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TRIGONOMETRIC RATIOS USING GEOMETRIC METHODS

SAMEEN AHMED KHAN

ABSTRACT. Obtaining exact expressions for the trigonometric ratios is as old as
the subject of trigonometry itself. In this article, we shall state the results from
geometric methods. Tables of exact trigonometric ratios are presented and the
patterns in them are illustrated. The power and limitations of the geometric
methods for deriving the exact values of the trigonometric ratios, based on
certain theorems is discussed in detail. The irrational sets of trigonometric
ratios of rational angles are also discussed. Results from number theory are
presented wherever required.

1. INTRODUCTION

Exact values of trigonometric ratios of selected angles have been known since
the beginning of the subject and the search for additional exact solutions still
continues [1]- [7]. Earlier attempts were based on geometric constructions and
later on there was a switchover to equations. In Section 2, we shall state the
geometric methods used for obtaining the exact ratios of certain angles. Sec-
tion 3 has a general description on the geometric constructions along with the
related theorems. In Section 4, we shall derive the results for a set of angles
using quadratic equations. Section 5 covers the irrationality of trigonometric
numbers. Section 6, our final Section has our concluding remarks.
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2. GEOMETRIC METHODS

Exact values of trigonometric functions of certain angles such as 30◦, 45◦ and
60◦ can be found directly using simple geometric constructions, without resort-
ing to the trigonometric identities or any equations. For the aforementioned
angles, it suffices to use the Pythagorean theorem a2 + b2 = c2, where c is the
length of the hypotenuse and a and b are the lengths of the right-angled trian-
gle’s other two sides. The trigonometric ratios of these angles are in Table (1).

Table 1: Exact Ratios: 30◦, 45◦ and 60◦

Angle, θ
S. No. Deg. Rad. sin θ cos θ

1 30◦ π
6

1
2

√
3
2

2 45◦ π
4

√
2
2

√
2
2

3 60◦ π
3

√
3
2

1
2

In this Section, we shall make use of the geometric constructions using the
Pythagorean theorem and obtain exactly the trigonometric ratios of the two
sets of angles, {15◦, 75◦} and {18◦, 36◦, 54◦, 72◦}.

2.1. Exact Ratios: 15◦ and 75◦. In this Section, we shall derive some trigono-
metric ratios using geometric methods involving simple constructions. In the

FIGURE 1. Trigonometric Ratios for 15◦ and 75◦
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Figure (1), AB = AC = 1, BD = AB sin 30◦ = 1
2
, AD = AB sin 60◦ =

√
3
2

and
CD = AC − AD = 1−

√
3
2

. Applying the Pythagorean theorem to the triangles,

we obtain BC2 = BD2 + DC2 = 2 −
√

3, leading to BC =
√

2−
√

3 =
√
3−1√
2

.
This gives the trigonometric ratios

sin 15◦ = cos 75◦ =
CD

BC
=

√
3− 1

2
√

2

sin 75◦ = cos 15◦ =
BD

BC
=

√
3 + 1

2
√

2
.

2.2. Exact Ratios: 18◦, 36◦, 54◦ and 72◦. In Figure (2), the trigonometric ratios
for 18◦, 36◦, 54◦ and 72◦ are functions of x (see [8] for details). Applying the

FIGURE 2. Trigonometric Ratios for 18◦, 36◦, 54◦ and 72◦.

Pythagorean theorem to the two triangles, we obtain CD2 = x2− y2 and CD2 =

1 − (1 − y)2 = 2y − y2, which leads to the relation y = x2/2. This enables us to
express all the sides of the various triangles as

AD = 1− 1

2
x2 , BD =

1

2
x2 , CD = x

√
1− 1

4
x2 .

The similarity of the triangles, ∆ABC and ∆CEB leads to

AB

CB
=
CB

BE
,

1

x
=

x

1− x
.
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This gives x = −1+
√
5

2
. Finally, the trigonometric ratios are

sin 18◦ = cos 72◦ =

√
5− 1

4

sin 36◦ = cos 54◦ =

√
5−
√

5

2
√

2

sin 54◦ = cos 36◦ =

√
5 + 1

4

sin 72◦ = cos 18◦ =

√
5 +
√

5

2
√

2
.

2.3. Ailles Rectangle for 15◦ and 75◦. An elegant geometric method for deriv-
ing the trigonometric ratios of 15◦ and 75◦ is by using the Ailles Rectangle [9]-
[11]. The Ailles rectangle also gives the trigonometric ratios of 30◦, 45◦ and

FIGURE 3. Ailles Rectangle and the Trigonometric Ratios for 15◦

and 75◦

60◦. Douglas S. Ailles, a high school teacher at Etobicoke Collegiate Institute in
Etobicoke, Ontario, Canada published his work in the year 1971 [9]. A similar
rectangle for other angles such as 18◦ and 72◦ has remained elusive!

Geometric methods are not possible for certain angles, which is discussed in
Section 3. Even, when possible, the geometric methods are not straightforward
for certain angles. In such cases, it is better to use the trigonometric equations.
This approach of identities and equations is done in detail in Section 4.
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3. A NOTE ON GEOMETRIC CONSTRUCTIONS

In Section 2, we used geometric constructions to find the exact trigonometric
ratios of the two sets of angles namely, {15◦, 75◦} and {18◦, 36◦, 54◦, 72◦}. In this
Section, we shall discuss the constructability of regular polygons.

A figure is said to be constructible, if it can be constructed using only a com-
pass and a straightedge. The ancient Greek mathematicians knew how to con-
struct a regular polygon with 3, 4, 5 or 6 sides, using a compass and a straight-
edge. They also knew that, it is possible to construct a regular polygon with
double the number of sides of a given regular polygon. But they could not fig-
ure out which of the n-gons (polygons with n sides/edges) are constructible and
which are non-constructible. This question was finally settled by Carl Friedrich
Gauss in the eighteenth century [12]- [14].

The derivation of the exact values of the trigonometric ratios is based on
the ability to construct the required right-angled triangles. This translates to
constructing regular polygons. Let us consider a regular n-gon inscribed on a
circle. The n-gon has 2n right-angled triangles with angles 180◦

n
at the centre of

the circle/n-gon and (90◦ − 180◦

n
) on the circle. The right-angle is on the chord.

The results of Gauss make use of the Fermat primes. A Fermat number has the
form Fn = 22n +1 for n ≥ 0. The infinite sequence of Fermat numbers is 3, 5, 17,
257, 65537, 4294967297, · · · . If a Fermat number happens to be a prime, it is
known as the Fermat prime. To date, there are only five known Fermat primes,
which are F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537. The Fermat num-
bers for 5 ≤ n ≤ 32 are all composite. Extending the range beyond n = 32 looks
very difficult using current computational methods and hardware. In The On-
Line Encyclopedia of Integer Sequences (OEIS), created and maintained by Neil
Sloane [15], the Fermat numbers are designated by the Sequence A000215 [16].
The Fermat primes form the sequence 3, 5, 17, 257, 65537 (only five known
terms) and are designated by the Sequence A019434 [17].

Theorem 3.1. Gauss-Wantzel Theorem: A regular n-gon is constructible with
straightedge and compass if and only if n = 2kp1p2p3 . . ., where pi are distinct
Fermat primes and k ≥ 0.
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Using the Gauss-Wantzel theorem and the five known Fermat primes, a regu-
lar n-gon is constructible if and only if n = 3, 4, 5, 6, 8, 10, 12, . . .which is the Se-
quence A003401 in the OEIS [18]. Likewise, a regular n-gon is non-constructible
if n = 7, 9, 11, 13, 14, 18, 19, . . . which is the Sequence A004169 [19].

To summarize, it is possible to find the trigonometric ratios for sin(180◦/n)

and cos(180◦/n) exactly, using geometric constructions, where n has the form
given in the Gauss-Wantzel theorem. The resulting values can be expressed
using the radicals. The same results can be obtained using equations. The use
of equations enables us to get results for those angles, which are not possible
due to the non-constructible polygons. A prime example is that of 20◦.

4. TRIGONOMETRIC RATIOS FROM IDENTITIES AND EQUATIONS

Exact values of certain trigonometric ratios can be obtained by employing
trigonometric identities and equations. The Pythagorean theorem leads to the
basic identity, sin2A + cos2A = 1. The identities for the sines and cosines of
sums of two angles are

sin(A+B) = sinA cosB + cosA sinB

cos(A+B) = cosA cosB − sinA sinB .(4.1)

Theese identities can be compactly written using a matrix

[
cosA sinA

− sinA cosA

][
cosB sinB

− sinB cosB

]
=

[
cos(A+B) sin(A+B)

− sin(A+B) cos(A+B)

]
.

A special case is

[
cos θ sin θ

− sin θ cos θ

]n
=

[
cos(nθ) sin(nθ)

− sin(nθ) cos(nθ)

]
.
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The same formulae can also be derived using complex exponentials and the
Euler’s formula or the de Moivre’s formula as follows

cos(A+B) + i sin(A+B) = ei(A+B)

= eiAeiB

= (cosA+ i sinA)(cosB + i sinB)

= (cosA cosB − sinA sinB)

+ i(sinA cosB + cosA sinB) .

Equating the real and imaginary parts along with the substitution −B for B
gives both the identities in (4.1).

In (4.1), if we substitute A = 30◦ and B = 45◦ , then we obtain

sin 75◦ = sin 30◦ cos 45◦ + cos 30◦ sin 45◦

=
1

2

1√
2

+

√
3

2

1√
2

=

√
3 + 1

2
√

2

and

cos 75◦ = cos 30◦ cos 45◦ − sin 30◦ sin 45◦

=

√
3

2

1√
2
− 1

2

1√
2

=

√
3− 1

2
√

2
.

For the difference of two angles, we have

sin(A−B) = sinA cosB − cosA sinB

cos(A−B) = cosA cosB + sinA sinB .(4.2)

In (4.2), if we substitute A = 45◦ and B = 30◦, then we obtain

sin 15◦ = sin 45◦ cos 30◦ − cos 45◦ sin 30◦

=
1√
2

√
3

2
− 1√

2

1√
2

=

√
3− 1

2
√

2

and

cos 15◦ = cos 45◦ cos 30◦ + sin 45◦ sin 30◦

=
1√
2

√
3

2
+

1√
2

1

2
=

√
3 + 1

2
√

2
.
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Some basic identities involving the multiples and submultiples of angles are

sin 2A = 2 sinA cosA

and

cos 2A = cos2A− sin2A = 2 cos2A− 1 = 1− 2 sin2A .(4.3)

It is useful to write the identities in (4.3) as

sin

(
A

2

)
=

1

2

√
2 (1− cosA) ,

cos

(
A

2

)
=

1

2

√
2 (1 + cosA) .(4.4)

If we choose A = 45◦, then

sin
45

2

◦
=

√
1− cos 45◦

2
=

1

2

√
2−
√

2(4.5)

and

cos
45

2

◦
=

√
1 + cos 45◦

2
=

1

2

√
2 +
√

2(4.6)

If we start with an exact value of cosA, we can repeatedly use the identities
in (4.4) and express the ratios of the sub-multiples of A using square-roots [20].
After k steps (k square-roots), we obtain the values of sin(A/2k) in terms of the
k-th root

2 sinA =
√

2− 2 cos(2A)

=

√
2−

√
2 + 2 cos(22A)

=

√
2−

√
2 +

√
2 + 2 cos(23A)(4.7)

=

√
2−

√
2 +

√
2 +

√
2 + 2 cos(24A)

= · · · .
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The similar expression for cos(A/2k) is

2 cosA =
√

2 + 2 cos(2A)

=

√
2 +

√
2 + 2 cos(22A)

=

√
2 +

√
2 +

√
2 + 2 cos(23A)(4.8)

=

√
2 +

√
2 +

√
2 +

√
2 + 2 cos(24A)

= · · · .

Using the identities in (4.8)-(4.9), we obtain the chains for the ratios of the mul-
tiples of 3◦ (π/60) in Table (2), the multiples of 9◦ (π/20) in Table (3) and the
multiples of 0.5625◦ (π/32) in Table (4) respectively. The three Tables exhibit in-
teresting patterns [21]. Table (3) has the additional feature, that the sines and
cosines of multiples of 9◦ are expressed using the golden ratio, φ = (

√
5 + 1)/2,

which appears in diverse areas of mathematics and sciences [22]. A combina-
tion of identities involving sums/differences along with the identities for multi-
ples/submultiples enable us to obtain a chain of exact values.

The same trigonometric ratio may look very different depending upon the
identities used to derive it, but they are definitely equivalent. For instance, the
representations of sin 9◦ include

sin 9◦ =
1

4

(√
8− 2

√
10 + 2

√
5

)
,

=
1

4

(√
3 +
√

5−
√

5−
√

5

)
,

=
1

4

(
1

2

(√
10 +

√
2
)
−
√

5−
√

5

)
,

=
1

2

√
2− 2

√
2 + φ ,

where φ = (
√

5 + 1)/2 is the golden ratio [22].
Repeated use of the identities in (4.1) leads to

sin 3A = 3 sinA− 4 sin3A

cos 3A = 4 cos3A− 3 cosA .
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We shall use the identities for the double and triple angles to find the trigono-
metric ratios of 18◦, 36◦, 54◦ and 72◦. We choose, θ = 18◦ = 90◦/5 and write

2θ = 90◦ − 3θ

sin(2θ) = sin(90◦ − 3θ) = cos(3θ)

2 sin θ cos θ = 4 cos3 θ − 3 cos θ = cos θ(1− 4 sin2 θ) .

This leads to the equation

4 sin2 θ + 2 sin θ − 1 = 0 ,

whose solution is

sin 18◦ = cos 72◦ =

√
5− 1

4
.

The value of cos 18◦ = sin 72◦ can be calculated as follows

cos 18◦ = sin 72◦ =
√

1− sin2 18◦ =

√
5 +
√

5

2
√

2
.

The trigonometric ratios of 36◦ are found using the double angle identities
in (4.3)

cos 36◦ = sin 54◦ = 1− 2 sin2 18◦ =

√
5 + 1

4
.

The value of sin 36◦ = cos 54◦ can be calculated as follows

sin 36◦ = cos 54◦ =
√

1− cos2 36◦ =

√
5−
√

5

2
√

2
.

In this Section, we made use of the basic trigonometric identities and quadratic
equations. To proceed further, we need to use cubic and higher order equations.

5. IRRATIONALITY OF TRIGONOMETRIC RATIOS

The irrationality of the trigonometric ratios is of keen interest. The first major
result in this topic is the theorem due to Ivan Morton Niven in the year 1956.

Theorem 5.1. Niven’s Theorem: The only rational values of α in the interval 0◦ ≤
α ≤ 90◦ for which the sine of α degrees is also a rational number are sin 0◦ = 0 ,
sin 30◦ = 1

2
and sin 90◦ = 1 .
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The theorem appears in the Niven’s books on irrational numbers [23, 24].
The theorem implies that for rational angles in degrees the rational values of
the trigonometric ratios are cosα , sinα ∈ {0 ,±1

2
,±1}, secα , cscα ∈ {±1,±2}

and tanα , cotα ∈ {0 ,±1}. A straightforward proof of Niven’s theorem with ad-
ditional results is in the following theorem based on the tangent function [25].

Theorem 5.2. Paolillo-Vincenzi Theorem: If α is rational in degrees, say α =

(m/n)180◦ for some rational number m/n, and tan2(α) is rational, then tan2(α) ∈
{0, 1, 1

3
, 3}.

Using Theorem (5.2) along with the trigonometric identities (such as cos2 α =

1/(1 + tan2 α), cos(2α) = (1− tan2 α)/(1 + tan2 α), sin(2α) = 2 tanα/(1 + tan2 α)

and sin2 α = 1− cos2 α), we conclude that cos2(α) , sin2(α) ∈ {0, 1
4
, 1
2
, 3
4
, 1}. From

this set, we conclude that cosα , sinα ∈ {0,±1
2
,±1} and secα , cscα ∈ {±1,±2}.

A related study deals with the set of angles, whose squared trigonometric func-
tions are rational [26].

The Gregory numbers are defined as

Gx = tan−1
(

1

x

)
=
∞∑
k=0

(−1)k
1

(2k + 1)x2k+1
,

where x is an integer or a rational number. For x = 1, G1 = tan−1(1) = 45◦(π/4)

is a Gregory number. All Gregory numbers in degrees are irrational with the ex-
ception of the pair G−1 = −45◦(−π/4) and G1 = 45◦(π/4). The tan−1 identities
have been extensively used for calculating the value of π [27].

A trigonometric number is an irrational number produced by taking the sine
or cosine of a rational number of degrees (if in radians, it is a rational multiple
of π), with the exception of cosα , sinα ∈ {0,±1

2
,±1}. Any real number different

from these exceptions is a trigonometric number if and only if it is the real part
of a root of unity [28]. A stronger statement on the rational linear independence
of trigonometric numbers is in the following theorem due to Arno Berger [29]

Theorem 5.3. Berger Theorem: Let r1 and r2 to be two rational numbers such that
either r1 − r2 and r1 + r2 is not an integer, then the three numbers 1, cos(r1π) and
cos(r2π) are rationally independent.
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6. CONCLUDING REMARKS

The subject of trigonometry is of immense importance within mathematics
and across the sciences. Derivation of exact values of the trigonometric ratios
is of keen interest. This is evident by the numerous recent publications. The
derivation of the exact values is intimately tied to number theory and algebraic
geometry. In this article, we saw the results from geometric methods along with
some results using identities and quadratic equations. Tables of exact trigono-
metric ratios were presented and the patterns in them were illustrated. The
power and limitations of the geometric methods for deriving the exact values
of the trigonometric ratios, based on certain theorems were discussed in detail.
The rational sets of trigonometric ratios of rational angles were also discussed.
Results from number theory were presented wherever required.

Some of the numerical data can also be obtained using the Microsoft Ex-
cel [30]- [35]. One can alternately use the powerful symbolic packages, for in-
stance the Mathematica [36,37]. MS Excel is useful in different areas of physics
and mathematics [31]- [35]. It has also found applications in specific problems
such as the study of quadratic surfaces in the laboratory [38]- [41]; resistor
networks [42]- [45]; chemical physics [46]; and number theory [47,48].

Table 2: Exact Ratios: Multiples of 3◦ (π/60)

Angle, θ
S. No. Deg. Rad. sin θ cos θ

1 0◦ 0 0 1

2 3◦ π
60

1
4

(√
8−
√
3−
√
15−

√
10− 2

√
5

)
1
4

(√
8 +
√
3 +
√
15 +

√
10− 2

√
5

)
3 6◦ π

30
1
4

(√
9−
√
5−

√
30 + 6

√
5

)
1
4

(√
7 +
√
5 +

√
30 + 6

√
5

)
4 9◦ π

20
1
4

(√
8− 2

√
10 + 2

√
5

)
1
4

(√
8 + 2

√
10 + 2

√
5

)
5 12◦ π

15
1
4

(√
7−
√
5−

√
30− 6

√
5

)
1
8

(
−1 +

√
5 +

√
30 + 6

√
5
)

6 15◦ π
12

1
4
(
√
6−
√
2) 1

4
(
√
6 +
√
2)

7 18◦ π
10

1
4
(
√
5− 1) 1

4
(
√

10 + 2
√
5)

8 21◦ 7π
60

1
4

(√
8 +
√
3−
√
15−

√
10 + 2

√
5

)
1
4

(√
8−
√
3 +
√
15 +

√
10 + 2

√
5

)
9 24◦ 2π

15
1
4

(√
7 +
√
5−

√
30 + 6

√
5

)
1
8

(
1 +
√
5 +

√
30− 6

√
5
)

10 27◦ 3π
20

1
4

(√
8− 2

√
10− 2

√
5

)
1
4

(√
8 + 2

√
10− 2

√
5

)
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Table 2: Exact Ratios: Multiples of 3◦ (π/60), continued

S. No. Deg. Rad. sin θ cos θ

11 30◦ π
6

1
2

1
2

√
3

12 33◦ 11π
60

1
4

(√
8−
√
3−
√
15 +

√
10− 2

√
5

)
1
4

(√
8 +
√
3 +
√
15−

√
10− 2

√
5

)
13 36◦ π

5
1
4
(
√

10− 2
√
5) 1

4
(
√
5 + 1)

14 39◦ 13π
60

1
4

(√
8−
√
3 +
√
15−

√
10 + 2

√
5

)
1
4

(√
8 +
√
3−
√
15 +

√
10 + 2

√
5

)
15 42◦ 7π

30
1
8

(
1−
√
5 +

√
30 + 6

√
5
)

1
4

(√
7−
√
5 +

√
30− 6

√
5

)
16 45◦ π

4
1
2

√
2 1

2

√
2

17 48◦ 4π
15

1
4

(√
7−
√
5 +

√
30− 6

√
5

)
1
8

(
1−
√
5 +

√
30 + 6

√
5
)

18 51◦ 17π
60

1
4

(√
8 +
√
3−
√
15 +

√
10 + 2

√
5

)
1
4

(√
8−
√
3 +
√
15−

√
10 + 2

√
5

)
19 54◦ 3π

10
1
4
(
√
5 + 1) 1

4
(
√

10− 2
√
5)

20 57◦ 10π
60

1
4

(√
8 +
√
3 +
√
15−

√
10− 2

√
5

)
1
4

(√
8−
√
3−
√
15 +

√
10− 2

√
5

)
21 60◦ π

3
1
2

√
3 1

2

22 63◦ 7π
20

1
4

(√
8 + 2

√
10− 2

√
5

)
1
4

(√
8− 2

√
10− 2

√
5

)
23 66◦ 11π

30
1
8

(
1 +
√
5 +

√
30− 6

√
5
)

1
4

(√
7 +
√
5−

√
30 + 6

√
5

)
24 69◦ 23π

60
1
4

(√
8−
√
3 +
√
15 +

√
10 + 2

√
5

)
1
4

(√
8 +
√
3−
√
15−

√
10 + 2

√
5

)
25 72◦ 2π

5
1
4
(
√

10 + 2
√
5) 1

4
(
√
5− 1)

26 75◦ 5π
12

1
4
(
√
6 +
√
2) 1

4
(
√
6−
√
2)

27 78◦ 13π
30

1
8

(
−1 +

√
5 +

√
30 + 6

√
5
)

1
4

(√
7−
√
5−

√
30− 6

√
5

)
28 81◦ 9π

20
1
4

(√
8 + 2

√
10 + 2

√
5

)
1
4

(√
8− 2

√
10 + 2

√
5

)
29 84◦ 7π

15
1
4

(√
7 +
√
5 +

√
30 + 6

√
5

)
1
4

(√
9−
√
5−

√
30 + 6

√
5

)
30 87◦ 29π

60
1
4

(√
8 +
√
3 +
√
15 +

√
10− 2

√
5

)
1
4

(√
8−
√
3−
√
15−

√
10− 2

√
5

)
31 90◦ π

2
1 0

Table 3: Exact Ratios in terms of the Golden Ratio, φ = 1
2
(
√
5 + 1)

Angle, θ
S. No. Deg. Rad. sin θ cos θ

1 9◦ π
20

1
4

(√
8− 2

√
10 + 2

√
5

)
1
4

(√
8 + 2

√
10 + 2

√
5

)
1
2

√
2− 2

√
2 + φ 1

2

√
2 + 2

√
2 + φ
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Table 3: Exact Ratios using the Golden Ratio φ = 1
2
(
√
5 + 1), continued

S. No. Deg. Rad. sin θ cos θ

2 18◦ π
10

1
4
(
√
5− 1) 1

4
(
√

10 + 2
√
5)

1
2
(φ− 1) 1

2

√
2 + φ

3 27◦ 3π
20

1
4

(√
8− 2

√
10− 2

√
5

)
1
4

(√
8 + 2

√
10− 2

√
5

)
1
2

√
2−
√
3− φ 1

2

√
2 +
√
3− φ

4 36◦ π
5

1
4
(
√

10− 2
√
5) 1

4
(
√
5 + 1)

1
2

√
3− φ 1

2
φ

5 54◦ 3π
10

1
4
(
√
5 + 1) 1

4
(
√

10− 2
√
5)

1
2
φ 1

2

√
3− φ

6 63◦ 7π
20

1
4

(√
8 + 2

√
10− 2

√
5

)
1
4

(√
8− 2

√
10− 2

√
5

)
1
2

√
2 +
√
3− φ 1

2

√
2−
√
3− φ

7 72◦ 2π
5

1
4
(
√

10 + 2
√
5) 1

4
(
√
5− 1)

1
2

√
2 + φ 1

2
(φ− 1)

8 81◦ 9π
20

1
4

(√
8 + 2

√
10 + 2

√
5

)
1
4

(√
8− 2

√
10 + 2

√
5

)
1
2

√
2 + 2

√
2 + φ 1

2

√
2− 2

√
2 + φ

Table 4: Exact Ratios: Multiples of 0.5625◦ (π/32) using nested square-
roots of 2

Angle, θ
S. No. Deg. Rad. 2 sin θ 2 cos θ

1 0.5625◦ π
32

√
2−

√
2 +

√
2 +
√
2

√
2 +

√
2 +

√
2 +
√
2

2 11.25◦ π
16

√
2−

√
2 +
√
2

√
2 +

√
2 +
√
2

3 16.875◦ 3π
32

√
2−

√
2 +

√
2−
√
2

√
2 +

√
2 +

√
2−
√
2

4 22.5◦ π
8

√
2−
√
2

√
2 +
√
2

5 28.125◦ 5π
32

√
2−

√
2−

√
2−
√
2

√
2 +

√
2−

√
2−
√
2

6 33.75◦ 3π
16

√
2−

√
2−
√
2

√
2 +

√
2−
√
2

7 39.375◦ 7π
32

√
2−

√
2−

√
2 +
√
2

√
2 +

√
2−

√
2 +
√
2

8 45◦ π
4

√
2

√
2

9 50.625◦ 9π
32

√
2 +

√
2−

√
2 +
√
2

√
2−

√
2−

√
2 +
√
2

10 56.25◦ 5π
16

√
2 +

√
2−
√
2

√
2−

√
2−
√
2

11 61.875◦ 11π
32

√
2 +

√
2−

√
2−
√
2

√
2−

√
2−

√
2−
√
2
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Table 4: Exact Ratios: Multiples of 0.5625◦ (π/32) using nested square-
roots of 2, continued

S. No. Deg. Rad. 2 sin θ 2 cos θ

12 67.5◦ 3π
8

√
2 +
√
2

√
2−
√
2

13 73.125◦ 13π
32

√
2 +

√
2 +

√
2−
√
2

√
2−

√
2 +

√
2−
√
2

14 78.75◦ 7π
16

√
2 +

√
2 +
√
2

√
2−

√
2 +
√
2

15 84.375◦ 15π
32

√
2 +

√
2 +

√
2 +
√
2

√
2−

√
2 +

√
2−
√
2
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