Advances in Mathematics: Scientific Journal 9 (2020), no.11, 9951-9957
é(%)l\/J(IS/‘L'JARTHAI_ ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/ams;j.9.11.103

LUCAS DECOMPOSITION OF GRAPHS
R. HEMA, D. SUBITHA!, AND S. FREEDA

ABSTRACT. A decomposition (G, Gs,...,G,) of G is said to be Lucas Decom-
position (LD) if (i) ¢(G1) = 2, ¢(G2) = 1, () ¢(G;) = ¢(G;—1) + q(G;—2),
i = 3,4,...,n, (i) E(G) = E(G1) UE(G2) U ....U E(G,) (iv) Each G,,
i = 1,2,...,n is connected. In this paper, we investigate Lucas Decomposi-
tion of some graphs.

1. INTRODUCTION

All basic terminologies from graph theory are used in the sense of Frank
Harary [2]. Let G = (V,E) be a simple connected graph with p vertices and
q edges. If G1,G,,...,G, are connected edge disjoint subgraphs of G with
E(G) = E(G1) UE(Gy) U ....UE(G,), then (G1,Gs,...,G,) is said to be a
decomposition of G. Lucas numbers can be defined recursively. i, = 2, [y = 1,
l, = l,_1 +l,_2, n > 1. The first ten lucas numbers are [, = 2, [} = 1, I, = 3,
l3=4,1, =715 =11, = 18, I; = 29, ls = 47, ly = 76. In [1], Ebin Raja Merly.
E and Jeya Jothi. D introduced connected domination path decomposition of
Triangular snake graph. A simple graph in which each pair of distinct vertices is
joined by an edge is called a complete graph.
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2. LucAs DECOMPOSITION OF GRAPHS

Definition 2.1. A decomposition (G1, G, ..., G,) of G is said to be Lucas Decom-

position (LD) if

1 Q(Gl) =2, CI(GQ) =1,

(i) ¢(Gi) = q(Gi-1) +q(Gi2), i =3,4,...,n,
(iii) F(G) = E(G1) UE(Gy)U....UE(G,)
(iv) Each G;, i = 1,2,...,n is connected.

Theorem 2.1. [3] If G admits LD (G1, G, ..., G,) if and only if ¢(G) = 37" L.

Theorem 2.2. Let G be a cycle C, with any of the vertex joined to each nonadjacent
3t+1
vertex. Then G admits LD(G1,Gs, ..., Gs42) if and only if y = Timp Litd l 3

Proof Assume that G admits LD(G1, Gs,...,G342). By Theorem 2.1, ¢(G) =
Z?’Hl I;. Since any of the vertex in cycle joined to each nonadjacent vertex, We

=0
t+1z +3 S
have ¢(G) = 2y—3. Thatis, y = Limp Litd . Conversely, assume that y = Z+
let ug uy, uo, ..., u, be the vertices of G with vy is a central vertex of G. Then

K1 23t+1l ., 18 a star rooted at ug. Thus K S = G1U(G5UGgU. . .UG3449)

and each Gi,i=1,5,8,...,3t+2isa star Therefore K E3t+1 is decomposed

1,43

into G4, (G5, Gs,...,G540). Let H = G — K 23t+1l+3 ThenHlsapath Thus H

=G U(G3UGgU...UGg)U(GyUG;U... U G3t+1) where each Gis are path.
Hence GG admits LD(Gy, Go, . .., G3142). O

Theorem 2.3. Let G be a graph with each vertex of two copies of P, joined to a
vertex ug. Then
(i) G admits LD(G+,Gs,...,G341) ifand only if y = M
(ii) Ife; and ey are two edges incident to u, then GU{ey, 62} admits LD(G1, Gs,
- Get) ifand only if y = Zih ll

Proof. Let uy, Uz, Us,. - -, Uy, Uy, Us, u;),. .., u, be the vertices of two copies of P,.
(i) Assume that a graph G admits LD(G4, G, ..., G341). By Theorem 2.1,
q(G) = Zf’io l;. Since each vertex of two copies of P, joined to a vertex

ug. We have q(G) = 4y + 2. Therefore, y = Litgli=? e i Conversely, assume

that y = Litoliz? 0 . Then u; — u is the longest path. Therefore u; — uy
path is decomposed into GG, (GQ, Gs,. ..y G3i-1), (G, Gg,. .., Gg;). Let
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H=GU(GyUGsU---UG3_1)U(G3UGgU...UG3). Then G— H is a

star with central vertex uy. Thus G — H is decomposed into G4, G7,. ..,
G3i41. Hence G admits LD(G, Gb,. .., G3ii1).

(ii) Assume that G U {ej, eo} admits LD(G1, Gy, ..., Gg). By Theorem 2.1,

q(GU{er,ea}) = 32 1, Since ¢, and e, are incident to a central vertex

up, we have ¢(G U {e1,e3}) = 4y + 4. Thatis, y = i it ll . Con-

versely, assume that y = # Then the longest path P :u —

’ . 6t—-1,. ’ .
u, consists of length % Therefore u; — u, path is decomposed
into (Gg, Gg, .. G@t 3), (G6, G12; ceey G6t)~ Let H = G U {61,62} —

P. Then H = K sl is decomposed into (G,G7,G1s, ..., Ger—5),
(G2, Gy, Gy, - Gﬁt 1), (G47 Gho,Gh6, - -, Ga—2) and (G5, Gu,Gir, ...,
Gthl). Hence G U {61, 62} admits LD(Gl, GQ, R G6t>-

g

Theorem 2.4. Let G be a graph with each vertex of two copies of P,, and P,, are
joined to a vertex ug. If e; and ey are two edges incident to ug, then G U {ey, e}

admits LD(Gl, G27 .. G3t+1) 1fand OTlly ’fyl — Zz 0 li— and yp = Z?f_;il¢+2.

Proof. Assume that G U {ej, eo} admits LD(G, Ga, ..., G311). By Theorem 2.1,
q(G) = Zfio l;. Since each vertex of two copies of P, and P,, are joined to a

3t
vertex g, We have ¢(G) = 2(3y1 + y2 +2). Thatgtis, 2y + yo + 2) = 2[% +
Zz ol +2 + 2] That i is, y1 = Ez 0 li— and Yy = Zi:il¢+2-
3t 3t .
Conversely, assume that y; = W and y, = # let wy,ug, ..., uy,
and u;, uy, . . ., u,, be the vertices of P, and P, respectively.

Case(i): t = 1. Then y; = 2 and 5, = 3. Thus the longest path P : u; — u,
is decomposed into G; and G3. Let H = G — P. Then H = K, 5 is decomposed
into GG, and G,4. Hence G is decomposed into GGy, G2, G3 and Gj.

Case(ii): t > 1. Then the longest path P : u; — u’y2 consists of length 23;;01
Therefore P = G1 U (GsUGgU...UG3)U (G5 UGsU...UG3_1). Thus P is
decomposed into G, (G3, G, . .., G3t), (G5, Gs, ..., G3—1). Let H = GU{ey, ea}—
P. Then H = K ZSt ,, is decomposed into Go, G4, G7, ..., G34. Hence G U

{61, 62} admits LD(Gl, GQ, R ,G3t+1) [l
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3. LucAs STAR DECOMPOSITION OF GRAPHS

In this section, Lucas star decomposition is forged from Lucas Decomposition.

Definition 3.1. A decomposition (G1,Gs,...,G,) of G is said to be Lucas Star
Decomposition (LSD) if

(i) G admits LD.

(i) Each G;,i =1, 2,..., nis a star.

Example 1.
(i) In a path graph, P, admits LSD(G,) and Py admits LSD(G, G3).
(ii) SZ?;J L admits LSD.
(iii) In a cycle graph, C3 admits LSD(G1, G5) and ngol ,, does not admit LSD
ifn>3.
(iv) In a wheel graph, W3 admits LSD(G1, G+, G3) and WZZ_L:-Ol ,, does not admit
LSD if n > 3.

Theorem 3.1. A Complete graph K; admits LSD(G1,Ga,...,Gy_1), t = 3,4, 5.

Proof Choose a vertex v; € V(K;). Therefore (¢t — 1) edges incident to v;. Con-
sider two edges incident to v; is a star S;. Therfore, So = (3. Remaining
(t — 1) — 2 edges incident to v;. We have three cases.

Case(i): No edges incident to v;. Then G5 = K3 — (G;. Hence K3 is decom-
posed into G, Gs.

Case(ii): One edge is incident to v;. Then one pair of vertices is degree 2 (say
(u1,u9)) in Ky — Sy. Let Gy = {wjus}. Then Ky — (So U Gs) = S3 = (5. Hence
K, is decomposed into G1, G», Gs.

Case(iii): Two edges incident to v;. Then four edges incident to a vertex v,
(say) is a star S,. Therefore, Sy = G4. Choose a vertex v3 € V(K5 — (G; UGy)).
Then three edges incident to a vertex vs is a star S3. Therefore, S3 = G5. Now,
Gy = K5 — (G UG4 U G3). Then Gy = S;. Hence Kj is decomposed into
G1,Gq, G3, Gy. O

Remark 3.1. A complete graph K;, t > 6 does not admit LSD.

Theorem 3.2. Let G be a complete graph K, j = 2,3,4,5 with the origin and
terminus of y- copies of P, is attached to any two vertices of K;. Then the following
conditions hold:
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If j = 2,3, then G has only one LSD(G1,Gs, ..., G3142).
Ifj = 4, then G admits LSD(G17 G27 ey G3t+1) and (G17 G27 cee G3t+3).
If] =9, then G admits LSD(Gl, GQ, P G3t+3) and (Gl, GQ, PR G3t+4).

Since j = 2,3, ¢(G) = 2y; + 1 or 2y, + 3. By Theorem 2.1, y; =
n—1 1 3t+1g.
it holand y, = Zisg l=? o]

2
Yo = L l Zi=p 73 choose a pair of vertex (u,v) with deg(u,v) = A. Then

Go = {uv} and ¢(G2) = 1. Let w be a vertex such that deg(w) = 2. Then

G1 = {uw} U{wv} and ¢(G;) = 2. let H = G — (G; U G3). Then all
Bt41) g

the edges of Zi:o =3 s incident to u and v. Therefore, K Z3t+1l L, =

G5 U Gg Uu---u G3t+2 and K Z3t+ll _3 = (Gg U G(; u---u th) (G4 U

G7U---UG341). Hence G is decomposed into G1, G, G3, G, . .., Gsy,
Gy, Gr,...,G341, G5,Gs, ..., G349,

Let 5 = 4. Then ¢(G) = 2y + 6. Therefore, y = % suppose
n = 3t + 1. we have the following cases.

Case (i): t = 1. Then n = 4. Thus, y = 237
Hence G is decomposed into G+, G, G3, G4.

Case (ii): ¢ > 1. Then y = % choose a vertex u € V(Ky).
Therefore three edges incident to u. Then S; = G, and S; = Gs.
choose a vertex v € V(K; — (G; U Gy)) with deg(v) = A. There-
fore, K 2315 ,,—» is a star decomposed into G4, (G7,...,G341). Now,

H = G ( ZStl 2 UG UG,). Then H = (K ngl _, is a star de-

composed 1nto Gg, (Gs,Gs,...,G31) and (G, Gg, . G3t) Thus G is
decomposed into G, G, G3, (G5, Gs, ..., G3—1), (G4,G7, ..., G341) and
(Ge, Gy, . ..,G3). Hence G admits LSD (G4, Go, ..., Gsi41)-
Suppose n # 3t + 1. Thenn = 3t +3 orn =3t +2and n < 3.
Case (i): n = 3t +3. Theny = % Choose a vertex u; €
V(K4). Therefore three edges incident to u;. Then S3; = Gj;. Now

one pair of vertex is degree 2 (say u; and u3) in K, — G3. Let Gy =

Suppose n = 3t + 2. Then y; = and

Therefore, y = 2.

{ugus}. Choose a vertex uy in K4 U (G U G3). Then the edges of a star

K gate2, , is incident to uy. Therefore, K s,y 1S decomposed into
1,==0_*t ~ 1, =i=0_ " *
’ 2 )

G1, (G4, Gr, ..., G311), (G5,Gs, ..., G342). Now, Hy = G — [(Go UG3) U
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(ii)
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K 2%21_72} Then H, is a star K 3t+EZ _¢ Which is decomposed into
1,=i=0 1% Zi=Q iT>

(Gé, G;, ..., G343). Hence G admlts LSD(Gl, Ga,...,G343).

Case (ii): n = 3t + 2 and n < 3. Then y is a fraction. Thus G does
not admit LSD. Hence G admits LSD(G1, Go, ..., G341) and (G, G, . . .,
G3i43).

Let j = 5. Then ¢(G) = 2y + 10. Therfore, y = i Li710

Case (i): n =3t+3. Theny = Z?):Tl Choose avertex u € V(Kj).

Therefore four edges of the stars S; and S; is incident to a vertex u.
Then S; = G5 and S; = G5. Choose a vertex v € V(K5 — (G2 U G3))
with deg(v) = 3. Therefore all edges of a star S, is incident to u. Then
S, = GG;. Now, remaining one edge incident to u. Then G; = S,. Let
H = G — (G; UGy UG3). Then H contains two stars K Zmz,_s and

,1l

s
K1 Z?iff 1—6° NOVV, Kl Ezsj)z -6 — GG U Gg u...J G3t+3 and K 3t+2l e =

(G4 U 62?7 U...UG341) U 26‘5 UGgU...UG342). Thus G is decomposed
into Gy, Go, Gs, (G4,Gr,...,Gs41), (G5 UGs U ... UGs49) and (Gg U
Go U ...UG343). Hence G admits LSD(G1, G, . .., G3143).

Case (ii): n # 3t + 3. Thenn = 3t+4orn—3t+5andn§ 5.

Subcase (i): n = 3t +4. Then y = Tisy ! 2izo li710  Chgose a vertex
u € V(K5). Then four edges incident to u is a star S,. Then S, = Gy.
Choose a vertex v € V(K5 — G4) with three edges incident to v. There-
fore, S; = G3. Choose a vertex w € V(K5 — (G4 U G3)) with three
edges incident to w. Then S, is a star all edges incident to w. There-
fore, Sy = G, and the remaining edge in K5 — (G4 U G3 U G1) = Gs.
Let H =G — (G; UGy UG3UG,). Then H is a star K 23”31 ., and

K a3, _,,. Then the edges of a star K 5845, o 1 decomposed into
1,2i=0_"1

(Go G . Gass), (Go. G Cen) and (Go. Go. ... Garss). Hence
G admits LSD(G4, Go, . . ., G3t+4).

Subcase (ii): n = 3t + 5 and n < 5. Then y is a fraction. Thus G does
not admit LSD. Hence G admits LSD(G1, Gy, ..., G343) and (G, Go, . . .,

Gai44)-
U
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