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NUMERICAL QUENCHING FOR A SLOW DIFFUSION SYSTEM COUPLED
AT THE BOUNDARY

PATERNE A. T. DIABATÉ1, ADAMA COULIBALY, KOUAMÉ B. EDJA, AND AUGUSTIN K. TOURÉ

ABSTRACT. This paper concerns the study of a numerical approximation for
the following problem, ut = uxx, vt = vxx, 0 < x < 1, 0 < t < T ; ux(0, t) =

(u−p1v−q1)(0, t), vx(0, t) = (u−p2v−q2)(0, t) and ux(1, t) = vx(1, t) = 0,
0 < t < T , with p1, q1, p2 and q2 real parameters. We show that the so-
lution of the semidiscrete scheme, obtained by the finite differences method
quenches in a finite time only at first node of the mesh. We also prove that the
time derivative of the solution blows up at quenching node and establish some
conditions under which occurs the non-simultaneous or simultaneous quench-
ing for the solution of the semidiscrete problem. After show the convergence
of the quenching time, we finally present some numerical results to illustrate
certain point of our work.

1. INTRODUCTION

Consider the following Newton filtration equations

ut(x, t) = uxx(x, t), vt(x, t) = vxx(x, t), (x, t) ∈ (0, 1)× (0, T ),(1.1)

coupled with the boundary singularities at the left border

ux(0, t) = (u−p1v−q1)(0, t), ux(1, t) = 0, t ∈ (0, T ),(1.2)

1corresponding author
2020 Mathematics Subject Classification. 35K51, 35B50, 65M06, 65M12.
Key words and phrases. Numerical quenching, non-simultaneous quenching, Newton filtra-

tion equations, boundary singularities, quenching time.
9909



9910 P. A. T. DIABATÉ, A. COULIBALY, K. B. EDJA, AND A. K. TOURÉ

vx(0, t) = (u−p2v−q2)(0, t), vx(1, t) = 0, t ∈ (0, T ),(1.3)

subject to smooth initial data

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ [0, 1],(1.4)

where p2, q1 ≥ 0, p1, q2 > 0, u′0(x), v′0(x) > 0, u′′0(x), v′′0(x) ≤ 0, x ∈ (0, 1), and u0,
v0 compatible on the boundary.

The equations in (1.1) describe the heat-conduction of electron in the plasma
body and the radiation heat-conduction, where the thermal conductivity in-
creases while the temperature is decreasing. The nonlinear boundary condi-
tions can be understood as that the heat convection occurs on the surfaces of
bodies [24].

The problem (1.1)–(1.4) is said to be quench at time T if the two components
u and v of the solution (u, v) of (1.1)–(1.4) are nonnegative for all (x, t) ∈
[0, 1]× [0, T ) and

lim inf
t→T−

min{u(·, t), v(·, t)} = 0+.

The quenching phenomenon was first observed by Kawarada [16]. Since then,
it has attracted a lot of attention, both for scalar and coupling cases. Many stud-
ies have concentrated on the quenching solutions, including quenching criteria,
quenching locations, quenching rates, and quenching profiles, see [3]- [7], [10]-
[18], [22], [25] and references therein. Ji and Zheng [15] studied the problem
(1.1)-(1.4), they obtain that if p2 ≥ p1 + 1, q1 ≥ q2 + 1, then quenching is al-
ways simultaneous, while for p2 < p1 + 1 with q1 ≥ q2 + 1, or q1 < q2 + 1 with
p2 ≥ p1 + 1, the quenching must be non-simultaneous. When p2 < p1 + 1 and
q1 < q2 + 1, both simultaneous and non-simultaneous quenching is possible.

Unless we are mistaken, the studies carried out so far do not concern the nu-
merical approximation of the problem (1.1)–(1.4). We will therefore deal in this
paper with the numerical study using a semidiscrete form of (1.1)–(1.4), par-
ticularly in study of simultaneous and non-simultaneous quenching. We start
by the construction of the semidiscrete scheme. Let I ≥ 3 be a positive integer
and let h = 1/I. Define the grid xi = ih with i = 0, . . . , I. Approximate the so-
lution (u, v) of (1.1)–(1.4) by the solution (Uh(t) = (U0(t), . . . , UI(t))

T , Vh(t) =

(V0(t), . . . , VI(t))
T ) and approximate the initial data (u0, v0) of the same prob-

lem by
(
ϕ1,h = (ϕ1,0, . . . , ϕ1,I)

T , ϕ2,h = (ϕ2,0, . . . , ϕ2,I)
T
)

of the following system
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of ODEs whose is obtain using the finite difference method

U ′i(t) = δ2Ui(t)− bi(U−p1V −q1)i(t), i = 0, . . . , I, t ∈ (0, Th),(1.5)

V ′i (t) = δ2Vi(t)− bi(U−p2V −q2)i(t), i = 0, . . . , I, t ∈ (0, Th),(1.6)

Ui(0) = ϕ1,i, Vi(0) = ϕ2,i, i = 0, . . . , I,(1.7)

where

p2, q1 ≥ 0, p1, q2 > 0, 0 < ϕ1,i ≤M, 0 < ϕ2,i ≤M, i = 0, . . . , I,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
, δ2UI(t) =

2UI−1(t)− 2UI(t)

h2
, t ∈ (0, Th),

δ2Ui(t) =
Ui−1(t)− 2Ui(t) + Ui+1(t)

h2
, 1 ≤ i ≤ I − 1, t ∈ (0, Th),

b0 =
2

h
, and bi = 0, i = 1, . . . , I.

Here [0, Th) is the maximal time interval such that

∀t ∈ [0, Th), inf min
0≤i≤I

{Ui(t), Vi(t)} > 0.

For 0 ≤ i ≤ I, we have

lim inf
t→T−

h

min{Ui(t), Vi(t)} = 0+.

The time Th can be finite or infinite. On the one hand, if Th is finite, we say that
the solution (Uh, Vh) of (1.5)–(1.7) quenches in a finite time and Th is called
the semidiscrete quenching time of (Uh, Vh). We say on the other hand that the
solution (Uh, Vh) quenches globally when Th is infinite.

Numerical approximations of heat equations with non-linear boundary condi-
tions have been the focus of many authors in recent years. We refer to [1], [2],
[8], [19]– [21], [23] and the references cited therein for our work.

The paper is organized as follows. In the next section, we give some properties
concerning our semidiscrete scheme. In Section 3, under some conditions, we
prove that the solution of the semidiscrete scheme (1.5)–(1.7) quenches in a
finite time, we give a result on numerical quenching set. We also show that
the time derivative of the solution blows up at quenching node. A criterion to
identify simultaneous and non-simultaneous quenching is proposed in section
4. In Section 5, we show the convergence of the solution of the semidiscrete
scheme and the convergence of the quenching times to the theoretical one when
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the mesh size goes to zero. Finally, in last section, we give some numerical
experiments.

2. PROPERTIES OF THE SEMIDISCRETE SCHEME

In this section, we give some auxiliary results for the problem (1.5)–(1.7).

Definition 2.1. We say that (Uh, Vh) ∈
(
C1([0, Th),RI+1)

)2 is a lower solution of
(1.5)–(1.7) if

U ′i(t) ≤ δ2Ui(t)− bi(Ui−p1(t)Vi−q1(t)), i = 0, . . . , I, t ∈ (0, Th),

V ′i (t) ≤ δ2Vi(t)− bi(Ui−p2(t)Vi−q2(t)), i = 0, . . . , I, t ∈ (0, Th),

0 < Ui(0) ≤ ϕ1,i, 0 < Vi(0) ≤ ϕ2,i, i = 0, . . . , I,

where (Uh, Vh) is the solution of (1.5)–(1.7). On the other hand, we say that
(Uh, Vh) ∈

(
C1([0, Th),RI+1)

)2 is an upper solution of (1.5)–(1.7) if these inequal-
ities are reversed.

The following lemma is a discrete form of the maximum principle.

Lemma 2.1. Let eh, ch, αh, βh ∈ C0([0, Th),RI+1) and Uh, Vh ∈ C1([0, Th),RI+1)

such that

U ′i(t)− δ2Ui(t) + ei(t)Ui(t) + ci(t)Vi(t) ≥ 0, i = 0, . . . , I, t ∈ (0, Th),

V ′i (t)− δ2Vi(t) + αi(t)Ui(t) + βi(t)Vi(t) ≥ 0, i = 0, . . . , I, t ∈ (0, Th),

Ui(0) ≥ 0, Vi(0) ≥ 0, i = 0, . . . , I.

Then we have

Ui(t) ≥ 0, Vi(t) ≥ 0, i = 0, . . . , I, t ∈ (0, Th).

Proof. Let T0 < Th and let (Zh(t),Wh(t)) = (eλtUh(t), e
λtVh(t)) where λ is a real.

We find that (Zh(t),Wh(t)) satisfies the following inequalities :

Z ′i(t)− δ2Zi(t) + (ei(t)− λ)Zi(t) + ci(t)Wi(t) ≥ 0,(2.1)

i = 0, . . . , I, t ∈ (0, Th),

W ′
i (t)− δ2Wi(t) + αi(t)Zi(t) + (βi(t)− λ)Wi(t) ≥ 0,

i = 0, . . . , I, t ∈ (0, Th),
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Zi(0) ≥ 0, Wi(0) ≥ 0, i = 0, . . . , I.(2.2)

Setm = min
{

min0≤i≤I,t∈[0,T0] Zi(t),min0≤i≤I,t∈[0,T0]Wi(t)
}

. Since for i ∈ {0, . . . , I},
Zi and Wi are continuous functions on a compact, we can assume that m =

Zi0(ti0) for a certain i0 ∈ {0, . . . , I}.
Assume m < 0. Taking λ negative such that

(ei0(ti0)− λ)Zi0(ti0) + ci0(ti0)Wi0(ti0) < 0.

If ti0 = 0, then Zi0(0) < 0, which contradicts (2.2), hence ti0 6= 0; if 0 ≤ i0 ≤ I,
we have

Z ′i0(ti0) = lim
k→0

Zi0(ti0)− Zi0(ti0 − k)

k
≤ 0.

Moreover by a straightforward computation we get

Z ′i0(ti0)− δ
2Zi0(ti0) + (ei0(ti0)− λ)Zi0(ti0) + ci0(ti0)Wi0(ti0) < 0,

but this inequalitie contradicts (2.1) and the proof is completed. �

Lemma 2.2. Let (Uh, Vh), (Uh, Vh) ∈
(
C1([0, Th),RI+1)

)2 be lower and upper solu-
tions of (1.5)–(1.7) respectively such that, (Uh(0), Vh(0)) ≤ (Uh(0), Vh(0)) then

(Uh(t), Vh(t)) ≤ (Uh(t), Vh(t)).

Proof. Let us define (Zh(t),Wh(t)) = (Uh(t), Vh(t))− (Uh(t), Vh(t)). By a straight-
forward computation and using the Mean value theorem, we obtain

Z ′i(t)− δ2Zi(t)− p1bi(µi(t))−p1−1Zi(t)− q1bi(νi(t))−q1−1Wi(t) ≥ 0,(2.3)

i = 0, . . . , I

W ′
i (t)− δ2Wi(t)− p2bi(µi(t))−p2−1Zi(t)− q2bi(νi(t))−q2−1Wi(t) ≥ 0,(2.4)

i = 0, . . . , I

Zi(0) ≥ 0, Wi(0) ≥ 0, i = 0, . . . , I

where µi(t), νi(t) lie, respectively, between Ui(t) and Ui(t), and between Vi(t)

and Vi(t), for i ∈ {0, . . . , I}.
We can rewrite (2.3)–(2.4) as

Z ′i(t)− δ2Zi(t) + ei(t)Zi(t) + ci(t)Wi(t) ≥ 0, i = 0, . . . , I, t ∈ (0, Th),

W ′
i (t)− δ2Wi(t) + αi(t)Zi(t) + βi(t)Wi(t) ≥ 0, i = 0, . . . , I, t ∈ (0, Th),
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where ei(t) = −p1bi(µi(t))−p1−1, ci(t) = −q1bi(νi(t))−q1−1, αi(t) = −p2bi(µi(t))−p2−1

and βi(t) = −q2bi(νi(t))−q2−1, i = 0, . . . , I ∀t ∈ (0, Th). According to Lemma 2.1,
Zi(t) ≥ 0, Wi(t) ≥ 0, for i = 0, . . . , I, ∀t ∈ (0, Th) and the proof is completed. �

The next lemma gives the properties of the semidiscrete solution.

Lemma 2.3. Let (Uh, Vh) ∈
(
C1([0, Th),RI+1)

)2 be the solution of (1.5)–(1.7)
with an initial data (ϕ1,h, ϕ2,h) upper solution such that 0 < ϕ1,i < ϕ1,i+1 ≤ M

and 0 < ϕ2,i < ϕ2,i+1 ≤M for i = 0, . . . , I − 1. Then we have

(i) 0 < Ui(t) ≤ ϕ1,i ≤ M and 0 < Vi(t) ≤ ϕ2,i ≤ M for i = 0, . . . , I,
t ∈ [0, Th);

(ii) (Ui+1(t), Vi+1(t)) > (Ui(t), Vi(t)), i = 0, . . . , I − 1, t ∈ (0, Th);
(iii) (U ′i(t), V

′
i (t)) ≤ 0, i = 0, . . . , I, t ∈ (0, Th).

Proof.
(i) Since (ϕ1,h, ϕ2,h) is an upper solution of (1.5)–(1.7), by the Lemma 2.1 and

2.2 we have 0 < Ui(t) ≤ ϕ1,i ≤ M and 0 < Vi(t) ≤ ϕ2,i ≤ M for i = 0, . . . , I,
t ∈ [0, Th).

(ii) We argue by contradiction. Assume that t0 is the first t > 0, such that
(Ki, Li)(t) = (Ui+1−Ui, Vi+1−Vi)(t) > 0, for 0 ≤ i ≤ I−1, but min{Ki0(t0), Li0(t0)}
= 0 for a certain i0 ∈ {0, . . . , I−1}. Assume thatKi0(t0) = Ui0+1(t0)−Ui0(t0) = 0.
Without lost of generality, we can suppose that i0 is the smallest integer which
satisfies the above equality. We have

K ′0(t) =
U2(t)− 2U1(t) + U0(t)

h2
−
(

2U1(t)− 2U0(t)

h2
− 2

h

(
U−p10 (t)V −q10 (t)

))
K ′i(t) =

Ui+2(t)− 2Ui+1(t) + Ui(t)

h2
− Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, 1 ≤ i ≤ I − 2

K ′I−1(t) =
2UI−1(t)− 2UI(t)

h2
− UI(t)− 2UI−1(t) + UI−2(t)

h2


K ′0(t) =

K1(t)− 3K0(t)

h2
+

2

h

(
U−p10 (t)V −q10 (t)

)
K ′i(t) =

Ki+1(t)− 2Ki(t) +Ki−1(t)

h2
, 1 ≤ i ≤ I − 2

K ′I−1(t) =
KI−2(t)− 3KI−1(t)

h2

(2.5)
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According to the hypotheses on t0, we have the following inequalities:

K ′i0(t0) = lim
ε→0

Ki0(t0)−Ki0(t0 − ε)
ε

≤ 0,

Ki0+1(t0)− 2Ki0(t0) +Ki0−1(t0)

h2
> 0 if 1 ≤ i0 ≤ I − 2,

Ki0+1(t0)− 3Ki0(t0)

h2
> 0 if i0 = 0,

−3Ki0(t0) +Ki0−1(t0)

h2
> 0 if i0 = I − 1,

which implies,

K ′i0(t0)−
Ki0+1(t0)− 2Ki0(t0) +Ki0−1(t0)

h2
< 0 if 1 ≤ i0 ≤ I − 2,

K ′i0(t0)−
Ki0+1(t0)− 3Ki0(t0)

h2
− 2

h

(
U−p10 (t)V −q10 (t)

)
< 0 if i0 = 0,

K ′i0(t0)−
−3Ki0(t0) +Ki0−1(t0)

h2
< 0 if i0 = I − 1.

Thus, we have a contradiction with (2.5), which leads to the desired result.

(iii) Denote Fi(t) = Ui(t)−Ui(t+ε) andGi(t) = Vi(t)−Vi(t+ε), for i = 0, . . . , I,
using (i) and (1.7) we obtain Fi(0) ≥ 0, Gi(0) ≥ 0 for i = 0, . . . , I. It is not hard
to see that

F ′i (t)− δ2Fi(t) + p1bi(ξi(t))
−p1−1Fi(t) + q1bi(ηi(t))

−q1−1Gi(t) ≥ 0,

G′i(t)− δ2Gi(t) + p2bi(ξi(t))
−p2−1Fi(t) + q2bi(ηi(t))

−q2−1Gi(t) ≥ 0,

where ξi(t), ηi(t) lie, respectively, between Ui(t+ε) and Ui(t) and between Vi(t+
ε) and Vi(t). From Lemma 2.1 we get

Fi(t) ≥ 0 and Gi(t) ≥ 0 for i = 0, . . . , I, t ∈ (0, Th).

This fact implies the desired result. �
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3. SEMIDISCRETE QUENCHING SOLUTION

Let (Uh, Vh) be the solution of (1.5)–(1.7) with 0 < ϕ1,i ≤ M , 0 < ϕ2,i ≤ M

for i = 0, . . . , I. Using [4] and [9], we show that (Uh, Vh) quenches in a finite
time and (U ′h, V

′
h) blows up at quenching node.

Theorem 3.1. For every initial data, the solution (Uh, Vh) of the system (1.5)–
(1.7) quenches in finite time with the only quenching node {i = 0}.

Proof. Integrating (1.5) in time we have

Ui(t)− Ui(0) =

∫ t

0

(
δ2Ui(τ)− bi

(
U−p1i (τ)V −q1i (τ)

))
dτ

summing up the above equality we arrive at
I∑
i=0

hUi(t) =
I∑
i=0

hUi(0) +∫ t

0

(
UI−1(τ)− UI(τ)

h
+
U1(τ)− U0(τ)

h
− 2

(
U−p10 (τ)V −q10 (τ)

))
dτ.

(1.5) implies that

h

2
UI(t)−

h

2
UI(0) =

∫ t

0

UI−1(τ)− UI(τ)

h
dτ, and

h

2
U0(t)−

h

2
U0(0) =

∫ t

0

(
U1(τ)− U0(τ)

h
−
(
U−p10 (τ)V −q10 (τ)

))
dτ.

Thus

h

2
UI(t) +

I−1∑
i=1

hUi(t) +
h

2
U0(t) =

h

2
UI(0) +

I−1∑
i=1

hUi(0) +
h

2
U0(0)−∫ t

0

(
U−p10 (τ)V −q10 (τ)

)
dτ,

therefore

h

2
UI(t) +

I−1∑
i=1

hUi(t) +
h

2
U0(t) ≤M −

(
M−p1M−q1

)
t.

By the same way, we also prove that

h

2
VI(t) +

I−1∑
i=1

hVi(t) +
h

2
V0(t) ≤M −

(
M−p2M−q2

)
t,
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which yield a contradiction because Uh and Vh are positive for all times in [0, Th).
Then there exists 0 < Th <∞ such that

lim
t→T−

h

min{U0(t), V0(t)} = 0+.

Now we will show that {i = 0} is the unique quenching node. In everything
that follows i ∈ {0, . . . , I − 1} and t ∈ (0, Th). Set g(Ui(t)) = U−p1i (t), f(Vi(t)) =

V −q1i (t), d(Ui(t)) = U−p2i (t), j(Vi(t)) = V −q2i (t), and

Zi(t) =
Ui+1(t)− Ui(t)

h
− φi(g(Ui(t)) + f(Vi(t)))

Wi(t) =
Vi+1(t)− Vi(t)

h
− φi(d(Ui(t)) + j(Vi(t)))

where φi, δ2φi ≥ 0, δ+φi ≤ 0, φI = 0, φ0 = 1, φi(g(Ui(0)) + f(Vi(0))) ≤ δ+Ui(0)

et φi(d(Ui(0)) + j(Vi(0))) ≤ δ+Vi(0).
By means of Taylor expansions inspired by [9] we have

δ2(φik(Ji(t))) = φik
′(Ji(t))δ

2Ji(t) + k(Ji(t))δ
2φi + k′(Ji(t))δ

+φiδ
+Ji(t) +

k′(Ji(t))δ
−φiδ

−Ji(t) + φi
(δ+Ji(t))

2

2
k′′(ρi(t)) +

φi
(δ−Ji(t))

2

2
k′′(λi(t)), i = 1, . . . , I − 1,

δ2(φ0k(J0(t))) = φ0k
′(J0(t))δ

2J0(t) + k(J0(t))δ
2φ0 + 2k′(J0(t))δ

+φ0δ
+J0(t) +

φ0(δ
+J0(t))

2k′′(ρ0(t)).

If we use the fact that Ji, δ+Ji(t) and δ2Ji(t) are nonnegative and the hypothesis
on φh, we arrive at

δ2(φik(Ji(t))) ≥ φik
′(Ji(t))δ

2Ji(t), i = 0, . . . , I − 1.(3.1)

By using (3.1) we can get

Z ′i(t)− δ2Zi(t) ≥
bi
h

(g(Ui) + f(Vi)) + biφig
′(Ui)(g(Ui) + f(Vi)) +

biφif
′(Ui)(d(Ui) + j(Vi)).

The above inequalities implies that

Z ′i(t)− δ2Zi(t) + big
′(Ui(t))Zi(t) + bif

′(Vi(t))Wi(t) ≥ bi[
1

h
(g(Ui(t)) + f(Vi(t))) +

f ′(Ui(t))(d(Ui(t)) + j(Vi(t))) + g′(Ui(t))(g(Ui(t)) + f(Vi(t)))].
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We obtain

Z ′i(t)− δ2Zi(t) + big
′(Ui(t))Zi(t) + bif

′(Vi(t))Wi(t) ≥ 0,

for the parameter h small enough. Thus we have

Z ′i(t)− δ2Zi(t) + big
′(Ui(t))Zi(t) + bif

′(Vi(t))Wi(t) ≥ 0,

W ′
i (t)− δ2Wi(t) + bid

′(Ui(t))Zi(t) + bij
′(Vi(t))Wi(t) ≥ 0,

Zi(0) ≥ 0, Wi(0) ≥ 0.

Using the Lemma 2.1 we have Zi(t) ≥ 0 and Wi(t) ≥ 0, for i = 0, . . . , I − 1

and t ∈ (0, Th). This implies that
Ui+1(t)− Ui(t)

h
≥ φi(g(Ui(t)) + f(Vi(t))) ≥

1

2

(
1

Mp1
+

1

M q1

)
for i = 0, . . . , J , with φJ =

1

2
, where J ∈ {1, . . . , I − 1}. Thus

by summing we get

Ui(t) ≥ U0 +
ih

2

(
1

Mp1
+

1

M q1

)
≥ ih

2

(
1

Mp1
+

1

M q1

)
whenever i > 0.

We deal with Vh by the same way. �

Theorem 3.2. If lim
t→T−

h

U0(t) = 0

(
lim
t→T−

h

V0(t) = 0

)
, then U ′h(t) blows up (V ′h(t)

blows up).

Proof. Suppose that U ′h(t) is bounded. Then, there exists a nonnegative constant
C such that U ′h(t) > C and we have

I−1∑
i=0

i∑
j=0

h2U ′j(t) >
I−1∑
i=0

i∑
j=0

h2C.

I−1∑
i=0

i∑
j=0

h2C =
I−1∑
i=0

(i+ 1)h2C =
I

2

(
h2C + Ih2C

)
=
hC

2
+
C

2
.

I−1∑
i=0

i∑
j=0

h2U ′j(t) =
I−1∑
i=1

(
i∑

j=1

h2U ′j(t) + h2U ′0(t)

)
+ h2U ′0(t).

From (1.5) we arrive at
I−1∑
i=0

i∑
j=0

h2U ′j(t) = UI(t)− U0(t)−
(
U−p10 (t)V −q10 (t)

)
+
h

2
U ′0(t)



NUMERICAL QUENCHING FOR A SLOW DIFFUSION SYSTEM. . . 9919

and using the Lemma 2.3 we obtain

UI(t)− U0(t)−
(
U−p10 (t)V −q10 (t)

)
> hC +

C

2
.

As t→ T−h , the left-hand side tends to infinity while the right-side is finite. This
contradiction proves that U ′h blows up. �

4. SIMULTANEOUS VERSUS NON-SIMULTANEOUS QUENCHING

We identify simultaneous and non-simultaneous quenching in this section. We
consider (Uh, Vh) the solution of (1.5)–(1.7) with h fixed.

Theorem 4.1. If Uh quenches and Vh does not quench in (1.5)–(1.7) then p2 <

p1 + 1.

Proof. We suppose that Vh does not quench. By (1.5) there exists c > 0 such that

U ′0(t) ≥ −cU
−p1
0 (t),

integrating this inequality from t to Th, we obtain

U0(t) ≤ C(Th − t)
1

p1+1 , where C = ((p1 + 1)c)
1

p1+1 .(4.1)

Now we use (4.1) and (1.6) and we arrive at

V ′0(t) ≤ δ2V0(t)− b0
(
V −q20 (t)C(Th − t)

−p2
p1+1

)
.

Thus V0(Th) ≤ C1 − C2

∫ Th
0

(Th − t)
−p2
p1+1dt. We remark that this integral diverges

if p2 ≥ p1 + 1, which is a contradiction and the proof is completed. �

Theorem 4.1 implies the following corollary:

Corollary 4.1. If p2 ≥ p1 + 1 and q1 ≥ q2 + 1, then any quenching in (1.5)–(1.7)
must be simultaneous.

Lemma 4.1. Let (Uh, Vh) be the solution of (1.5)–(1.7). Assume that Uh quenches
at time Th (Vh quenches at time Th), 0 < ϕ1,i ≤ M , 0 < ϕ2,i ≤ M for i = 0, . . . , I

and

δ2ϕ1,i − bi
(
ϕ−p11,i ϕ

−q1
2,i

)
+ c
(
ϕ−p11,i ϕ

−q1
2,i

)
≤ 0,(4.2)

δ2ϕ2,i − bi
(
ϕ−p21,i ϕ

−q2
2,i

)
+ c
(
ϕ−p21,i ϕ

−q2
2,i

)
≤ 0.(4.3)
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Then there exists a positive constant C such that for t ∈ (0, Th)

Up1+1
0 (t)

C(p1 + 1)
≥ Th − t

(
V q2+1
0 (t)

C(q2 + 1)
≥ Th − t

)
,

U0(t) ≥ C(Th − t)
1

p1+1

(
V0(t) ≥ C(Th − t)

1
q2+1

)
.

Proof. Set for i = 0, . . . , I, t ∈ [0, Th),

Zi(t) = U ′i(t) + c
(
U−p1i (t)V −q1i (t)

)
and Wi(t) = V ′i (t) + c

(
U−p2i (t)V −q2i (t)

)
.

A straightforward calculation and also the Mean value theorem give

Z ′i(t)− δ2Zi(t) + αi(t)Zi(t) + βi(t)Wi(t) ≤ 0, i = 0, . . . , I, t ∈ (0, Th),

W ′
i (t)− δ2Wi(t) + ai(t)Zi(t) + bi(t)Wi(t) ≤ 0, i = 0, . . . , I, t ∈ (0, Th),

Zi(0) ≤ 0, Wi(0) ≤ 0, i = 0, . . . , I.

Using the Lemma 2.1, we have

Zi(t) ≤ 0, Wi(t) ≤ 0, i = 0, . . . , I, t ∈ (0, Th).

Thus we get

U ′i(t) ≤ −cU
−p1
i (t) and V ′i (t) ≤ −cV

−q2
i (t), i = 0, . . . , I, t ∈ (0, Th).(4.4)

Using the fact that Uh quenches (Vh quenches) and integrating (4.4) from t to
Th, we arrive at

Up1+1
0 (t)

C(p1 + 1)
≥ Th − t

(
V q2+1
0 (t)

C(q2 + 1)
≥ Th − t

)
,

and we have so

U0(t) ≥ C(Th − t)
1

p1+1

(
V0(t) ≥ C(Th − t)

1
q2+1

)
.

�

Theorem 4.2. If q1 < q2 + 1 (p2 < p1 + 1), then there exist initial data such that
Vh (Uh) quenches but Uh (Vh) doesn’t.
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Proof. Here we argume by contradiction. Assuming that Uh and Vh quench si-
multaneously at time Th for any initial data. We can write∫ t

0

U ′0(s)ds ≥
∫ Th

0

U ′0(s)ds =
2

h2

∫ Th

0

(U1(s)− U0(s))ds−

2

h

∫ Th

0

(U−p10 (s)V −q10 (s))ds.

Using the Lemma 4.1, we have

U0(t) ≥ U0(0) +
2

h2

∫ Th

0

(U1(s)− U0(s))ds−
2C

h

∫ Th

0

(Th − s)
−p1
p1+1 (Th − s)

−q1
q2+1ds

≥ U0(0) +
2

h2

∫ Th

0

(U1(s)− U0(s))ds−
2C

h

∫ Th

0

(Th − s)
−p1
p1+1

+
−q1
q2+1ds.

q1 < q2 + 1 implies that this integral is converged and

U0(t) ≥ C1 − C2T
1

p1+1
− q1

q2+1

h , with C1, C2 > 0.

By summation of (1.6) we observe that

−h
2
V ′0(t)− h

2
V ′I (t)−

I−1∑
i=1

hV ′i (t) = U−p20 (t)V −q20 (t),

−h
2
V ′0(t)− h

2
V ′I (t)−

I−1∑
i=1

hV ′i (t) ≥ U−p20 (0)V −q20 (0)(4.5)

integrate (4.5) from 0 to Th, we can obtain

VI(0)
(
U−p20 (0)V −q20 (0)

)−1 ≥ Th,

then if Th is sufficiently small (depending on Uh(0) and Vh(0)), U0(Th) ≥ c0 > 0.
We have so a contradiction with the hypothesis that Uh quenches and leads us
to the desired result. �

Theorem 4.3. If p2 ≤
q2(p1 + 1)

q2 + 1
and q1 ≥ q2+1

(
q1 ≤

p1(q2 + 1)

p1 + 1
and p2 ≥ p1 + 1

)
then Uh (Vh) quenches alone under any positive initial data.
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Proof. Assume that there exists initial data such that Uh and Vh quench simul-
taneously at time Th. We can suppose without lost of generality that this initial
data satisfies (4.2)–(4.3). According to (1.6)

V ′0(t) = δ2V0(t)− b0(U−p20 (t)V −q20 (t)),

V ′0(t) ≥ −b0(U−p20 (t)V −q20 (t)),

V0(t) ≤ b0

∫ Th

t

U−p20 (s)V −q20 (s)ds.

We know from Lemma 4.1 that U0(t) ≥ C1(Th− t)
1

p1+1 , V0(t) ≥ C2(Th− t)
1

q2+1 . As

p2 ≤
q2(p1 + 1)

q2 + 1
, there exists α > 0 such that V0(t) ≤ α(Th − t)

1
q2+1 . (1.5) implies

U ′0(t) = δ2U0(t)− b0(U−p10 (t)V −q10 (t)),

U ′0(t) ≤ δ2U0(t)− b0V −q10 (t)),

U ′0(t) ≤ δ2U0(t)− b0α−q1(Th − t)
−q1
q2+1 .

Integrating both sides from 0 to Th, we obtain U0(0) ≥ −c1 +c2
∫ Th
0

(Th− t)
−q1
q2+1dt.

It is clear that the integral diverges if q1 ≥ q2 + 1, which is a contradiction. We
have so the desired result. �

Remark 4.1. We can see of the Lemma 4.1 and the proof of Theorem 4.3 that if
Uh (Vh) quenches at time Th, then U0(t) ∼ (Th − t)

1
p1+1

(
V0(t) ∼ (Th − t)

1
q2+1

)
for

t close enough to Th where (Uh, Vh) is the solution of (1.5)–(1.7) such that the
initial data satisfies (4.2)–(4.3).

5. CONVERGENCE OF THE SEMIDISCRETE QUENCHING TIME

Under some assumptions, we show in this section that the semidiscrete quench-
ing time converges to the real one when the mesh size goes to zero. To obtain
the convergence of semidiscrete quenching time, we firstly prove the following
theorem about the convergence of the semidiscrete scheme. Before, we denote

uh(t) = (u(x0, t), . . . , u(xI , t))
T , vh(t) = (v(x0, t), . . . , v(xI , t))

T ,

‖Uh(t)‖∞ = max
0≤i≤I

|Ui(t)|, ‖Uh(t)‖inf = min
0≤i≤I

|Ui(t)|.
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Theorem 5.1. Assume that the problem (1.1)–(1.4) has solution (u, v) ∈
(C4,1 ([0, 1]× [0, T ∗]))

2 and the initial data (ϕ1,h, ϕ2,h) of (1.5)–(1.7) satisfies

‖ϕ1,h − uh(0)‖∞ = o(1), ‖ϕ2,h − vh(0)‖∞ = o(1) h→ 0.(5.1)

Then, for h sufficiently small, the problem (1.5)–(1.7) has a unique solution (Uh,

Vh) ∈
(
C1
(
[0, T ∗],RI+1

))2 such that

max
t∈[0,T ∗]

‖Uh(t)− uh(t)‖∞ = O(‖ϕ1,h − uh(0)‖∞ + ‖ϕ2,h − vh(0)‖∞ + h), as h→ 0,

max
t∈[0,T ∗]

‖Vh(t)− vh(t)‖∞ = O(‖ϕ1,h − uh(0)‖∞ + ‖ϕ2,h − vh(0)‖∞ + h), as h→ 0.

Proof. Let ρ > 0 be such that

(‖u‖∞, ‖v‖∞) < ρ, t ∈ [0, T ∗].(5.2)

Then the problem (1.5)–(1.7) has for each h, a unique solution (Uh, Vh) ∈(
C1
(
[0, T ∗],RI+1

))2. Let t(h) ≤ T ∗ be the greatest value of t > 0 such that

max {‖Uh(t)− uh(t)‖∞, ‖Vh(t)− vh(t)‖∞} < 1.(5.3)

The relation (5.1) implies t(h) > 0 for h small enough. Using the triangle in-
equality, we obtain

‖Uh(t)‖∞ ≤ 1 + ρ and ‖Vh(t)‖∞ ≤ 1 + ρ for t ∈ (0, t(h)).(5.4)

Let (e1,h, e2,h)(t) = (Uh − uh, Vh − vh)(t) ∀t ∈ [0, T ∗] be the discretization error.
These error functions verify

e′1,i(t) = δ2e1,i(t) + p1bi(θi(t))
−p1−1e1,i(t) + q1bi(Θi(t))

−q1−1e2,i(t) +O(h),

e′2,i(t) = δ2e2,i(t) + p2bi(θi(t))
−p2−1e1,i(t) + q2bi(Θi(t))

−q2−1e2,i(t) +O(h),

where θi(t) and Θi(t) lie, respectively, between Ui(t) and u(xi, t), and between
Vi(t) and v(xi, t), for i ∈ {0, . . . , I}. Using (5.2) and (5.4), there exist K and L

positive constants such that

e′1,i(t) ≤ δ2e1,i(t) + biL|e1,i(t)|+ biL|e2,i(t)|+Kh,

e′2,i(t) ≤ δ2e2,i(t) + biL|e1,i(t)|+ biL|e2,i(t)|+Kh.

Let (z, w) ∈ (C4,1([0, 1], [0, T ∗]))
2 be such that

z(x, t) = (‖ϕ1,h − uh(0)‖∞ + ‖ϕ2,h − vh(0)‖∞ +Qh) e(M+2)t−(1−x)2
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and w = z ∀(x, t) ∈ [0, 1]× [0, T ∗], with M , Q positive constants. By the Lemma
2.2, we can prove that

|e1,i(t)| < z(xi, t) and |e2,i(t)| < w(xi, t) with 0 ≤ i ≤ I for t ∈ (0, t(h)).

Thus we get

‖Uh(t)− uh(t)‖∞ ≤ (‖ϕ1,h − uh(0)‖∞ + ‖ϕ2,h − vh(0)‖∞ +Qh) e(M+2)t,

‖Vh(t)− vh(t)‖∞ ≤ (‖ϕ1,h − uh(0)‖∞ + ‖ϕ2,h − vh(0)‖∞ +Qh) e(M+2)t,

where t ∈ (0, t(h)). Suppose that T ∗ > t(h). From (5.3), we obtain

1 = ‖Uh(t(h))− uh(t(h))‖∞ ≤ (‖ϕ1,h − uh(0)‖∞ + ‖ϕ2,h − vh(0)‖∞ +Qh) e(M+2)t.

Since the term on the right hand side of the above inequality goes to zero as
h tends to zero, we deduce that 1 ≤ 0, which is impossible. Consequently
t(h) = T ∗ and we conclude the proof. �

Theorem 5.2. Let (u, v) ∈ (C4,1([0, 1]× [0, T [))
2 be solution of (1.1)–(1.4) with

quenches time T and the initial data at (1.5)–(1.7) satisfies (4.2)–(4.3) and (5.1).
Then the solution (Uh, Vh) of (1.5)–(1.7) quenches in a finite time Th and we have
limh→0+ Th = T.

Proof. Set ε > 0, there exists η > 0 such that

y1+p1

C(p1 + 1)
≤ ε

2
, 0 ≤ y ≤ η.(5.5)

There exists a time T0 ∈ (T − ε/2;T ) such that 0 < |u(xi, t)| ≤ η
2

for i = 0, . . . , I

and t ∈ [T0, T ). Denote T1 =
T0 + T

2
, we obtain easily that 0 < ‖u(xi, t)‖inf , for

t ∈ [0, T1]. It follows from Theorem 5.1 that for h sufficiently small

‖Uh(t)− uh(t)‖∞ ≤
η

2
.

Applying the triangle inequality, we get

‖Uh(T1)‖inf ≤ ‖Uh(T1)− uh(T1)‖∞ + ‖uh(T1)‖inf ≤ η.

We know from Theorem 3.1 that (Uh, Vh) quenches in a finite time Th. Assuming
that Uh quenches, we can deduce from Lemma 4.1 and (5.5) that

|Th − T | ≤ |Th − T1|+ |T1 − T | ≤
‖Uh(T1)‖1+p1inf

C(p1 + 1)
+
ε

2
≤ ε.

The case where Vh quenches is analogous. �
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6. NUMERICAL EXPERIMENTS

In this section, we present some numerical approximations to the quenching

time of (1.5)–(1.7) for the initial data ϕ1,i = ϕ2,i = 1 +
2

π
sin
(π

2
ih
)

for i =

0, . . . , I, with different values of p1, p2, q1 and q2.
By setting Wi(t) = (Ui(t))

−1 and WI+1+i(t) = (Vi(t))
−1, i = 0, . . . , I, we obtain

the following differential system

W ′
0(t) =

2

h2

(
W0(t)−

(W0(t))
2

W1(t)

)
+

2

h
(W0(t))

p1+2(WI+1(t))
q1

W ′
i (t) =

1

h2

(
2Wi(t)−

(Wi(t))
2

Wi−1(t)
− (Wi(t))

2

Wi+1(t)

)
, i = 1, . . . , I − 1

W ′
I(t) =

2

h2

(
WI(t)−

(WI(t))
2

WI−1(t)

)
W ′
I+1(t) =

2

h2

(
WI+1(t)−

(WI+1(t))
2

WI+2(t)

)
+

2

h
(W0(t))

p2(WI+1(t))
q2+2

W ′
I+i+1(t) =

1

h2

(
2WI+i+1(t)−

(WI+i+1(t))
2

WI+i(t)
− (WI+i+1(t))

2

WI+i+2(t)

)
, i = 1, . . . , I − 1

W ′
2I+1(t) =

2

h2

(
W2I+1(t)−

(W2I+1(t))
2

W2I(t)

)
where Wi(0) = (ϕ1,i)

−1 and WI+i+1(0) = (ϕ2,i)
−1 for i = 0, . . . , I. We can see that

Wh blows up when (Uh, Vh) quenches. Let η be the arc length ofWh. Considering
the variables t and Wh as fonctions of η, we obtain the following system of
differential equations

dt

dη
=

1√
1 +

∑2I+1
i=0 f 2

i

,

dWi

dη
=

fi√
1 +

∑2I+1
i=0 f 2

i

, i = 0, . . . , 2I + 1,

t(0) = 0, Wi(0) = (ϕ1,i)
−1, WI+i+1(0) = (ϕ2,i)

−1, i = 0, . . . , I,

(6.1)

where 0 < η < ∞ and fi(t) = W ′
i (t) since dη2 = dt2 + dW 2

0 + · · · + dW 2
2I+1. It is

well known (Hirota & Ozawa, 2006) that

lim
η→∞

t(η) = Th and lim
η→∞
‖Wh(η)‖∞ =∞.
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For the numerical computation, let us define η = ηl by ηl = 216 · 2l (l =

0, 1, . . . , 12). For each value of l, we apply DOP54 (see Hairer, Nørsett & Wanner,
1993) to system (6.1) and we get a linearly convergent sequence to the blow-up

time
{
t
(k)
l

}l+1

k=1
. We also accelerate the sequence recursively by Aitken method’s:

t
(k+1)
l+2 = t

(k)
l+1 −

(
t
(k)
l+2 − t

(k)
l+1

)2
t
(k)
l+2 − 2t

(k)
l+1 + t

(k)
l

, l ≥ 2k, k = 0, 1, 2, . . .

As in (Hirota & Ozawa, 2006), for our experiments we set RTOL = ATOL =
1.d-15 and ITOL = 0. Where the parameters RTOL and ATOL are the tolerances
of the relative and absolute errors, respectively, and ITOL is used to choose the
manner in which the errors are controlled.

Tables and graphics: ϕ1,i = ϕ2,i = 1 +
2

π
sin
(π

2
ih
)
, i = 0, . . . , I.

In the following tables, in rows, we present the numerical quenching times
Th and the numbers of iterations n corresponding to meshes of 16, 32, 64, 128,
256, 512, 1024.

TABLE 1. Numerical
quenching times and
numbers of iterations
obtained for p1 = 2,
p2 = 1, q1 = 1.6 and
q2 = 0.5

I Th n

16 0.12669452 2063
32 0.12406180 3791
64 0.12326487 7168
128 0.12302885 13779
256 0.12296021 27181
512 0.12294057 59900

1024 0.12293502 176017

TABLE 2. Numerical
quenching times and
numbers of iterations
obtained for p1 = 1,
p2 = 2, q1 = 2 and
q2 = 1

I Th n

16 0.12097809 1871
32 0.11817407 3546
64 0.11732426 6782
128 0.11707255 13090
256 0.11699937 25861
512 0.11697843 56990

1024 0.11697252 167374
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TABLE 3. Numerical
quenching times and
numbers of iterations
obtained for p1 = 0.5,
p2 = 2.5, q1 = 0.5 and
q2 = 1.5

I Th n

16 0.14183488 2282
32 0.13941895 4309
64 0.13868637 8238

128 0.13846865 15899
256 0.13840510 31361
512 0.13838685 68551

1024 0.13838169 199191

TABLE 4. Numerical
quenching times and
numbers of iterations
obtained for p1 = 2,
p2 = 1, q1 = 4 and q2 = 2

I Th n

16 0.08282272 1649
32 0.08018808 2940
64 0.07938374 5479

128 0.07914533 10446
256 0.07907608 20407
512 0.07905629 43379

1024 0.07905071 119081

FIGURE 1. On the left, quenching of Uh and on the right, no
quenching of Vh for p1 = 2, p2 = 1, q1 = 1.6 and q2 = 0.5.

FIGURE 2. On the left, quenching of Uh and on the right, quench-
ing of Vh for p1 = 1, p2 = 2, q1 = 2 and q2 = 1.
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FIGURE 3. On the left, no quenching of Uh and on the right,
quenching of Vh for p1 = 0.5, p2 = 2.5, q1 = 0.5 and q2 = 1.5.

FIGURE 4. On the left, quenching of Uh and on the right, no
quenching of Vh for p1 = 2, p2 = 1, q1 = 4 and q2 = 2.

Remark 6.1. We observe that, the solution of our problem quenches in a finite time
and the convergence of quenching time Th is given in differents tables. Moreover,
we can see that of the figure 1, Uh quenches while Vh doesn’t when p2 < p1 + 1, of
the figure 2, Uh and Vh quench simultaneously when p2 ≥ p1 +1 and q1 ≥ q2 +1, of
the figure 3, Vh quenches while Uh doesn’t when q1 < q2 + 1 and of the figure 4, Uh
quenches alone under any positive initial data when p2 ≤ q2(p1+1)

q2+1
and q1 ≥ q2 + 1.

These numerical results are in fact consistent with the Theorem 4.1, Corollary 4.1,
Theorem 4.2 and Theorem 4.3.
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