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ON TOPOLINE SET-INDEXERS OF GRAPHS

V. BIPINKUMAR AND SUNIL C. MATHEW1

ABSTRACT. This paper investigates the topoline set indexers of certain complete
graphs and cycles. The topoline numbers of certain classes of triangular books
and some complete bipartite graphs are also obtained.

1. INTRODUCTION

The notions of set valuations and set-indexers of graphs were introduced by
B.D.Acharya [1]. Set valuation of a graph is an assignment of the subsets of
a given nonempty set to the vertices and/or edges of a graph. Acharya also
propounded the idea of set indexing number of a graph. Further, introducing the
concept of topological set-indexers (t-set indexers) in [2], he established a link
between Graph Theory and Point Set Topology. Motivating a lot of investigations
in this area, he also introduced the concept of topologically set-graceful graphs
in [3].

Later, U. Thomas and S. C. Mathew [5] introduced the concept of topoline
set-indexers analogous to that of a topological set-indexer. Unlike topological
set-indexers, not all graphs have topoline set-indexers. This caused the origin
of topoline graphs admitting a topology on the edge set of the graph. It has
been noted in [5] that set-graceful graphs form a proper subfamily of topoline
graphs. Further it is conjectured that the complete graph Kn; n > 1 is topoline
only if it is set-graceful. But, M. Mollard and C. Payan [4] have proved that the
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complete graph Kn is set-graceful if and only if n ∈ {2, 3, 6}. So the conjecture
states that, among complete graphs, only K2, K3 and K6 are topoline. This
paper investigates the topoline set indexers of the complete graphs K4, K5, K7

and K8 and establishes that they are not topoline thereby affirming the above
conjecture. It has already been proved in [5] that cycles C3, C4 and C7 are
topoline. Here it is proved that C5 and C6 are not topoline. Further the topoline
numbers of certain classes of triangular books and complete bipartite graphs are
also obtained.

2. PRELIMINARIES

B. D. Acharya introduced the notion of a set-indexer of a graph as follows: Let
G = (V,E) be a graph and X be a nonempty set. Then a mappping f : V → 2X

or f : E → 2X or f : V ∪ E → 2X is called a set-valuation or set-assignment
of the vertices or edges or both. It is proved in [1] that every graph G has a
set-valuation.

Definition 2.1. Let G = (V,E) be a graph and X be a nonempty set. Then a
set-valuation f : V ∪ E → 2X is called a set-indexer of G if

(1) f(uv) = f(u)⊕ f(v) where ⊕ is the symmetric difference and
(2) the restrictive maps f |V and f |E are both injective.

In this case, X is called an indexing set of G. A graph can have many indexing
sets and the minimum of the cardinalities of the indexing sets is said to be the
set-indexing number of G, denoted by γ(G). It is also proved in [1] that every
graph G has a set-indexer. A graph G is set-graceful if γ(G) = log2(|E|+ 1) and
the corresponding set-indexer is called set-graceful labeling and it is an optimal
set-indexer of G.

A set-indexer f of a graph G with indexing set X is said to be a topologi-
cal set-indexer (t-set indexer) if f(V ) is a topology on X and X is called the
topological indexing set (t-indexing set) of G. The minimum number among
the cardinalities of such topological indexing sets is said to be the topological
number (t - number) of G and is denoted by τ(G).

Definition 2.2. [5] A set-indexer f : V ∪E → 2X of a nonempty graph G is said
to be a topoline set-indexer, if f(E)∪{∅} is a topology on X and X is called the
topoline indexing set of G.
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The minimum among the cardinalities of such topoline indexing sets is caled
the topoline number of G and is denoted by τe(G). A nonempty graph G is said
to be topoline if it has a topoline set-indexer. The following results can be seen
in [5].

Theorem 2.1. For a topoline graph G = (V,E), dlog2(|E|+ 1)e ≤ τe(G).

Theorem 2.2. The complete bipartite graph Km,n is topoline.

Theorem 2.3. Let G be a set graceful tree. Then G ∨Nn is topoline.

It is proved in [6] that

Theorem 2.4. For n ≥ 3, there is no topology on n points having k open sets,
where 3 · 2(n−2) < k < 2n.

Let m(k) denote the minimum number of points needed to make a topology
having k open sets. Then from [7] we have m(11) = 5, m(13) = 5, m(19) = 6,
m(21) = 6 and m(35) = 7.

3. TOPOLINE SET-INDEXERS OF COMPLETE GRAPHS

Among complete graphs, K2, K3 and K6 are known to be topoline. The fact
that K4 is not topoline is proved in [5]. In that proof it is assumed that (A1 ⊕
A3) ∩ (A2 ⊕ A3) = (A1 ∩ A2) ⊕ A3. But, this is wrong as can be easily verified
by taking A1 = {1, 2, 3, 4}, A2 = {2, 3, 5, 6} and A3 = {3, 4, 5, 7}. However, the
result K4 is not topoline is true and we give an alternate proof for the same in
Theorem 3.1.

Lemma 3.1. Let X be a nonempty set and A, B be subsets of X such that
τ = {X, ∅, A, B, Ac, Bc, A⊕ B} consists of seven distinct subsets of X. Then τ
is not a topology on X.

Proof. Suppose τ is a topology on X. Then A ∪ B must be one of the seven
elements in τ . Obviously, A ∪ B cannot be ∅, Ac or Bc. Then there arise the
following four possibilities:

Case I: A∪B =X. This leads to the conclusion thatA∩B 6∈ τ , a contradiction.
Case II: A∪B = A. This leads to the conclusion that B∪Ac /∈, a contradiction.
Case III: A∪B = B. This leads to the contradictory conclusion thatA∪Bc 6∈ τ .
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Case IV: A ∪ B = A ⊕ B. This leads to the conclusion that Ac ∩ Bc 6∈ τ , a
contradiction.

Hence, τ can not be a topology on X. �

Theorem 3.1. The complete graph K4 is not topoline.

Proof. Suppose K4 is topoline. Then there exists a nonempty set X and a set-
indexer f which assigns subsets A1, A2, A3 and A4 of X to the four vertices of K4

such that τ = f(E)∪{∅} = {A1⊕A2, A1⊕A3, A1⊕A4, A2⊕A3, A2⊕A4, A3⊕A4, ∅}
is a topology on X.

Without loss of generality, we may assume that A1 ⊕ A2 = X. ie, A2 = Ac
1.

Then the edge labels are given by f(E) = {X,A1 ⊕ A3, A1 ⊕ A4, A
c
1 ⊕ A3, A

c
1 ⊕

A4, A3 ⊕ A4} so that τ={X, A, B, Ac, Bc, A ⊕ B, ∅} where A = A1 ⊕ A3 and B
= A1 ⊕A4. But by Lemma 3.1, τ can not be a topology on X. Consequently, K4

is not topoline. �

Analogously it can be shown that the complete graphs, K5, K7 and K8 are not
topoline and we state those results below without proof.

Lemma 3.2. Let X be a nonempty set and A, B, C be subsets of X such that
τ = {X, ∅, A,B,C,Ac, Bc, Cc, A⊕B,A⊕C,B⊕C} consists of 11 distinct subsets
of X. Then τ is not a topology on X.

Theorem 3.2. The complete graph K5 is not topoline.

Lemma 3.3. Let X be a nonempty set and A, B, C, D, E be five subsets of X
such that τ={ X, A, B, C, D, E, Ac, Bc, Cc, Dc, Ec, A⊕B, A⊕C, A⊕D, A⊕E,
B ⊕ C, B ⊕D, B ⊕ E, C ⊕D, C ⊕ E, D ⊕ E, ∅ } consists of 22 distinct subsets
of X. Then τ is not a topology on X.

Theorem 3.3. The complete graph K7 is not topoline.

Lemma 3.4. Let X be a nonempty set and A, B, C, D, E, F be six subsets of
X such that τ = {X, A, B, C, D, E, F , Ac, Bc, Cc, Dc, Ec,F c, A ⊕ B, A ⊕ C,
A⊕D, A⊕E, A⊕F , B⊕C, B⊕D, B⊕E, B⊕F , C⊕D, C⊕E, C⊕F , D⊕E,
D ⊕ F , E ⊕ F , ∅} consists of 29 distinct subsets of X. Then τ is not a topology
on X.

Theorem 3.4. The complete graph K8 is not topoline.
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4. TOPOLINE SET-INDEXERS OF CYCLES

It is already noticed that the cycles C3, C4 and C7 are topoline and here we
prove that C5 and C6 are not topoline. The following lemma is straightforward.

Lemma 4.1. If A1, A2, A3, · · · , An are the labels assigned by set-indexer f to
the vertices of a cycle Cn, then the symmetric difference of all the edge labels is
∅.

Theorem 4.1. C5 is not topoline.

Proof. If possible, let C5 be topoline. Then we can find a topoline set-indexerf
of C5 and a set X such that τ = f(E) ∪ {∅} is a topology on X. The edge
labels will be of the form f(E) = {A1, A2, A3, A4, X} and by Lemma 4.1,
A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = ∅.

Claim: If τ = {∅, A1, A2, A3, A4, X} be a point set topology on X such that
| A1 |≤| A2 |≤| A3 |≤| A4 |<| X | then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X 6= ∅.

To prove the claim we consider the following cases.
Case I: Let | A1 |=| A2 |=| A3 |=| A4 |. Then A1 ∩ A2 = ∅. For, if A1 ∩ A2 6= ∅,

then | A1 ∩ A2 |<| A1 |, which is a contradiction. Similarly, A1 ∩ A3 = ∅ and
A2 ∩A3 = ∅. Again, A1 ∪A2 cannot be ∅, A1, A2, A3 and A4 by assumption. Now,
if A1 ∪A2 = X, then A3 ⊆ A1 ∪A2, which is a contradiction to the fact that both
A1 ∩ A3 = ∅ and A2 ∩ A3 = ∅. Thus this case is impossible.

Case II: Let | A1 |=| A2 |=| A3 |<| A4 |. This case is also impossible by the
reason given in CaseI.

Case III: Let | A1 |=| A2 |<| A3 |=| A4 |. Then A1 ∩ A2 = ∅. (If A1 ∩ A2 6= ∅,
then | A1 ∩A2 |<| A1 |, which is a contradiction). Also A1 ∪A2 must be in τ and
cannot be ∅, A1 or A2 by assumption.

If A1 ∪ A2 = A3 then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = AC
4 6= ∅.

If A1 ∪ A2 = A4 then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = AC
3 6= ∅.

If A1 ∪ A2 = X then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A3 ⊕ A4 6= ∅.
Case IV: Let | A1 |=| A2 |<| A3 |<| A4 |. Then A1 ∩ A2 = ∅. (If A1 ∩ A2 6= ∅,

then | A1 ∩A2 |<| A1 |, which is a contradiction). Also A1 ∪A2 must be in τ and
cannot be ∅, A1 or A2 by assumption.
If A1 ∪A2 = A3, A3 or X then A1 ⊕A2 ⊕A3 ⊕A4 ⊕X 6= ∅, as described in Case
III.
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Case V: Let | A1 |<| A2 |=| A3 |=| A4 |.
Then A2 ∩ A3 must be in τ and cannot be A2, A3, A4 or X by assumption.

If A2 ∩ A3 = ∅, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A1 ⊕ A4 6= ∅.
If A2 ∩ A3 = A1, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A4 6= ∅.
Case VI: Let | A1 |<| A2 |=| A3 |<| A4 |. Then A2∪A3 must be in τ and cannot

be ∅, A1, A2 or A3 by assumption.
Also A2 ∩ A3 must be in τ and cannot be A2, A3, A4 or X by assumption.

Case VI (A): A2 ∪ A3 = A4.
If A2 ∩ A3 = A1, then A4 = X, which is a contradiction.
If A2 ∩ A3 = ∅, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = AC

1 6= ∅.
Case VI (B): A2 ∪ A3 = X.
If A2 ∩ A3 = ∅, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A1 ⊕ A4 6= ∅.
If A2 ∩ A3 = A1, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A4 6= ∅.
Case VII: Let | A1 |<| A2 |=| A3 |<| A4 |.

Then A3 ∪ A4 = X. Also A3 ∩ A4 must be in τ and cannot be A3, A4 or X by
assumption.

If A3 ∩ A4 = ∅, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A1 ⊕ A2 6= ∅.
If A3 ∩ A4 = A1, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A2 6= ∅.
If A3 ∩ A4 = A2, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A1 6= ∅.
Case VIII: Let | A1 |<| A2 |<| A3 |<| A4 |.

Then A1 ∩ A2 must be in τ and cannot be A2, A3,A4 or X by assumption.
Case VIII (A): A1 ∩ A2 = ∅.

Then A1 ∪ A2 must be in τ and cannot be ∅, A1 or A2.
If A1 ∪ A2 = A3, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = AC

4 6= ∅.
If A1 ∪ A2 = A4, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = AC

3 6= ∅.
If A1 ∪ A2 = X, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A3 ⊕ A4 6= ∅.
Case VIII (B): A1 ∩ A2 = A1.

Then A1 ∪ A2 = A2. Also A2 ∩ A3 must be in τ and cannot be A3, A4 or X.
Case VIII (B) (a): A2 ∩ A3 = ∅.
If A2 ∪ A3 = A4, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = AC

1 6= ∅.
If A2 ∪ A3 = X, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A1 ⊕ A4 6= ∅.
Case VIII (B) (b): A2 ∩ A3 = A1.
If A2 ∪ A3 = A3, then A2 ∩ A3 = A2, which is a contradiction.
If A2 ∪ A3 = A4, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = X 6= ∅.
If A2 ∪ A3 = X, then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = AC

4 6= ∅.
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Case VIII (B) (c): A2 ∩ A3 = A2.
Then A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕X = A2 ⊕ A3 6= ∅.

Thus in all possible cases A1⊕A2⊕A3⊕A4⊕X 6= ∅ and the claim is proved.
Hence C5 is not topoline. �

Analogously it can be proved that

Theorem 4.2. C6 is not topoline.

5. TOPOLINE NUMBERS OF SOME GRAPHS

By Theorem 2.3 it follows that all triangular books are topoline. The topo-
line numbers of certain classes of triangular books and some complete bipartite
graphs are obtained here.

Theorem 5.1. τe(K2 ∨N2n−1) = n+ 1.

Proof. Let X = {x1, x2, . . . , xn+1} and Y = {x2, x3, . . . , xn+1}. Now, a topoline
set-indexer for G = K2 ∨N2n−1 with indexing set X can be obtained as follows:
Assign ∅ and {x1} to the vertices of K2. Assign all 2n − 1 non-empty subsets of
Y to 2n − 1 vertices of N2n−1. Thus, we have τe(G) ≤ n + 1. Since the number
of edges of (K2 ∨ N2n−1) is 2n+1 − 1, by Theorem 2.1 we have τe(G) ≥ n + 1.
Combining, τe(G) = n+ 1. �

Theorem 5.2. τe(K2 ∨N2n) = n+ 2.

Proof. Let X = {x1, x2, . . . , xn+2} and Y = {x2, x3, . . . , xn+1}. We can obtain a
topoline set-indexer for G = K2 ∨N2n with indexing set X as follows: Assign ∅
and {x1} to the vertices of K2. Assign all 2n−1 non-empty subsets of Y to 2n−1

vertices of N2n. Then label the remaining vertex of N2n by Y ∪ {xn+2}. Thus we
have τe(G) ≤ n + 2. Since the number of edges of (K2 ∨ N2n) is 2n+1 + 1, by
Theorem 2.1 we have τe(G) ≥ n+ 2. Combining, τe(G) = n+ 2. �

Theorem 5.3. τe(K2 ∨N2n+1) = n+ 2.

Proof. Let X = {x1, x2, . . . , xn+2} and Z = {x2, x3, . . . , xn+1}. A topoline set-
indexer for G = K2 ∨ N2n+1 with indexing set X can be obtained as follows:
Assign ∅ and {x1} to the vertices of K2. Assign all 2n − 1 non-empty subsets of
Z to 2n − 1 vertices of N2n+1. Then label the remaining two vertices of N2n+1 by
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Z ∪{xn+2} and S ∪{xn+2}, where S is an (n− 1)-element subset of Z. Thus, we
have τe(G) ≤ n + 2. Since the number of edges of (K2 ∨ N2n+1) is 2n+1 + 3, by
Theorem 2.1 we have τe(G) ≥ n+ 2. Combining, τe(G) = n+ 2. �

Theorem 5.4. τe(K2,2n−1) = n+ 2, n ≥ 2.

Proof. Since the number of edges of G = K2,2n−1 is 2n+1 − 2, by Theorem 2.1
and Theorem 2.2, τe(G) ≥ n + 1. Since 3 · 2n−1 < 2n+1 − 1 < 2n+1 for n ≥ 2,
by Theorem 2.4, τe(G) ≥ n + 2. Let X = {x1, x2, . . . , xn+2}. We can obtain a
topoline set-indexer for G = K2,2n−1 with indexing set X as follows: Assign ∅
and {x1} to the vertices of degree 2n − 1. Label the vertices of degree 2 by {x2},
X \ {x1}, union of {x2} with any (n − 1)-element subsets of X \ {x1, x2} until
all such subsets are exhausted, union of {x2} with any (n − 2)-element subsets
of X \ {x1, x2} until all such subsets are exhausted and so on sequentially. Thus,
τe(G) ≤ n+ 2. Combining, τe(G) = n+ 2. �

Theorem 5.5. τe(K2,5) = 5.

Proof. Since m(11) = 5, τe(K2,5) ≥ 5. We can obtain a topoline set-indexer for
K2,5 with indexing set X = {x1, x2, x3, x4, x5} by assigning ∅ and {x1} to the
vertices of degree 5 and {x2}, {x2, x3, x4, x5}, {x2, x3, x4}, {x2, x3} and {x2, x4}
to the vertices of degree 2. Thus τe(K2,5) ≤ 5. Combining, τe(K2,5) = 5. �

Theorem 5.6. τe(K2,6) = 5.

Proof. Since m(13) = 5, τe(K2,6) ≥ 5. We can obtain a topoline set-indexer for
K2,6 with indexing set X = {x1, x2, x3, x4, x5} by assigning ∅ and {x1} to the
vertices of degree 6 and {x2}, {x2, x3, x4}, {x2, x3, x4, x5}, {x2, x4, x5}, {x2, x3}
and {x2, x4} to the vertices of degree 2. Thus, τe(K2,6) ≤ 5. Combining,
τe(K2,6) = 5. �

Theorem 5.7. τe(K2,9) = 6.

Proof. Since m(19) = 6, τe(K2,9) ≥ 6. We can obtain a topoline set-indexer for
K2,9 with indexing set X = {x1, x2, x3, x4, x5, x6} by assigning ∅ and {x1} to
the vertices of degree 9 and {x2}, {x2, x3}, {x2, x3, x4}, {x2, x3, x5}, {x2, x3, x6},
{x2, x3, x4, x5}, {x2, x3, x4, x6}, {x2, x3, x5, x6} and {x2, x3, x4, x5, x6} to the ver-
tices of degree 2. Thus τe(K2,9) ≤ 6. Combining, τe(K2,9) = 6. �

Theorem 5.8. τe(K2,10) = 6.
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Proof. Since m(21) = 6, τe(K2,10) ≥ 6. We can obtain a topoline set-indexer for
K2,10 with indexing set X = {x1, x2, x3, x4, x5, x6} by assigning ∅ and {x1} to
the vertices of degree 10 and {x2}, {x2, x3}, {x2, x4}, {x2, x3, x4}, {x2, x3, x5},
{x2, x3, x6}, {x2, x3, x4, x5}, {x2, x3, x4, x6}, {x2, x3, x5, x6} and {x2, x3, x4, x5, x6}
to the vertices of degree 2. Thus, τe(K2,10) ≤ 6. Combining, τe(K2,10) = 6. �

Theorem 5.9. τe(K2,17) = 7.

Proof. Since m(35) = 7, τe(K2,17) ≥ 7. We can obtain a topoline set-indexer
for K2,17 with indexing set X = {x1, x2, x3, x4, x5, x6, x7} by assigning ∅ and
{x1} to the vertices of degree 17 and {x2}, {x2, x3}, {x2, x4},{x2, x5},{x2, x6},
{x2, x3, x4}, {x2, x3, x5}, {x2, x3, x6},{x2, x4, x5}, {x2, x4, x6}, {x2, x5, x6},
{x2, x3, x4, x5}, {x2, x3, x4, x6}, {x2, x3, x5, x6}, {x2, x4, x5, x6}, {x2, x3, x4, x5, x6}
and {x2, x3, x4, x5, x6, x7} to the vertices of degree 2. Thus, τe(K2,17) ≤ 7. Com-
bining, τe(K2,17) = 7. �

6. CONCLUSION

The study has obtained some results favouring the conjecture that the com-
plete graph Kn; n > 1 is topoline only if it is set-graceful. The topoline numbers
of certain classes of triangular books and some complete bipartite graphs are
also obtained.
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