge (A(y, q) \land A(x, q)) + \alpha = (A(x, q) + \alpha) \land (A(y, q) + \alpha)$$
$$= T^A_\alpha(x, q) \land T^A_\alpha(y, q) = V[f(x), q] \land V[f(y), q]$$

for all $f(x), f(y) \in R'$ and $q \in Q$. Therefore, V is a Q-fuzzy subring of the ring R'.

Theorem 3.12. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two rings. If $f : R \to R'$ is an anti-homomorphism, then the translation of a Q-fuzzy subring V of f(R) = R' under the anti-homomorphic pre-image is a Q-fuzzy subring of R.

Proof. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two rings and $f : R \to R'$ be an antihomomorphism. That is f(x + y) = f(y) + f(x) and $f(xy) = f(y) \cdot f(x)$, for all $x, y \in R$. Let T^V_{α} be the translation of a *Q*-fuzzy subring *V* of f(R) = R' and *A* be the anti-homomorphic pre-image of T^V_{α} under *f*. We have to prove that *A* is a *Q*-fuzzy subring of *R*. Let *x* and *y* be in *R* and *q* in *Q* then

$$\begin{aligned} A(x - y, q) &= T_{\alpha}^{V}(f(x - y), q) = T_{\alpha}^{V}(f(y) - f(x), q) = V[f(y) - f(x), q] + \alpha \\ &\geq [V[f(x), q] \wedge V[f(y), q]] + \alpha = (V[f(x), q] + \alpha) \wedge (V[f(y), q] + \alpha) \\ &= T_{\alpha}^{V}(f(x), q) \wedge T_{\alpha}^{V}(f(y), q) = A(x, q) \wedge A(y, q) \end{aligned}$$

for all x and y in R and q in Q. Also,

$$\begin{aligned} A(xy,q) &= T^V_\alpha(f(xy),q) = T^V_\alpha(f(y)f(x),q) = V[f(y) \cdot f(x),q] + \alpha \\ &\geq [V[f(x),q] \wedge V[f(y),q]] + \alpha = (V[f(y),q] + \alpha) \wedge (V[f(x),q] + \alpha) \\ &= T^V_\alpha(f(x),q) \wedge T^V_\alpha(f(y),q) = A(x,q) \wedge A(y,q) \end{aligned}$$

for all x and y in R and q in Q. Therefore, A is a Q-fuzzy subring of the ring R.

7780

References

- [1] R. BISWAS: *Fuzzy subgroups and Anti fuzzy subgroups*, Fuzzy Sets and Systems, **44** (1990), 121-124.
- [2] W. LIU: Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133-139.
- [3] W. LIU: Operation on fuzzy ideals, Fuzzy Sets and Systems, 8 (1983), 31-41.
- [4] A. ROSENFELD: *Fuzzy groups*, Journal of Mathematical Analysis and Applications, **35** (1971), 512-517.
- [5] P.K. SHARMA: *Translates of anti fuzzy subgroups*, International Journal of Applied Mathematics and Applications, **4**(2) (2012), 175-182.
- [6] P.K. SHARMA: Translates of anti fuzzy subrings and ideals, IJAMP, 4(2) (2012), 125-130.
- [7] K. UMADEVI, C.ELANGO, P.THANGAVELU: A study on translations of anti S-fuzzy subhemiring of A hemiring, IOSR Journal of Mathematics, 8(1) (2013), 38-44.
- [8] L.A. ZADEH:, Fuzzy Sets, Information and Control 8 (1965), 338-353.

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE ADDRESS C.MUTLUR, CHIDAMBARAM - 608102 *Email address*: anibhavan05@gmail.com