ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9939–9950 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.102

ON $(\in, \in \lor q)$ INTUITIONISTIC FUZZY IDEAL OF *N*-GROUP

PRADIP SAIKIA¹ AND LILA K. BARTHAKUR

ABSTRACT. We present the idea of N-group's $(\in, \in \lor q)$ - intuitionistic fuzzy ideal and some associated properties as the content material of this paper.It's shown with the help of example that every intuitionistic fuzzy ideal of N-group is although an $(\in, \in \lor q)$ -intuitionistic fuzzy ideal,but the converse isn't true and hence a necessary and sufficient condition is introduced in this purpose.The usage of the idea of the level set we provide an essential and sufficient circumstance for a level set to be an ideal of N-group.Discussions on image and pre-image of a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal under N-homomorphism also are a part of our research.

1. INTRODUCTION

Rosenfield [2] in 1971 utilize the notion of the fuzzy set by way of Zadeh [10] in 1965 to define fuzzy subgroups, which were studied in detail through the numerous researchers for various algebraic systems.Liu in [19] discussed apropreatly the fuzzy ideal of a ring and Abou Zaid in [15] added about the fuzzy sub near ring and fuzzy ideals of near rings. Moreover Davvaz [3] additionally mentioned some properties of fuzzy ideals of the same. In [18,7], the perception of fuzzy ideals and their numerous natures are brought. Using the concept of fuzzy point and its belongingness to a fuzzy set, Bhakat and Das in [16] define (α , β) fuzzy subgroups where α and β are members of the

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 03E72, 16Y30.

Key words and phrases. Near ring group, Intuitionistic fuzzy set, Intuitionistic fuzzy point, $(\in, \in \lor q)$ -intuitionistic fuzzy ideal,N-homomorphism.

P. SAIKIA AND L. K. BARTHAKUR

collection $\{\in, q, \in \land q, \in \lor q\}, \alpha \neq \in \land q$ and using this in [17] they introduced $(\in, \in \lor q)$ -fuzzy near ring's subrings and ideals. A loop of researchers like Davvaz [4], Narayanan, and Manikantan [1], Zhan et al.[8] introduced $(\in, \in \lor q)$ -fuzzy subnear rings and ideals of the near ring.

In 1986, Atanassov [9] presented the model of intuitionistic fuzzy sets by way of a simplification of a fuzzy set. Considering that then many researchers executed this belief to look at the intuitionistic fuzzy group [13], intuitionistic fuzzy near ring and about its ideal in [14]. Coker and Demirci [6] delivered the intuitionistic fuzzy point and which become by Jun [20] to define (ϕ, ψ) -intuitionistic fuzzy subgroup with ϕ and ψ are any dual of $\{\in, q, \in \land q, \in \lor q\}, \alpha \neq \in \land q$. In our studies, we present the idea of $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of N-group and explore associated matters.

2. PRELIMINARIES

For a non void set n the triplet (N, +, .) wherein the group (N, +) is not necessarily abelian and wherein only one distributive law holds. A near ring is referred to as 0 symmetric if 0.k = 0 for all k in N. Again if 1 is in N such that 1.k = k for all k in N, then N is known as near ring with unity. In our discussion, we prefer zero symmetric near ring with unity. Again for near ring N and additive group E, E is stated to be a left N-group if there exist a mapping $N \times E \to E, (n, e) \to ne$ such that

- (i) (n+m)e = ne + me.
- (ii) (nm)e = n(me)
- (iii) $1.e = e, \forall n, m \in N, e \in E$

We denote the zero element of E via 0.We note that N may be taken into cosideration as a left N-group indicated through N^N . A non empty subset S of an Ngroup E remains known as an ideal of E when (i) (S, +) is a normal subgroup of E,(ii) $NS \subseteq S$ and (iii) $n(y+x)-ny \in S$ for all $x \in S, y \in E, n \in N$. Moreover for any two N-groups E and F a mapping $f : E \to F$ is called an N-homomorphism if

- (i) f(x+y) = f(x) + f(y).
- (ii) $f(nx) = nf(x), \forall x, y \in E, n \in N$.

Definition 2.1. [10] Assuming X be a non empty set. A function $\mu : X \to [0, 1]$ is called a fuzzy subset of X. It's far characterized as μ . The complement of the fuzzy set μ is denoted by $\bar{\mu}$ and is defined as $\bar{\mu}(x) = 1 - \mu(x), \forall x \in X$.

Definition 2.2. [9] The intuitionistic fuzzy set (in quick IFS) are characterized on a non empty set X as devices taking the shape $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in X \}$ in which $\mu_A : X \to [0, 1], \nu_A : X \to [0, 1]$ signify the amount of participation and non-participation of separately constituent $x \in X$ to the set A correspondingly and $0 \le \mu_A(x) + \nu_A(x) \le 1$.

Definition 2.3. [11] For any IFS $A = \langle \mu_A, \nu_A \rangle$ the collection $A_{(s,t)} = \{x \in X | \mu_A(x) \ge s, \nu_A(x) \le t\}$ is called (s,t)-cut of A or level subset of A where $s,t \in [0,1], s+t \le 1$.

Definition 2.4. [12] Assuming P and Q be two non-empty sets and $f : P \to Q$ be a mapping.At that time for any IFS $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ of P and Q respectively the image set $f(A) = \langle \mu_{f(A)}, \nu_{f(A)} \rangle$ of A is IFS defined as

$$\mu_{f(A)}(y) = \begin{cases} \forall \{\mu_A(x) : x \in f^{-1}(y)\} \\ 0; otherwise \end{cases}$$

and

$$\nu_{f(A)}(y) = \begin{cases} \wedge \{\nu_A(x) : x \in f^{-1}(y)\} \\ 1; otherwise \end{cases}$$

Similarly, pre-image of B under f is the IFS $f^{-1}(B) = \langle \mu_{f^{-1}(B)}, \nu_{f^{-1}(B)} \rangle$ defined as $\mu_{f^{-1}(B)}(x)\mu_B(f(x)), \nu_{f^{-1}(B)}(x) = \nu_B(f(x)).$

Definition 2.5. [6] Taking c to be a point in a non-empty set X.Uncertainity $\alpha \in (0,1]$ and $\beta \in [0,1)$ are double real records such that $0 \leq \alpha + \beta \leq 1$, then the IFS $c_{(\alpha,\beta)} = \langle x, c_{\alpha}, 1 - c_{1-\beta} \rangle$ termed as an intuitionistic fuzzy point in X,where α (resp. β) is the amount of attachement (resp. non attachment) of $c_{(\alpha,\beta)}$ and $c \in X$ is entitled the sustenance of $c_{(\alpha,\beta)}$. Assuming $A = \langle \mu_A, \nu_A \rangle$ be an IFS in X. Then an intuitionistic fuzzy point $c_{(\alpha,\beta)}$ is supposed to fit into A, written as $c_{(\alpha,\beta)} \in A$ if $\mu_A(x) \geq \alpha, \nu_A(x) \leq \beta$. We believe that $c_{(\alpha,\beta)}$ is quasi-cincident with A, inscribed as $c_{(\alpha,\beta)}qA$ if $\mu_A(c) + \alpha > 1$, $\nu_A(c) + \beta < 1$.By $c_{(\alpha,\beta)} \in \lor qA$ it meant that $c_{(\alpha,\beta)} \in A$ or $c_{(\alpha,\beta)}qA$ and by $c_{(\alpha,\beta)} \in \lor qA$ it intended that $c_{(\alpha,\beta)} \in \lor qA$ does not hold.

Definition 2.6. [5] Assuming μ be a fuzzy subclass of an N-group E. Then μ is called a $(\in, \in \lor q)$ fuzzy ideal of E if for all $x, y \in E, n \in N$

- (i) $x_t, y_r \in \mu \Rightarrow (x y)_{(t \wedge r)} \in \lor q\mu$.
- (ii) $x_t \in \mu \Rightarrow (nx)_t \in \lor q\mu$
- (iii) $x_t \in \mu \Rightarrow (y + x y)_t \in \lor q\mu$
- (iv) $x_t \in \mu \Rightarrow (n(y+x) ny)_t \in \lor q\mu$

Definition 2.7. [14] An IFS $A = \langle \mu_A, \nu_A \rangle$ in N-group E is named as the intuitionistic fuzzy ideal of E uncertainity it fulfils for all $x, y \in E, n \in N$

(i) $\mu_A(x-y) \ge \mu_A(x) \land \mu_A(y)$. (ii) $\mu_A(y+x-y) \ge \mu_A(x)$ (iii) $\mu_A(nx) \ge \mu_A(x)$ (iv) $\mu_A(n(x+y) - nx) \ge \mu_A(y)$ (v) $\nu_A(x-y) \le \nu_A(x) \land \nu_A(y)$. (vi) $\nu_A(y+x-y) \le \nu_A(x)$ (vii) $\nu_A(nx) \le \nu_A(x)$ (viii) $\nu_A(n(x+y) - nx) \le \nu_A(y)$

Lemma 2.1. [14] Assuming $f : E \to F$ be an N-epimorphism and A and B are the intuitionistic fuzzy ideal of E and F, individually. Formerly f(A) is an intuitionistic fuzzy ideal of F and $f^{-1}(B)$ is an intuitionistic fuzzy ideal of A.

3. $(\in, \in \lor q)$ -intuitionistic fuzzy ideal

In this segment we represent $(\in, \in \lor q)$ intuitionistic fuzzy ideal and express a number of its assets.

Definition 3.1. An IFS $A = \langle \mu_A, \nu_A \rangle$ of an N-group E of a near ring N is supposed to be an $(\in, \in \lor q)$ intuitionistic fuzzy ideal of E if for all $x, y \in E$ and $s_1, s_2 \in (0, 1], t_1, t_2 \in [0, 1)$, the following hold:

(IE1)
$$x_{(s_1,t_1)} \in A, y_{(s_2,t_2)} \in A \Rightarrow (x-y)_{(s_1 \land s_2,t_1 \lor t_2)} \in \lor qA.$$

(IE2) $x_{(s_1,t_1)} \in A \Rightarrow (y+x-y)_{(s_1,t_1)} \in \lor qA$
(IE3) $x_{(s_1,t_1)} \in A, n \in N \Rightarrow (nx)_{(s_1,t_1)}$
(IE4) $x_{(s_1,t_1)} \in A \Rightarrow (n(y+x) - ny)_{(s_1,t_1)} \in \lor qA$

Theorem 3.1. If I is an ideal of E then an IFS $A = \langle \mu_A, \nu_A \rangle$ of E satisfies the followings:

(i) $\mu_A(x) \ge 0.5$ and $\nu_A(x) \le 0.5$.

(ii) $\mu_A(x) = 0$ and $\nu_A(x) = 1$ otherwise.

is an $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of *E*.

Proof.

(IE1): Let $x, y \in E$ and $s_1, s_2 \in (0, 1], t_1, t_2 \in [0, 1)$ such that $x_{(s_1, t_1)} \in A$ and $y_{(s_2, t_2)} \in A$. Then $\mu_A(x) \ge s_1, \nu_A(x) \le t_1$ and $\mu_A(x) \ge s_2, \nu_A(x) \le t_2$. Thus $x, y \in I$ and as I is an ideal so $x - y \in I$, which implies $\mu_A(x - y) \ge 0.5, \nu_A(x - y) \le 0.5$. Now if $s_1 \land s_2 \le 0.5$ and $t_1 \lor t_2 \ge 0.5$ when $(x - y)_{(s_1 \land s_2, t_1 \lor t_2)} \in A$ and if $s_1 \land s_2 > 0.5$ and $t_1 \lor t_2 < 0.5$ then $\mu_A(x - y) + (s_1 \land s_2) > 1$ and $\nu_A(x - y) + (t_1 \lor t_2) < 1$ which means $(x - y)_{(s_1 \land s_2, t_1 \lor t_2)} \in \lor qA$.

(IE2): If $x_{(s_1,t_1)} \in A, n \in N$ then $\mu_a(x) \ge s_1, \nu_A(x) \le t_1$ gives $x \in I$ and as I is an ideal so $nx \in I$. Thus $\mu_A(x) \ge 0.5, \nu_A(x) \le 0.5$. Now if $s_1 \le 0.5, t_1 \ge 0.5$ then $(nx)_{(s_1,t_1)} \in A$ and if $s_1 > 0.5, t_1 < 0.5$ then $\mu_A(nx) + s_1 > 1; \nu_A(x) + t_1 < 1$ implies $(nx)_{(s_1,t_1)}qA$.

(IE3): If $x_{s_1,t_1} \in A, y \in E$ then $\mu_A(x) \ge s_1, \nu_A(x) \le t_1$ gives $x \in I$. Now as I is an ideal of E so $y + x - y \in I$ and hence $\mu_A(y + x - y) \ge 0.5, \nu(y + x - y) \le 0.5$. Now, if $s_1 \le 0.5, t_1 \ge 0.5$ then $\mu_A(y + x - y) \ge s_1, \nu(y + x - y) \le t_1$ implies $(y + x - y)_{(s_1,t_1)} \in A$ and if $s_1 > 0.5, t_1 < 0.5$ then $\mu_A(y + x - y) + s_1 > 1; \nu_A(y + x - y) + t_1 < 1$ suggests $(y + x - y)_{(s_1,t_1)} qA$.

(IE4): If $x_{(s_1,t_1)} \in A$ then $\mu_A(x) \ge s_1, \nu_A(x) \le t_1$ gives $x \in I$. Now as I is an ideal of E so $n \in N, y \in E$ we have $y + x - y \in I$ and hence $\mu_A(n(y + x) - ny) \ge 0.5, \nu(n(y + x) - ny) \le 0.5$. Now, if $s_1 \le 0.5, t_1 \ge 0.5$ then $\mu_A(n(y + x) - ny) \ge s_1, \nu(n(y + x) - ny) \le t_1$ implies $(n(y + x) - ny)_{(s_1,t_1)} \in A$ and if $s_1 > 0.5, t_1 < 0.5$ then $\mu_A(n(y + x) - ny) + s_1 > 1; \nu_A(n(y + x) - ny) + t_1 < 1$ suggests $(n(y + x) - ny)_{(s_1,t_1)}qA$. Thus $A = \langle \mu_A, \nu_A \rangle$ is $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of E.

Example 1. Let the near ring $N = \{0, a, b, c\}$ whenever addition and multiplication is defined as,

+	0	а	b	С		0	а	b	С
0	0	а	b	С	0	0	0	0	0
а	a	0	С	b		0			
b	b	С	0	а	b	0	0	0	0
С	c	b	а	0	С	0	а	b	С

Assumme $A = \langle \mu_A, \nu_A \rangle$ be IFS on N so that $\mu_A(0) \rangle \mu_A(a) \rangle \mu_A(b) \rangle \mu_A(c)$ and $\nu_A(0) \langle \nu_A(a) \rangle \langle \nu_A(b) \rangle \langle \nu_A(c)$. Then it can be understood that $A = \langle \mu_A, \nu_A \rangle$ is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of N-group N^N . However it is not an intuitionistic fuzzy ideal of N^N . Thus concluding that $(\in, \in \lor q)$ iintuitionistic fuzzy ideal stays an overview of the intuitionistic fuzzy ideal of an N-group.

Remark 3.1. From the above example, it acknowledged that all intuitionistic fuzzy ideal of N-group is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal. However the reverse is not valid.

Theorem 3.2. Let $A = \langle \mu_A, \nu_A \rangle$ be an IFS of N-group E. At that time A is $(\in, \in \lor q)$ intuitionistic fuzzy ideal of E if and only if for all $x, y \in E, n \in N$.

(i)
$$\mu_A(x-y) \ge \mu_A(x) \land \mu_A(y) \land 0.5$$
 and $\nu_A(x-y) \le \nu_A(x) \lor \nu_A(y) \lor 0.5$

(ii)
$$\mu_A(y+x-y) \ge \mu_A(x) \land 0.5 \text{ and } \nu_A(y+x-y) \le \nu_A(x) \lor 0.5$$

(iii) $\mu_A(nx) \ge \mu_A(x) \land 0.5$ and $\nu_A(nx) \le \nu_A(x) \lor 0.5$

(iv)
$$\mu_A(n(y+x) - ny) \ge \mu_A(x) \land 0.5 \text{ and } \nu_A(n(y+x) - ny) \le \nu_A(x) \lor 0.5$$

Proof. Let $A = \langle \mu_A, \nu_A \rangle$ be $\in, \in \lor q$)-intuitionistic fuzzy ideal of E.

(i) Let $x, y \in E$ be such that $\mu_A(x-y) < \mu_A(x) \land \mu_A(y) \land 0.5$ and $\nu_A(x-y) > \nu_A(x) \lor \nu_A(y) \lor 0.5$

Case(a): If $\mu_A(x-y) < \mu_A(x) \land \mu_A(y) \land 0.5$ and $\nu_A(x-y) > \nu_A(x) \lor \nu_A(y) \lor 0.5$ then allow us to pick out *s* and *t* such that $\mu_A(x-y) < s < \mu_A(x) \land \mu_A(y) \land 0.5 =$ $\mu_A(x) \land \mu_A(y)$ and $\nu_A(x-y) > t > \nu_A(x) \lor \nu_A(y) \lor 0.5 = \nu_A(x) \lor \nu_A(y)$,which gives $x_{(s,t)}, y_{(s,t)} \in A \Rightarrow (x-y)_{(s,t)} \in A$. Also $\mu_A(x-y) + s < 0.5 + 0.5 = 1$ and $\nu_A(x-y) + t > 0.5 + 0.5 = 1$ gives $(x-y)_{(s,t)} \bar{q}A$, which is a contradiction.

Case(b): If $\mu_A(x) \wedge \mu_A(y) \ge 0.5$ and $\nu_A(x) \vee \nu_A(y) \le 0.5$, then $\mu_A(x-y) < \mu_A(x) \wedge \mu_A(y) \wedge 0.5 = 0.5$ and $\nu_A(x-y) < \nu_A(x) \vee \nu_A(y) \vee 0.5 = 0.5$. Which gives $x_{(0.5,0.5)}, y_{(0.5,0.5)} \in A \Rightarrow (x-y)_{(0.5,0.5)} \in A$. Also $\mu_A(x-y) + 0.5 > 0.5 + 0.5 = 1$ gives $(x-y)_{(0.5,0.5)} \bar{q}A$, which is a contradiction.

(ii) Let $\mu_A(y + x - y) < \mu_A(x) \land 0.5$ and $\nu_A(y + x - y) > \nu_A(x) \lor 0.5$. Then allow us to pick out *s* and *t* such that $\mu_A(y + x - y) < s < \mu_A(x) \land 0.5$ and $\nu_A(y + x - y) > t > \nu_A(x) \lor 0.5$. If $\mu_A(x) < 0.5, \nu_A(x) > 0.5$ then we have $x_{(s,t)} \in A$ whereas $(y + x - y)_{(s,t)} \in A$ and also $\mu_A(y + x - y) + s < 0.5 + 0.5 = 1$ and $\nu_A(y + x - y) + t > 0.5 + 0.5 = 1$ gives $(y + x - y)_{(s,t)} = A$. Again if $\mu_A(x) \ge 0.5, \nu_A(x) \le 0.5$ then we can show that $x_{(0.5,0.5)} \in A$ whereas $(y + x - y)_{(0.5,0.5)} (\in \sqrt{y})A$.

(iii) Let $x \in E, n \in N$. Suppose $\mu_A(nx) < \mu_A(x) \land 0.5$ and $\nu_A(x) > \nu_A(x) \lor 0.5$.Let us assume s and t be such that $\mu_A(nx) < s < \mu_A(x) \land 0.5$ and $\nu_A(nx) > 0.5$.

 $t > \nu_A(x) \lor 0.5$.Now if $\mu_A(x) < 0.5, \nu_A(x) > 0.5$ then $x_{(s,t)} \in A$ whereas $(nx)_{(s,t)} (\in \sqrt{q})A$ and if $\mu_A(x) \ge 0.5, \nu_A(x) \le 0.5$ then $(nx)_{(0.5,0.5)} (\in \sqrt{q})A$.

(iv) Let $x, y \in E, n \in N$ such that $\mu_A(n(y+x)ny) < \mu_A(x) \land 0.5 = \mu_A(x)$ or 0.5 and $\nu_A(n(y+x)ny) > \nu_A(x) \lor 0.5 = \nu_A(x)$ or 0.5. If $\mu_A(n(y+x)ny) < 0.5$ $s < \mu_A(x) \land 0.5$ and $\nu_A(n(y+x)ny) > t > \nu_A(x) \lor 0.5 = \nu_A(x)$ then according to $\mu_A(x) < 0.5, \nu_A(x) > 0.5$ and $\mu_A(x) \le 0.5, \nu_A(x) \ge 0.5$ we have $x_{(s,t)} \in A$ whereas $(n(y+x) - ny)_{(s,t)} \in \sqrt{V} q A$ and also $x_{(0.5,0.5)} \in A$ whereas $(n(y+x) - Ny)_{(s,t)} \in \sqrt{V} q A$ $ny_{(0.5,0.5)} (\in \forall q) A$. Conversely, let $x_{(s_1,t_1)}, y_{(s_2,t_2)} \in A$. Then since (i) hold so $\mu_A(x-y) \ge s_1 \wedge s_2$ or $\mu_A(x-y) \ge 0.5$ and $\nu_A(x-y) \le t_1 \vee t_2$ or $\nu_A(x-y) \le 0.5$ which implies $x_{(s_1 \land s_2, t_1 \lor t_2)} \in \lor qA$. Again for $x_{(s_1, t_1)} \in A, y \in E$, since (ii) holds so $\mu_A(y+x-y) \ge s_1 \text{ or } \mu_A(y+x-y) \ge 0.5 \text{ and } \nu_A(y+x-y) \le t_1 \text{ or } \nu_A(y+x-y) \le 0.5,$ which means $(y + x - y)_{(s-1,t_1)} \in \forall qA$. Also, for $x_{(s_1,t_1)} \in A, n \in N$ since (iii) holds so $\mu_A(nx) \ge s_1$ or $\mu_A(nx) \ge 0.5$ and $\nu_A(nx) \le t_1$ or $\nu_A(nx) \le 0.5$, which implies $(nx)_{(s_1,t_1)} \in \forall qA$. Lastly, $x_{(s_1,t_1)} \in A, y \in E, n \in N$ since (iv) holds so $\mu_A(n(y+x) - ny) \ge s_1 \text{ or } \mu_A(n(y+x) - ny) \ge 0.5 \text{ and } \nu_A(n(y+x) - ny) \le t_1$ or $\nu_A(n(y+x)-ny) \leq 0.5$, which means $(n(y+x)-ny)_{(s-1,t_1)} \in \forall qA$. Hence $A = \langle \mu_A, \nu_A \rangle$ is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of E.

Theorem 3.3. An IFS $A = \langle \mu_A, \nu_A \rangle$ of E is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of E if and only if the level set $A_{(s,t)}$ with $s \in (0, 0.5], t \in [0.5, 1)$ is an ideal of E.

Proof. Assume $A = \langle \mu_A, \nu_A \rangle$ be $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of E. Assuming $s \in (0, 0.5], t \in [0.5, 1)$ and $n \in N$. Then for $x, y \in A_{(s,t)}$.

(i) $\mu_A(x-y) \ge \mu_A(x) \land \mu_A(y) \land 0.5 \ge s \land 0.5 = s \text{ and } \nu_A(x-y) \le \nu_A(x) \lor \nu_A(y) \lor 0.5 \le t \lor 0.5 = t$, which implies $x - y \in A_{(s,t)}$.

(ii) $\mu_A(y+x-y) \ge \mu_A(x) \land 0.5 \ge s \land 0.5 = s$ and $\nu_A(y+x-y) \le \nu_A(x) \lor 0.5 \le t \lor 0.5 = t$, which implies $y + x - y \in A_{(s,t)}$.

(iii) $\mu_A(nx) \ge \mu_A(x) \land 0.5 \ge s \land 0.5 = s$ and $\nu_A(nx) \le \nu_A(x) \lor 0.5 \le t \lor 0.5 = t$, which implies $nx \in A_{(s,t)}$.

(iv) $\mu_A(n(y+x) - ny) \ge \mu_A(x) \land 0.5 \ge s \land 0.5 = s$ and $\nu_A(n(y+x) - ny) \le \nu_A(x) \lor 0.5 \le t \lor 0.5 = t$, which implies $n(y+x) - ny \in A_{(s,t)}$. Hence $A_{(s,t)}$ is ideal of E. Equally, let $A_{(s,t)}$ is an ideal of E for all $s \in (0, 0.5], t \in [0.5, 1)$. Now make it possible for $x, y \in E, \mu_A(x-y) < s < \mu_A(x) \land \mu_A(y) \land 0.5$ and $\nu_A(x-y) > t > \nu_A(x) \lor \nu_A(y) \lor 0.5$. Then $x, y \in A_{(s,t)}$ but $x - y \notin A_{(s,t)}$. Which is a contradiction. Again for $n \in N, x \in E$ if it is assumed that $\mu_A(nx) < s < \mu_A(x) \land 0.5$ and $\nu_A(nx) > t > \nu_A(x) \lor 0.5$, then this gives a contradiction that $x \in A_{(s,t)}$ but $nx \notin A_{(s,t)}$. Similarly, we can show that $\mu_A(y+x-y) \ge \mu_A(x) \land 0.5$ and $\nu_A(y+x-y) \le \nu_A(x) \lor 0.5$ and $\mu_A(n(y+x)-ny) \ge \mu_A(x) \land 0.5$ and $\nu_A(n(y+x)-ny) \le \nu_A(x) \lor 0.5$. Hence $A + < \mu_A, \nu_A >$ is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of E. \Box

Remark 3.2. The result may not be correct for $s \in (0.5, 1]$ and $t \in [0, 0.5)$. For example, let us consider $E = S_3 = \{i, \rho_1, \rho_2, \tau_1, \tau_2, \tau_3\}$ (expressed additively) to be a Z-group. Define IFS $A = \langle \mu_A, \nu_A \rangle$ as $\mu_A(i) = 1, \mu_A(\rho_1) = \mu_A(\rho_2) = \mu_A(\tau_2) =$ $\mu_A(\tau_3) = 0.6, \mu_A(\tau_1) = 0.8$ and $\nu_A(i) = 0, \nu_A(\rho_1) = \nu_A(\rho_2) = \nu_A(\tau_2) = \nu_A(\tau_3) =$ $0.3, \mu_A(\tau_1) = 0.1$. Then $A = \langle \mu_A, \nu_A \rangle$ is a $(\in, \in \lor q)$ -intuitionistic fuzzy left ideal of E but $A_{(0.8,0.1)} = \{i, \tau_1\}$ is not an ideal of E.

The following result gives a necessary and sufficient condition for $A_{(s,t)}$ to be an ideal of E when $s \in (0.5, 1]$ and $t \in [0, 0.5)$.

Theorem 3.4. Let $A = \langle \mu_A, \nu_A \rangle$ be an IFS of N-group E. Then $A_{(s,t)} \neq \phi$ for $s \in (0.5, 1]$ and $t \in [0, 0.5)$ is an ideal of E if and only if A fulfils the subsequent situations:

- (i) $\mu_A(x-y) \lor 0.5 \ge \mu_A(x) \land \mu_A(y)$ and $\nu_A(x-y) \land 0.5 \le \nu_A(x) \lor \nu_A(y)$.
- (ii) $\mu_A(y + x y) \lor 0.5 \ge \mu_A(x) \text{ and } \nu_A(y + x y) \land \le \nu_A(x).$
- (iii) $\mu_A(nx) \lor 0.5 \ge \mu_A(x)$ and $\nu_A(nx) \land 0.5 \le \nu_A(x)$.
- (iv) $\mu_A(n(y+x)-ny) \lor 0.5 \ge \mu_A(x)$ and $\nu_A(n(y+x)-ny) \land 0.5 \le \nu_A(x), x, y \in E, n \in N.$

Proof. Suppose $A_{(s,t)} \neq \phi$ for $s \in (0.5, 1]$ and $t \in [0, 0.5)$ is an ideal of E. Let $\mu_A(x-y) \lor 0.5 < \mu_A(x) \land \mu_A(y) = s$ and $\nu_A(x-y) \land 0.5 > \nu_A(x) \lor \nu_A(y) = t$. Then $x, y \in A_{(s,t)}$ and as $A_{(s,t)}$ is an ideal so $x - y \in A_{(s,t)}$, which implies $\mu_A(x-y) \ge s > \mu_A(x-y) \lor 0.5$ and $\nu_A(x-y) \le t < \nu_A(x-y) \land 0.5$, which is a contradiction. Thus (i) holds. Likewise we can show that (ii) holds. Again $x \in E, n \in N$, let us assume $\mu_A(nx) \lor 0.5 < \mu_A(x) = s$ and $\nu_A(nx) \land 0.5 > \nu_A(x) = t$. Then $x \in A_{(s,t)}$ and as $A_{(s,t)}$ is an ideal so $nx \in A_{(s,t)}$, which implies $\mu_A(nx) \ge s > \mu_A(nx) \lor 0.5$ and $\nu_A(nx) \le t < \nu_A(nx) \land 0.5$, a contradiction. Thus (ii) holds. Likewise ,we can show that (iv) holds. Conversely, let $x, y \in A_{(s,t)}$. Then $0.5 < s \le \mu_A(x) \land \mu_A(y) \le \mu_A(x-y) \lor 0.5 = \mu_A(x-y)$ and $0.5 > t \ge \nu_A(x) \lor \nu_A(y) \ge \nu_A(x-y) \land 0.5 = \nu_A(x-y)$ gives $x - y \in A_{(s,t)}$. Also for $x \in A_{(s,t)}, y \in E, 0.5 < s \le \mu_A(x) \le \mu_A(y + x - y) \lor 0.5 = \mu_A(y + x - y)$ and $0.5 > t \ge \nu_A(x) \ge \nu_A(x) \ge \nu_A(y + x - y) \land 0.5 = \nu_A(y + x - y)$ gives $y + x - y \in A_{(s,t)}$.

Now for $x \in A_{(s,t)}, n \in N, 0.5 < s \le \mu_A(x) \le \mu_A(nx) \lor 0.5 = \mu_A(nx)$ and $0.5 > t \ge \nu_A(x) \ge \nu_A(nx) \land 0.5 = \nu_A(nx)$ implies that $nx \in A_{(s,t)}$. Moreover $x \in A_{(s,t)}, n \in N, y \in E, 0.5 < s \le \mu_A(x) \le \mu_A(n(y+x)-ny) \lor 0.5 = \mu_A(n(y+x)-ny)$ and $0.5 > t \ge \nu_A(x) \ge \nu_A(n(y+x)-ny) \land 0.5 = \nu_A(n(y+x)-ny)$ implies that $n(y+x) - ny \in A_{(s,t)}$. Hence $A_{(s,t)}$ is an ideal of E.

4. N-homomorphishm and $(\in, \in \lor q)$ -intuitionistic fuzzy ideal

In this segment, we discuss the homomorphic image and pre-image of a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal under an N-homomorphism.

Theorem 4.1. Let *E* and *F* be two *N*-groups and $f : E \to F$ be an onto homomorphism. Then if $A = \langle \mu_A, \nu_A \rangle$ is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of *E* then f(A) is also a $(\in, \in \lor q)$ intuitionistic fuzzy ideal of *F*.

Proof. Assume $A = \langle \mu_A, \nu_A \rangle$ be $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of E. Now for any $x, y \in F$, $\mu_{f(A)}(x-y) = f(\mu_A)(x-y) = Sup_{x-y=f(u)}\{\mu_A(u) : u \in E\} \ge$ $Sup_{f(a)=x,f(b)=y}\{\mu_A(a-b): a, b \in E\} \ge Sup_{f(a)=x,f(b)=y}\{\mu_A(a) \land \mu_A(b) \land 0.5\} =$ $Sup_{f(a)=x}\{\mu_A(a)\} \land Sup_{f(b)=y}\{\mu_A(b)\} \land 0.5 = f(\mu_A)(x) \land f(\mu_A)(y) \land 0.5 = \mu_{f(A)}(x) \land 0.5 = \mu_$ $\mu_{f(A)}(y) \wedge 0.5$ and $\nu_{f(A)}(x-y) = f(\nu_A)(x-y) = inf_{x-y=f(u)}\{\nu_A(u) : u \in E\} \leq 0$ $inf_{f(a)=x,f(b)=y}\{\nu_A(a-b): a, b \in E\} \le inf_{f(a)=x,f(b)=y}\{\nu_A(a) \lor \nu_A(b) \lor 0.5\} =$ $inf_{f(a)=x}\{\nu_A(a)\} \lor inf_{f(b)=y}\{\nu_A(b)\} \lor 0.5 = f(\nu_A)(x) \lor f(\nu_A)(y) \lor 0.5 = \nu_{f(A)}(x) \lor 0.5 = \mu_{f(A)}(x) \lor 0.5 = \mu_$ $\nu_{f(A)}(y) \vee 0.5$. Also $\mu_{f(A)}(y+x-y) = f(\mu_A)(y+x-y) = Sup_{y+x-y=f(u)}\{\mu_A(u) :$ $u \in E\} \ge Sup_{f(a)=x, f(b)=y}\{\mu_A(b+a-b) : a, b \in E\} \ge Sup_{f(a)=x}\{\mu_A(a) \land 0.5\} =$ $Sup_{f(a)=x}\{\mu_A(a)\} \land 0.5 = f(\mu_A)(x) \land 0.5 = \mu_{f(A)}(x) \land 0.5 \text{ and } \nu_{f(A)}(y+x-y) =$ $f(\nu_A)(y+x-y) = \inf_{y+x-y=f(u)} \{\nu_A(u) : u \in E\} \le \inf_{f(a)=x, f(b)=y} \{\nu_A(b+a-b) : u \in E\}$ $a, b \in E\} \leq inf_{f(a)=x}\{\nu_A(a) \lor 0.5\} = inf_{f(a)=x}\{\nu_A(a)\} \lor 0.5 = f(\nu_A)(x) \lor$ $0.5 = \nu_{f(A)}(x) \vee 0.5$. Again for $n \in N, x \in F$ we have $\mu_{f(A)}(nx) = f(\mu_A)(nx) = f(\mu_A)(nx)$ $Sup_{nx=f(u)}\{\mu_A(u) : u \in E\} \ge Sup_{f(a)=x}\{\mu_A(na) : a \in E\} \ge Sup_{f(a)=x}\{\mu_A(a) \land$ $0.5\} = Sup_{f(a)=x}\{\mu_A(a)\} \land 0.5 = f(\mu_A)(x) \land 0.5 = \mu_{f(A)}(x) \land 0.5 \text{and}\nu_{f(A)}(nx) =$ $f(\nu_A)(nx) = inf_{nx=f(u)}\{\nu_A(u) : u \in E\} \leq inf_{f(a)=x}\{\nu_A(na) : a \in E\} \leq$ $inf_{f(a)=x}\{\nu_A(a) \lor 0.5\} = inf_{f(a)=x}\{\nu_A(a)\} \lor 0.5 = f(\nu_A)(x) \lor 0.5 = \nu_{f(A)}(x) \lor$ 0.5Lastly, for $n \in N, x, y \in F$, $\mu_{f(A)}(n(y+x) - ny) = f(\mu_A)(n(y+x) - ny) =$ $Sup_{n(y+x)-ny=f(u)}\{\mu_A(u): u \in E\} \ge Sup_{f(a)=x,f(b)=y}\{\mu_A(n(b+a)-nb): a, b \in A\}$ $E\} \geq Sup_{f(a)=x}\{\mu_A(a) \land 0.5\} = Sup_{f(a)=x}\{\mu_A(a)\} \land 0.5 = f(\mu_A)(x) \land 0.5 =$ $\mu_{f(A)}(x) \wedge 0.5 \text{and} \nu_{f(A)}(n(y+x) - ny) = f(\nu_A)(n(y+x) - ny) = inf_{y+x-y=f(u)}\{\nu_A(u) : u \in \mathbb{R}^d : |u| \le 1$

P. SAIKIA AND L. K. BARTHAKUR

$$\begin{split} u \in E \} &\leq \inf_{f(a)=x, f(b)=y} \{ \nu_A(n(b+a)-nb) : a, b \in E \} \leq \inf_{f(a)=x} \{ \nu_A(a) \lor 0.5 \} = \\ \inf_{f(a)=x} \{ \nu_A(a) \} \lor 0.5 = f(\nu_A)(x) \lor 0.5 = \nu_{f(A)}(x) \lor 0.5. \text{ Thus } f(A) \text{ is } (\in, \in \lor q) \text{-} \\ \text{intuitionistic fuzzy ideal of F.} \end{split}$$

Theorem 4.2. Let *E* and *F* be two *N*-groups and $f : E \to F$ be an *N*-homomorphism. If $B = \langle \mu_B, \nu_B \rangle$ be $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of *F* then $f^{-1}(B)$ is also a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of *E*.

Proof. Assume $x, y \in E$. Then $f^{-1}(\mu_B)(x-y) = \mu_B(f(x-y)) = \mu_B(f(x)-f(y)) \ge \mu_B(f(x)) \land \mu_B(f(y)) \land 0.5 = f^{-1}(\mu_B)(x) \land f^{-1}(\mu_B)(y) \land 0.5$ and $f^{-1}(\nu_B)(x-y) = \nu_B(f(x-y)) = \nu_B(f(x) - f(y)) \le \nu_B(f(x)) \lor \nu_B(f(y)) \lor 0.5 = f^{-1}(\nu_B)(x) \lor f^{-1}(\nu_B)(y) \lor 0.5$. Again $f^{-1}(\mu_B)(y + x - y) = \mu_B(f(y + x - y)) = \mu_B(f(y) + f(x) - f(y)) \ge \mu_B(f(x)) \land 0.5 = f^{-1}(\mu_B)(x) \land 0.5$ and $f^{-1}(\nu_B)(y + x - y) = \nu_B(f(y + x - y)) = \nu_B(f(y) + f(x) - f(y)) \le \nu_B(f(x)) \lor 0.5 = f^{-1}(\nu_B)(x) \lor 0.5$. Also $f^{-1}(\mu_B)(nx) = \mu_B(f(nx)) = \mu_B(nf(x)) \ge \mu_B(f(x)) \land 0.5 = f^{-1}(\mu_B)(x) \land 0.5$ and $f^{-1}(\nu_B)(nx) = \nu_B(f(nx)) = \nu_B(nf(x)) \le \nu_B(f(x)) \lor 0.5 = f^{-1}(\nu_B)(x) \lor 0.5$. Lastly, $f^{-1}(\mu_B)(n(y + x) - ny) = \mu_B(f(n(y + x) - ny)) = \mu_B(n(f(y) + f(x)) - nf(y)) \ge \mu_B(f(x)) \land 0.5 = f^{-1}(\mu_B)(x) \land 0.5 = f^{-1}(\mu_B)(x) \lor 0.5$. Lastly, $f^{-1}(\mu_B)(n(y + x) - ny) = \mu_B(f(n(y + x) - ny)) = \mu_B(n(f(y) + f(x)) - nf(y)) \ge \mu_B(f(x)) \land 0.5 = f^{-1}(\mu_B)(x) \lor 0.5$. Lastly, $f^{-1}(\mu_B)(n(y + x) - ny) = \mu_B(f(n(y + x) - ny)) = \mu_B(n(f(y) + f(x)) - nf(y)) \ge \mu_B(f(x)) \land 0.5 = f^{-1}(\mu_B)(x) \lor 0.5$. Lastly, $f^{-1}(\mu_B)(n(y + x) - ny) = \mu_B(f(n(y + x) - ny)) = \mu_B(n(f(y) + f(x)) - nf(y)) \ge \mu_B(f(x)) \lor 0.5 = f^{-1}(\nu_B)(x) \lor 0.5$. Lastly, $f^{-1}(\mu_B)(n(y + x) - ny) = \mu_B(n(f(y) + f(x)) - nf(y)) \ge \mu_B(f(x)) \lor 0.5 = f^{-1}(\nu_B)(x) \lor 0.5$. Lastly, $f^{-1}(\mu_B)(n(y + x) - ny) = \mu_B(n(f(y) + f(x)) - nf(y)) \le \mu_B(f(x)) \lor 0.5 = f^{-1}(\nu_B)(x) \lor 0.5$. Lastly, $f^{-1}(\mu_B)(n(y + x) - ny) = \mu_B(n(f(y) + f(x)) - nf(y)) \le \mu_B(f(x)) \lor 0.5 = f^{-1}(\nu_B)(x) \lor 0.5$.

Theorem 4.3. Assume *E* and *F* be *N*-groups and $f : E \to F$ be an onto homomorphism. If for IFS $B = \langle \mu_B, \nu_B \rangle$ of *F*, $f^{-1}(B)$ is $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of *E*, then *B* is also a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of *F*.

Proof. Assume $x, y \in F$. Then since f is onto so, we have $a, b \in E$ such that x = f(a), y = f(b). Now $\mu_B(f(a) - f(b)) = \mu_B(f(a - b)) = f^{-1}(\mu_B)(a - b) \ge f^{-1}(\mu_B)(a) \land f^{-1}(\mu_B)(b) \land 0.5 = \mu_B(f(a)) \land \mu_B(f(b)) \land 0.5 = \mu_B(x) \land \mu_B(y) \land 0.5$ and $\nu_B(f(a) - f(b)) = \nu_B(f(a - b)) = f^{-1}(\nu_B)(a - b) \le f^{-1}(\nu_B)(a) \lor f^{-1}(\nu_B)(b) \lor 0.5 = \nu_B(f(a)) \lor \nu_B(f(b)) \lor 0.5 = \nu_B(x) \lor \nu_B(y) \lor 0.5$. Similarly we can show that $\mu_B(y + x - y) \ge \mu_B(x) \land 0.5$ and $\nu_B(y + x - y) \le \nu_B(x) \lor 0.5$. Also for $n \in N, x \in F, \mu_B(nx) = \mu_B(nf(a)) = \mu_B(f(na)) = f^{-1}(\mu_B)(na) \ge f^{-1}(\mu_B)(a) \land 0.5 = \mu_B(x) \land 0.5$ and $\nu_B(nx) = \nu_B(nf(a)) = \nu_B(f(na)) = f^{-1}(\nu_B)(na) \le f^{-1}(\nu_B)(a) \lor 0.5 = \nu_B(f(a)) \lor 0.5 = \nu_B(x) \lor 0.5$. Similarly we can show that $\mu_B(n(y + x) - ny) \ge \mu_B(x) \land 0.5$ and $\nu_B(n(y + x) - ny) \le \nu_B(x) \lor 0.5$. Hence $B = \langle \mu_B, \nu_B \rangle$ is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of F. □

5. CONCLUSION

In this research work, we look at $(\in, \in \lor q)$ -intuitionistic fuzzy ideals of a nearring. Studies can be executed in the direction of the perception of $(\in, \in \lor q)$ intuitionistic fuzzy prime and semi prime ideals of an N-group. Furthermore one can take a look at the other (ϕ, ψ) -structures(stated in [20]) of ideals of N-group.

References

- [1] A. NARAYANAN, T. MANIKANTAN: $(\in, \in \lor q)$ -fuzzy sub near rings and $(\in, \in \lor q)$ -fuzzy ideals of near rings, Journal of applied mathematics and computing, **18**(1-2) (2005), 419–430.
- [2] A. ROSENFIELD: *Fuzzy groups*, Journal of mathematical analysis and application, **35** (1971), 512–517.
- [3] B. DAVVAZ: Fuzzy ideals of near ring with interval valued membership functions, Journal of science, Islamic Republic of Iran, 12(2) (2001), 171–175.
- [4] B. DAVVAZ: (∈, ∈ ∨q)-fuzzy subnear ring and ideals, Soft Computing, 10(3) (2006), 206–211.
- [5] B. DAVVAZ, O. R. DEVI: A study on fuzzy ideals of N-groups, Algebra. Volume 2013
- [6] D. COKER, M. DEMIRCI: On intuitionistic fuzzy points, Notes IFS. 1(2) (1995), 79-84.
- [7] H. K. SAIKIA, L. K. BARTHAKUR: On fuzzy N-subgroups and fuzzy ideals of near ring and near ring groups, The Journal of Fuzzy Mathematics. **11**(3) (2003), 567–580.
- [8] J. ZHAN, B. DAVVAZ: Generalized fuzzy ideals of near rings, Applied Mathematics. 24(3) (2009), 343–349.
- [9] K. ATANASSOV: Intuitionistic fuzzy sets, Fuzzy sets and systems, 20 (1986), 87–96.
- [10] L. A. ZADEH: Fuzzy sets, Information and Control, 8(3) (1965), 338–353.
- [11] P. K. SHARMA: (α, β) -cut of intuitionistic fuzzy modules, Int. J. of mathematical science and applications, 1(3) (2011), 1489–1492.
- [12] P. K. SHARMA: Homomorphism of intuitionistic fuzzy groups, International Mathematical Forum, 6(64) (2011), 3169–3178.
- [13] R. BISWASS: Intuitionistic fuzzy subgroups, Mathematical Forum, 10 (1986), 37–46.
- [14] R. DEVI: Intuitionistic fuzzy near ring and its properties, Journal of Indian Math. Soc., 74(3-4) (2007), 203–219.
- [15] S. ABOU-ZAID: On fuzzy subnear ring and ideals, Fuzzy sets and systems, 44(1) (1991), 139–146.
- [16] S. K. BHAKAT, P. DAS: $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy sets and systems, **80**(3) (1996), 359–368.
- [17] S. K. BHAKAT, P. DAS: Fuzzy subrings and ideals redefined, Fuzzy sets and systems, 81(3) (1996), 383–393.

- [18] T. K. DUTTA, B.K. BISWAS: On fuzzy congruence of near ring module, Fuzzy sets and systems, **112**(2) (2000), 343–348.
- [19] W. J. LIU: Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and systems, 8(2) (1982), 133–139.
- [20] Y. B. JUN: On (ϕ, ψ) -intuitionistic fuzzy subgroups, Kynngpook Math. J., **45** (2005), 87–94.

DEPARTMENT OF MATHEMATICS GAUHATI UNIVERSITY GUWAHATI-781014 *Email address*: saikiapradip880gmail.com

MORIGAON COLLEGE MORIGAON Assam-782105 *Email address*: drbarthakur@gmail.com