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SOLVING MIXED BOUNDARY VALUE PROBLEM ON SIMPLY CONNECTED
REGIONS

MOHSEN AGHAEIBOORKHEILI AND AEZEDEN MOHAMED1

ABSTRACT. A numerical method for solving mixed condition on simply-connected
regions will be presented in this paper. Accuracy of suggested method is proved
by some examples that already compared with exact solution.

1. INTRODUCTION

There are about three main types of boundary value problems. The first one
that the values of a function in a boundary are given is called Dirichlet problem.
In the second type the values for the normal - derivative of a function on the
boundary are given. This type of BVP is called Neumann boundary condition.
The third type is a combination of the last two BVP. In this type, on a part of
the boundary the values of the function are given, while for the rest part of the
boundary the normal-derivative values of the function is given. This type of BVP
is called mixed boundary value problem [1].

All types of BVP’s arise in so many problems in physics, engineering and the
other science. Since mixed boundary value problem included both Dirichlet and
Neumann BVP, so it has more applications in other area.

So far so many methods have been developed for solving mixed BVP including
analytical and numerical method. But since the most problems that appear
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in the real life can not be solved analytically so numerical methods are more
interested and preferred.

The most popular numerical methods for solving BVP are BIE, FEM and FDM.
Boundary integral equation method is the more recent and effective(in term of
accuracy) method comparing the other methods [2]. In this paper a special type
of a BIE method has been applied for solving mixed boundary value problems.

2. NOTATIONS AND PRELIMINARIES

Suppose that C represents the extended complex plane. Then G will be a
bounded simply connected area at C with boundary Γ. Note that the direction
of Γ is counterclockwise and also α will be a fixed point in G (see Figure 1).

FIGURE 1. A graph for region G

Let δ(t) be a 2π-periodic twice continuously differentiable complex function
that represent parametric equation for the curve Γ such that

δ̇(y) =
d(δ(y))

dy
6= 0, y ∈ J := [0, 2π].

Suppose that p and q to be two arbitrary functions in H(Hölder space) defined
on Γ with y ∈ j. For convenience, p(δ(y)) will be presented by p(y) and also
q(δ(y)) by q(y).

Definition 2.1. Assume that p is a real Hölder continuous function. Dirichlet
problem is looking for a function w such that [3–5],

(1) w should be harmonic in G+,
(2) w(δ(y)) = p(y).
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Definition 2.2. Let φ to be a real Hölder continuous function such that∫
J

φ(y)|δ̇(y)|dy = 0.

Moreover suppose that n represent the exterior normal to Γ. Neumann problem is
looking for a function w such that

(1) w should be harmonic in G+,
(2) w should be continuous on the closure G,
(3) w(α) = 0,

(4)
∂w

∂n

∣∣∣∣∣
δ(y)

= φ(y), δ(y) ∈ Γ.

For convenience, normal vector with exterior direction that has been unitize,
will be mention just by normal vector in this paper. Suppose that n(ι) is the
normal vector to Γ at ι ∈ Γ. Moreover assume that T (ι) is the unit tangent
vector. Suppose also the angle connecting n(ι) and the positive direction of the
real axis will be presented by w(ι), i.e., n(ι) = eiΩ(ι). Then

eiΩ(ι) = −iT (δ(y)) = −i δ̇(y)

|δ̇(y)|
.

Thus
∂w

∂n
= cos(Ω)

∂w

∂X
+ sin(Ω)

∂w

∂Y
= <

[
eiΩ
(
∂w

∂X
− i ∂w

∂Y

)]
.

Let to write w(z) as a real part of an analytic function such w(z) = <[F (z)] then
using the Cauchy-Riemann equations

F ′(z) =
∂w(z)

∂X
− i∂w(z)

∂Y
.

Thus

<[−iδ̇F ′] = |δ̇|∂w
∂n

.

Assume that F is an analytic function with boundary values of

F = U + iV,

then the derivative function F ′(z) will be also an analytic function with

δ̇F ′ = U ′ + iV ′.
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So for the Neumann problem
<[−iF (δ(y))] = ψ(y),

ψ′(y) = <[−iδ̇(y)F ′(δ(y))] = |δ̇(y)|∂w
∂n

(y),
=⇒


<[−i(p(y) + iq(y))] = ψ(y),

ψ′(y) = |δ̇(y)|∂w
∂n

(y),
=⇒


q(y) = ψ(y),

ψ′(y) = |δ̇(y)|∂w
∂n

(y).

Which means for the Neumann problem the following equation is hold

q′(y) = |δ̇(y)|∂w
∂n

(y)

where
∂w

∂n
(y) = φ(y).

3. GENERALIZED NEUMANN KERNEL

Let B to be defined in the form of B(y) = δ(y) − α. Using this function, the
generalized Neumann kernel will be defined by [6]

R(x, y) :=
1

π
Im

(
B(x)

B(y)

δ̇(y)

δ(y)− δ(x)

)
.

Also by the following definition the kernel R will be continuous

R(y, y) :=
1

π
Im

(
1

2

δ̈(y)

δ̇(y)
− Ḃ(y)

B(y)

)
.

The real kernel T will be defined by [6]

T (x, y) :=
1

π
<

(
B(x)

B(y)

δ̇(y)

δ(y)− δ(x)

)
.

Then, the kernel T can be represented by

T (x, y) := − 1

2π
cos

x− y
2

+ T1(x, y),
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such that T1 is a continuous kernel that take the following values on the diagonal

T1(y, y) :=
1

π
<

(
1

2

δ̈(y)

δ̇(y)
− Ḃ(y)

B(y)

)
.

So the operator [6]

Rq(x) :=

∫
J

R(x, y)q(y)dy, x ∈ J,

will be a integral operator of Fredholm type. Moreover the operator

Tq(x) :=

∫
J

T (x, y)q(y)dy, x ∈ J,

is a singular integral operator.

Theorem 3.1. [6] Suppose that F to be a solution for the Dirichlet condition
<[F (δ(y))] = p(y) provided by the following values on the boundary

F = p+ iq

and ImF (0) = 0, then the following integral equation will be held

(3.1) q −Rq = −Tp,

i.e.

q(x)−
∫ 2π

0

R(x, y)q(y)dy = −
∫ 2π

0

T (x, y)p(y)dy.

The IE in (3.1) represent a required condition that the solution of Dirichlet
problem should satisfy on it. The following theorem will present the relation
between q and final answer of Dirichlet problem.

Theorem 3.2. [6] Assume that p to be real Hölder continuous function. Moreover,
assume also that q is a solution for equation (3.1) and Φ is

Φ =
1

2πi

∫
Γ

p+ iq

δ − z
dδ, z /∈ Γ.

Then Φ = f and satisfies

f = p+ iq.
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4. DIRICHLET PROBLEM WITH DISCONTINUOUS COEFFICIENTS

Let p is a function on the region G such that it is discontinuous at the point
y ∈ G. If lim

d→y
p(d) does not exist, but both lim

d→y+
p(d) and lim

d→y−
p(d) exist, then y is

called a discontinuity of the first kind, or jump discontinuity [3].
Suppose that there exist finite number of first kind discontinuities for a given

function p. Dirichlet problem(with discontinuous coefficients) is looking for a
function w such that [3–5],

(1) w should be harmonic in G+,
(2)

(4.1) w(δ(y)) = p(y).

For Dirichlet problem with discontinuous coefficients (4.1), the unique solu-
tion can be considered as a real part of an analytic function in G called F (z).
Let for k = 1, 2, . . . , l the discontinuities of the given function p(y) occur at
yk ∈ [0, 2π). Then the limit values of the given function p(y) at the points of
discontinuities can be represented by

a−k = p(yk − 0), a+
k = p(yk + 0), k = 1, 2, . . . , l.

We allow the boundary Γ to have corner points at δ(tk) for k = 1, 2, . . . , l. Let

b−k = argyk (δ(yk − 0)− δ(yk)), b+
k = argyk (δ(yk + 0)− δ(yk)), k = 1, 2, . . . , l,

such that each value of the argument argyk is selected in a way that the branch
cut form the point δ(yk) to the point at∞ is outside of the domain G. After that
the value b+

k − b
−
k denotes the interior angle between the left and right tangents

to the boundary Γ at δ(yk). Suppose that 0 < b+
k −b

−
k < 2π. In case the boundary

Γ be smooth at δ(yk), then it can be considered that b+
k − b

−
k = π. With all this,

the function f(z) is defined in the following way

(4.2) f(z) = F (z) + i

l∑
k=1

a−k − a
+
k

a−k − a
+
k

logyk (z − δ(yk)).

The representation (4.2) is different from the one used in [7]. The branch cut
of logyk is selected such that to be outside of the domain G from the point δ(yk)
to the point at ∞. Hence by these facts, the function f(z) will be analytic in G

such that the boundary values are

(4.3) <[f(δ(y))] = λ(y)
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where

(4.4) λ(y) = p(y)−
l∑

k=1

a−k − a
+
k

b−k − b
+
k

pk(y)

and
pk(y) = Im logyk (δ(y)− δ(yk)) = argyk (δ(y)− δ(yk)).

Theorem 4.1. λ(y), given in (4.4), is continuous every where on the boundary Γ.

Proof. Continuity of λ(y) on [0, 2π] − {y1, . . . , yl} is clear. So just need to prove
it is continuous at yj for j = 1, 2, . . . ,m. Then it will be enough to show that

λ(yj − 0)− λ(yj + 0) = 0.

Using this fact that the function pk(y) is continuous at all points yj with j 6= k, it
can be shown that

λ(yj − 0)− λ(yj + 0) = p(yj − 0)−
a−j − a+j

b−j − b+j
pj(yj − 0)− p(yj + 0) +

a−j − a+j

b−j − b+j
pj(yj + 0)

= a−j −
a−j − a+j

b−j − b+j
b−j − a+j +

a−j − a+j

b−j − b+j
b+j

= a−j − a+j −
a−j − a+j

b−j − b+j
(b−j − b+j )

= a−j − a+j − (a−j − a+j )

= 0.

�

So by all of these, now solving Dirichlet problem with discontinuous coeffi-
cients (4.1) is reduced to solve a Dirichlet problem with continuous coefficients
(4.3).

Let Im[f(0)] = 0(without lose the generality). Moreover, suppose that ϕ =

Im[f ], i.e.,

(4.5) f(δ(y)) = λ(y) + iϕ(y)

then by Theorem 3.1 we have

(4.6) ϕ−Rϕ = −Tλ.

By solving the system of equations obtained from (4.6), ϕ will be found, then
f(z) will resulted from (4.5), so F (z) will be deducted from (4.2) and the final
solution w(z), the real part of the F (z), will be found.
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5. MIXED BOUNDARY VALUE PROBLEM ON BOUNDED SIMPLY CONNECTED REGIONS

Suppose that p0, q∗ are two given continuous functions on the boundary Γ =

Γ1∪̇Γ2. Mixed boundary value problem is looking for a function w such that (see
Figure 2),

(1) w should be harmonic in G+,
(2)

(5.1)


w(y) = p0(y), y ∈ Γ1,

∂w

∂n
(y) = q∗(y), y ∈ Γ2.

FIGURE 2. Mixed boundary value problem on simply connected region

Now we define the two following functions

p∗(y) =

{
p0(y), y ∈ Γ1,

p1(y)(Unknown), t ∈ Γ2,

and

(5.2) q∗(y) =

{
q0(y) (Unknown), y ∈ Γ1,

q1(y), y ∈ Γ2,

where q′1(t) = q∗(y)|δ̇(y)|. By using the Theorem 3.1 functions

(5.3) p(y) = p∗(y)−
∑
m∈S

ap
−
m − ap

+

m

bp
−
m − bp

+

m

argym (δ(y)− δ(ym))
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and

q(y) = q∗(y)−
∑
m∈S

aq
−
m − aq

+

m

bq
−
m − bq

+

m

argym (δ(y)− δ(ym))

are continuous on the boundary Γ such that S = {j, k}. In the equations (5.2)
and (5.3), the values ap−m , ap

+

m , bp−m , bp+m , a
q−
m , a

q+

m , b
q−
m and bq+m are define as below:

ap
−
m = p∗(ym − 0),

ap
+

m = p∗(ym + 0),

bp
−
m = argym (δ(ym − 0)− δ(ym)),

bp
+

m = argym (δ(ym + 0)− δ(ym)),



aq
−
m = q∗(ym − 0),

aq
+

m = q∗(ym + 0),

bq
−
m = argym (δ(ym − 0)− δ(ym)),

bq
+

m = argym (δ(ym + 0)− δ(ym)).

Then application of the Theorem 3.2 for the function f(δ(y)) = p(y) + iq(y) on
the boundary derive that

(5.4) q −Rq = −Tp.

6. NUMERICAL IMPLIMENTATION

Suppose that Γ is divided into Γ1 and Γ2 in the following way:{
δ(yi) ∈ Γ1, i = j, j + 1, · · · , k − 1, k

δ(yi) ∈ Γ2, i = k + 1, k + 2, · · · , n− 1, n, 1, 2, · · · , j − 2, j − 1

By this construction, the following values can be define numerically: ap
−

j = p∗(yj − 0) = p∗(yj−1),

ap
+

j = p∗(yj + 0) = p∗(yj),

 aq
−

j = q∗(yj − 0) = q∗(yj−1),

aq
+

j = q∗(yj + 0) = q∗(yj), ap
−

k = p∗(yk − 0) = p∗(yk),

ap
+

k = p∗(yk + 0) = p∗(yk+1),

 aq
−

k = q∗(yk − 0) = q∗(yk),

aq
+

k = q∗(yk + 0) = q∗(yk+1).

Now by these definitions there will be (k − j + 1) unknowns for p and (n− k +

j − 1) unknowns for q in the equation (5.4). It means that we have a system of
equation with n equations and n unknowns that can be solved for unknowns.

Since we find p and q from (5.4), the function f(z) can be find by

f(z) =
1

2πi

∫
Γ

p+ iq

δ − z
dδ, z /∈ Γ.
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After that the final solution of the mixed problem (5.1), w(z), will be the real
part of the following function

F (z) = f(z)+
∑
m∈S

ap
−
m − ap

+

m

bp
−
m − bp

+

m

argym (z − δ(ym))+i
∑
m∈S

aq
−
m − aq

+

m

bq
−
m − bq

+

m

argym (z − δ(ym)).

7. NUMERICAL EXAMPLES

When the functions in any integral equations are 2π-periodic, one of the best
numerical method for applying is Nyström method applying together with the
trapezoidal rule [8]. Here, the functions Aj and δj are 2π-periodic. After apply-
ing this method equation (3.1) will reduced to solve linear system [8]

(7.1) (I −K)x = −Qy,

such that I is the identity matrix, Q is the n × n matrix related to the operator
T, K is the matrix related to the operator R with size of n×n, x is a vector that
predicts the values of unknown function ψ at the nodes with size of n × 1 and
finally y is also a vector that predicts the values of unknown function φ at the
nodes with size of n×1. See [7,9] for details about Solvability of these problem.

In this paper, the linear systems (7.1) will be solved by the Wolfarm Mathe-
matica 10.4. From now on, w(z) will represent the exact answer of mixed con-
dition, wn(z) will represent the solution that founded numerically for the mixed
condition with n nodes on the boundary resulted from presented method.

Example 1. Obtain a harmonic function w in the following region (see Figure 3)
such that satisfy on:

Γ : δ(y) = exp(iy)

w(y) = cos(y), 0 ≤ y < π,

∂w

∂n
(y) = cos(y), π ≤ y < 2π.
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FIGURE 3. The region for Example 1

For this example, the exact answer is given by

w(s, t) = <[F (s, t)] = <[s+ it] = s.

So we have two following functions

p∗(y) =

{
cos(y), y ∈ Γ1 : [0, π),

p1(y)(Unknown), y ∈ Γ2 : [π, 2π),

and

q∗(y) =

{
q0(y)(Unknown), y ∈ Γ1 : [0, π),

sin(y), y ∈ Γ2 : [π, 2π).

By using the Theorem 3.1 functions

(7.2) p(y) = p∗(y)−
2∑
i=1

ap
−

i − a
p+

i

π
argyi (δ(y)− δ(yi))

and

(7.3) q(y) = q∗(y)−
2∑
i=1

aq
−

i − a
q+

i

π
argyi (δ(y)− δ(yi))
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are continuous on the boundary Γ such that yi = {0, π}. In the equations (7.2)
and (7.3), the values ap

−

i , ap
+

i , aq
−

i and aq
+

i are define as below:

ap
−

1 = p∗(y1 − 0) = p∗(yn),

ap
+

1 = p∗(y1 + 0) = p∗(y1) = cos(y1),

ap
−

2 = p∗(y2 − 0) = p∗(yn
2
) = cos(yn

2
),

ap
+

2 = p∗(y2 + 0) = p∗(yn
2

+ 1),

aq
−

1 = q∗(y1 − 0) = q∗(yn) = sin(yn),

aq
+

1 = q∗(y1 + 0) = q∗(y1),

aq
−

2 = q∗(y2 − 0) = q∗(yn
2
),

aq
+

2 = q∗(y2 + 0) = q∗(yn
2

+ 1) = sin(yn
2

+ 1).

Then application of the Theorem 3.2 for the function f(δ(y)) = p(y) + iq(y) on
the boundary derive that

q −Rq = −Tp,

such that for the function q the values of q(y1), q(y2), · · · , q(yn
2
−1), q(yn

2
) are un-

known and for the function p the values of p(yn
2

+1), p(yn
2

+2), · · · , p(yn−1), p(yn)

are unknown. Solving of this system of equations leads to the following results.

(a) (b)

(c)

FIGURE 4. (a): The approximate function qn(y) obtained by the
presented method with n = 2048 boundary points, (b): The exact
function q(y) = sin(y) and (c): The error function qn(y) − q(y)

from 0 to 2π.
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(a) (b)

(c)

FIGURE 5. (a): The approximate function pn(y) obtained by the
presented method with n = 2048 boundary points, (b): The exact
function p(y) = cos(y) and (c): The error function pn(y) − p(y)

from 0 to 2π.

z wn(z) |w(z)− wn(z)|
+0.80 + 0.55i +0.7880 3.1927× 10−2

−0.50 + 0.70i −0.4463 5.3679× 10−2

−0.40− 0.40i −0.4093 9.3832× 10−2

+0.60 + 0.05i +0.5728 2.7128× 10−2

−0.20 + 0.90i −0.1617 3.8240× 10−2

−0.10− 0.10i −0.1027 2.7285× 10−2

+0.99 + 0.10i +0.9730 1.6958× 10−2

−0.10 + 0.90i −0.0669 3.3059× 10−2

+0.40− 0.84i +0.3438 5.6118× 10−2

+0.10 + 0.99i +0.1291 2.9121× 10−2

+0.10− 0.89i +0.0484 5.1566× 10−2

+0.30− 0.49i +0.2616 3.8381× 10−2

TABLE 1. Absolute error |w(z)−wn(z)| at some selected points for
Example 1 with n = 128
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(a)

(b) (c)

FIGURE 6. (a): The 3−D graph of the solution using presented
method, (b): The 3−D graph of the exact answer and (c): |wn(z)−
w(z)|

The approximate function qn(y) obtained by the presented method with n =

2048 boundary points is shown in 4(a), the exact function q(y) = sin(y) is shown
in 4(b) and the error function qn(y) − q(y) from 0 to 2π is shown in the Figure
4(c). The approximate function pn(y) obtained by the presented method with
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n = 2048 boundary points is shown in 5(a), the exact function p(y) = cos(y) is
shown in 5(b) and the error function pn(y) − p(y) from 0 to 2π is shown in the
Figure 5(c). Also a 3−D graph for w(z) using presented method with n = 1024

nodes is presented at Figure 6(a), 3−D plot of the exact solution is presented at
Figure 6(b) and the |wn(z) − w(z)| is presented at Figure 6(c). Absolute error
|w(z)− wn(z)| at some selected points for this example is shown in the table 1.

Example 2. Obtain a harmonic function w in the ellipse
s2

4
+ t2 = 1 (see Figure

7)such that satisfy on:

Γ : δ(y) = 2 cos(y) + i sin(y),

w(y) = 1.5 + 2.5 cos(2y), 0 ≤ y <
π

2
,

∂w

∂n
(y) =

4 cos(2y)√
2.5 + 1.5 cos(2y)

,
π

2
≤ y <

3π

2
,

w(y) = 1.5 + 2.5 cos(2y),
3π

2
≤ y < 2π.

FIGURE 7. The region for Example 2

The exact solution of this example is given by

w(s, t) = <[F (s, t)] = <[(s+ i t)2] = s2 − t2.

So we have two following functions

p∗(y) =


1.5 + 2.5 cos(2y), y ∈ Γ1 : [0,

π

2
) ∪ [

3π

2
, 2π),

p1(y)(Unknown), y ∈ Γ2 : [
π

2
,
3π

2
),

1.5 + 2.5 cos(2y), y ∈ Γ1 : [0,
π

2
) ∪ [

3π

2
, 2π),
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and

q∗(y) =


q0(y)(Unknown), y ∈ Γ1 : [0,

π

2
) ∪ [

3π

2
, 2π),

2 sin(2y), y ∈ Γ2 : [
π

2
,
3π

2
),

q2(y)(Unknown), y ∈ Γ1 : [0,
π

2
) ∪ [

3π

2
, 2π).

By using the Theorem 3.1 functions

(7.4) p(y) = p∗(y)−
2∑
i=1

ap
−

i − a
p+

i

π
argyi (δ(y)− δ(yi))

and

(7.5) q(y) = q∗(y)−
2∑
i=1

aq
−

i − a
q+

i

π
argyi (δ(y)− δ(yi))

are continuous on the boundary Γ such that yi =

{
π

2
,
3π

2

}
. In the equations

(7.4) and (7.5), the values ap
−

i , ap
+

i , aq
−

i and aq
+

i are define as below:

ap
−

1 = p∗(y1 − 0) = p∗(yn
4
) = 1.5 + 2.5 cos(2yn

4
),

ap
+

1 = p∗(y1 + 0) = p∗(yn
4

+1),

ap
−

2 = p∗(y2 − 0) = p∗(y 3n
4

),

ap
+

2 = p∗(y2 + 0) = p∗(y 3n
4

+1) = 1.5 + 2.5 cos(2y 3n
4

+1),

aq
−

1 = q∗(y1 − 0) = q∗(yn
4
) = 2 sin(yn

4
),

aq
+

1 = q∗(y1 + 0) = q∗(yn
4

+1),

aq
−

2 = q∗(y2 − 0) = q∗(y 3n
4

),

aq
+

2 = q∗(y2 + 0) = q∗(y 3n
4

+1) = 2 sin(y 3n
4

+1).

Then application of the Theorem 3.2 for the function f(δ(y)) = p(y) + iq(y) on
the boundary derive that

q −Rq = −Tp,

such that for the function q the values of q(y1), q(y2), · · · , q(yn
4
−1), q(yn

4
) and

q(y 3n
4

+1), q(y 3n
4

+2), · · · , q(yn−1), q(yn) are unknown and for the function p the val-
ues of p(yn

4
+1), p(yn

4
+2), · · · , p(y 3n

4
−1), p(y 3n

4
) are unknown. Solving of this system

of equations leads to the following results.
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(a) (b)

(c)

FIGURE 8. (a): The surface plot of the solution by presented
method, (b): The surface plot of the solution by exact answer
and (c): The absolute error |wn(z)− w(z)| for the entire region.

The approximate function qn(y) obtained by the presented method with n =

2048 boundary points is shown in 9(a), the exact function q(y) = 2 sin(2y) is
shown in 9(b) and the error function qn(y) − q(y) from 0 to 2π is shown in
the Figure 9(c). The approximate function pn(y) obtained by the presented
method with n = 2048 boundary points is shown in 10(a), the exact function
p(y) = cos(y) is shown in 10(b) and the error function pn(y)− p(y) from 0 to 2π

is shown in the Figure 10(c). Also the 3−D graph found by suggested method
with n = 2048 nodes is presented at Figure 8(a), 3−D graph of the exact solution
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(a) (b)

(c)

FIGURE 9. (a): The approximate function qn(y) obtained by the
presented method with n = 2048 boundary points, (b): The exact
function q(y) = 2 sin(2y) and (c): The error function qn(y) − q(y)

from 0 to 2π.

(a) (b)

(c)

FIGURE 10. (a): The approximate function pn(y) obtained by the
presented method with n = 2048 boundary points, (b): The exact
function p(y) = 1.5+2.5 cos(2y) and (c): The error function pn(y)−
p(y) from 0 to 2π.
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is shown in Figure 8(b) and |wn(z)−w(z)| is presented at Figure 8(c). Absolute
error |w(z) − wn(z)| at some selected points for this example is shown in the
table 2.

z wn(z) |w(z)− wn(z)|
+1.50 + 0.00i +1.3501 8.9988× 10−1

−1.50 + 0.00i +1.3766 8.7335× 10−1

+1.01− 0.50i −0.0400 8.1010× 10−1

+1.60 + 0.05i +1.6483 9.0919× 10−1

−1.20 + 0.90i −9.4747 1.0104× 10−1

−1.10− 0.10i +0.3354 8.6452× 10−1

+1.99 + 0.10i +2.9941 9.5595× 10−1

−0.10 + 0.90i −1.7443 9.4435× 10−1

+1.04− 0.84i −0.4006 7.7668× 10−1

+1.10 + 0.70i −0.2739 9.9399× 10−1

+1.10− 0.70i −0.0659 7.8593× 10−1

+1.30− 0.49i +0.6239 8.2596× 10−1

TABLE 2. Absolute error |w(z)−wn(z)| at some selected points for
Example 2 with n = 128

Example 3. This example will illustrate that the suggested method works effec-
tively for problems with unknown solution. Obtain a harmonic function w in the
following region(unit disk) such that satisfy on:

Γ : δ(y) = exp(iy)

w(y) = 1 + 4 cos(3y), 0 ≤ y <
π

4
,

∂w

∂n
(y) = 15 cos(3y),

π

4
≤ y < 2π.

So we have two following functions

p∗(y) =


1 + 4 cos(3y), y ∈ Γ1 : [0,

π

4
),

p1(y)(Unknown), y ∈ Γ1 : [
π

4
, 2π),
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and

q∗(y) =


q0(y)(Unknown), y ∈ Γ1 : [0,

π

4
),

5 sin(3y), y ∈ Γ1 : [
π

4
, 2π).

By using the Theorem 3.1 functions

(7.6) p(y) = p∗(y)−
2∑
i=1

ap
−

i − a
p+

i

π
argyi (δ(t)− δ(yi))

and

(7.7) q(y) = q∗(y)−
2∑
i=1

aq
−

i − a
q+

i

π
argyi (δ(y)− δ(yi))

are continuous on the boundary Γ such that yi =
{

0,
π

4

}
. In the equations (7.6)

and (7.7), the values ap
−

i , ap
+

i , aq
−

i and aq
+

i are define as below:

ap
−

1 = p∗(y1 − 0) = p∗(yn),

ap
+

1 = p∗(y1 + 0) = p∗(y1) = 1 + 4 cos(3y1),

ap
−

2 = p∗(y2 − 0) = p∗(yn
4
) = 1 + 4 cos(3yn

4
),

ap
+

2 = p∗(y2 + 0) = p∗(yn
4

+1),

aq
−

1 = q∗(y1 − 0) = q∗(yn),

aq
+

1 = q∗(y1 + 0) = q∗(y1) = 5 sin(3y1),

aq
−

2 = q∗(y2 − 0) = q∗(yn
4
) = 5 sin(3yn

4
),

aq
+

2 = q∗(y2 + 0) = q∗(yn
4

+1).

Then application of the Theorem 3.2 for the function f(δ(y)) = p(y) + iq(y) on
the boundary derive that

q −Rq = −Tp,

such that for the function q the values of q(y1), q(y2), · · · , q(yn
4
−1), q(yn

4
) are un-

known and for the function p the values of p(yn
4

+1), p(yn
4

+2), · · · , p(yn−1), p(yn)

are unknown. Solving of this system of equations leads to the following results.
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n z wn(z)

+0.80 + 0.55i 18.060838031

256 −0.50 + 0.70i 22.258975272

−0.40− 0.40i 19.658067453

+0.60 + 0.05i 19.576364835

512 −0.20 + 0.90i 21.582214815

−0.10− 0.10i 18.888932099

+0.99 + 0.10i 22.341987453

1024 −0.10 + 0.90i 20.638285909

+0.40− 0.84i 15.025243598

+0.10 + 0.99i 18.455687961

2048 +0.10− 0.89i 17.989434561

+0.30− 0.49i 18.147305126

TABLE 3. The value of wn(z) at some selected points for Example 3

FIGURE 11. The approximate function pn(t) obtained by the pre-
sented method with n = 2048 boundary points
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FIGURE 12. The approximate function qn(t) obtained by the pre-
sented method with n = 2048 boundary points

FIGURE 13. The surface plot of the solution by presented method

The approximate function pn(t) obtained by the presented method with n =

2048 boundary points is shown in 11, the approximate function qn(t) obtained
by the presented method with n = 2048 boundary points is shown in 12 and
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also the 3−D graph found by suggested method is presented at Figure 13. The
value of wn(z) at some selected points for this example is shown in the table 3.

8. CONCLUSIONS

A method for solving mixed condition on bounded simply connected regions
has been presented in this paper. For the future work, this method can be ex-
tended to solve mixed condition on unbounded(or bounded) simply(or multi-
ply) connected regions. Accuracy of method is proved by some examples that
already compared with exact solution.
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