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LUCAS DECOMPOSITION OF GRAPHS

R. HEMA, D. SUBITHA1, AND S. FREEDA

ABSTRACT. A decomposition (G1, G2, . . . , Gn) of G is said to be Lucas Decom-
position (LD) if (i) q(G1) = 2, q(G2) = 1, (ii) q(Gi) = q(Gi−1) + q(Gi−2),
i = 3, 4, . . . , n, (iii) E(G) = E(G1) ∪ E(G2) ∪ . . . . ∪ E(Gn) (iv) Each Gi,
i = 1, 2, . . . , n is connected. In this paper, we investigate Lucas Decomposi-
tion of some graphs.

1. INTRODUCTION

All basic terminologies from graph theory are used in the sense of Frank
Harary [2]. Let G = (V,E) be a simple connected graph with p vertices and
q edges. If G1, G2, . . . , Gn are connected edge disjoint subgraphs of G with
E(G) = E(G1) ∪ E(G2) ∪ . . . . ∪ E(Gn), then (G1, G2, . . . , Gn) is said to be a
decomposition of G. Lucas numbers can be defined recursively. l0 = 2, l1 = 1,
ln = ln−1 + ln−2, n > 1. The first ten lucas numbers are l0 = 2, l1 = 1, l2 = 3,
l3 = 4, l4 = 7, l5 = 11, l6 = 18, l7 = 29, l8 = 47, l9 = 76. In [1], Ebin Raja Merly.
E and Jeya Jothi. D introduced connected domination path decomposition of
Triangular snake graph. A simple graph in which each pair of distinct vertices is
joined by an edge is called a complete graph.
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2. LUCAS DECOMPOSITION OF GRAPHS

Definition 2.1. A decomposition (G1, G2, . . . , Gn) of G is said to be Lucas Decom-
position (LD) if

(i) q(G1) = 2, q(G2) = 1,
(ii) q(Gi) = q(Gi−1) + q(Gi−2), i = 3, 4, . . . , n,

(iii) E(G) = E(G1) ∪ E(G2) ∪ . . . . ∪ E(Gn)

(iv) Each Gi, i = 1, 2, . . . , n is connected.

Theorem 2.1. [3] If G admits LD (G1, G2, . . . , Gn) if and only if q(G) =
∑n−1

i=0 li.

Theorem 2.2. Let G be a cycle Cy with any of the vertex joined to each nonadjacent
vertex. Then G admits LD(G1, G2, . . . , G3t+2) if and only if y =

∑3t+1
i=0 li+3

2
.

Proof. Assume that G admits LD(G1, G2, . . . , G3t+2). By Theorem 2.1, q(G) =∑3t+1
i=0 li. Since any of the vertex in cycle joined to each nonadjacent vertex, We

have q(G) = 2y−3. That is, y =
∑3t+1

i=0 li+3

2
. Conversely, assume that y =

∑3t+1
i=0 li+3

2
.

let u0 u1, u2, . . . , uy be the vertices of G with u0 is a central vertex of G. Then
K

1,

∑3t+1
i=0

li+3

2

is a star rooted at u0. Thus K
1,

∑3t+1
i=0

li+3

2

= G1∪ (G5∪G8∪ . . .∪G3t+2)

and each Gi, i = 1, 5, 8, . . . , 3t+2 is a star. Therefore, K
1,

∑3t+1
i=0

li+3

2

is decomposed

into G1, (G5, G8, . . . , G3t+2). Let H = G−K
1,

∑3t+1
i=0

li+3

2

. Then H is a path. Thus H

= G2 ∪ (G3 ∪G6 ∪ . . . ∪G3t) ∪ (G4 ∪G7 ∪ . . . ∪G3t+1), where each G
′
is are path.

Hence G admits LD(G1, G2, . . . , G3t+2). �

Theorem 2.3. Let G be a graph with each vertex of two copies of Py joined to a
vertex u0. Then

(i) G admits LD(G1, G2, . . . , G3t+1) if and only if y =
∑3t

i=0 li+2

4
.

(ii) If e1 and e2 are two edges incident to u0, then G∪{e1, e2} admits LD(G1, G2,

. . . , G6t) if and only if y =
∑6t−1

i=0 li
4

.

Proof. Let u1, u2, u3,. . . , uy, u
′
1, u

′
2, u

′
3,. . . , u′y be the vertices of two copies of Py.

(i) Assume that a graph G admits LD(G1, G2, . . . , G3t+1). By Theorem 2.1,
q(G) =

∑3t
i=0 li. Since each vertex of two copies of Py joined to a vertex

u0. We have q(G) = 4y + 2. Therefore, y =
∑3t

i=0 li−2

4
. Conversely, assume

that y =
∑3t

i=0 li−2

4
. Then u1 − u

′
y is the longest path. Therefore u1 − u

′
y

path is decomposed into G1, (G2, G5,. . . , G3t−1), (G3, G6,. . . , G3t). Let
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H = G1 ∪ (G2 ∪G5 ∪ · · · ∪G3t−1)∪ (G3 ∪G6 ∪ . . .∪G3t). Then G−H is a
star with central vertex u0. Thus G −H is decomposed into G4, G7,. . . ,
G3t+1. Hence G admits LD(G1, G2,. . . , G3t+1).

(ii) Assume that G ∪ {e1, e2} admits LD(G1, G2, . . . , G6t). By Theorem 2.1,
q(G∪{e1, e2}) =

∑6t−1
i=0 li. Since e1 and e2 are incident to a central vertex

u0, we have q(G ∪ {e1, e2}) = 4y + 4. That is, y =
∑6t−1

i=0 li−4

4
. Con-

versely, assume that y =
∑6t−1

i=0 li−4

4
. Then the longest path P : u1 −

u
′
y consists of length

∑6t−1
i=0 li
2

. Therefore u1 − u
′
y path is decomposed

into (G3, G9, . . . , G6t−3), (G6, G12, . . . , G6t). Let H = G ∪ {e1, e2} −
P . Then H = K

1,

∑6t−1
i=0

li
2

is decomposed into (G1, G7, G13, . . . , G6t−5),

(G2, G8, G14, . . . , G6t−4), (G4, G10, G16, . . . , G6t−2) and (G5, G11, G17, . . . ,

G6t−1). Hence G ∪ {e1, e2} admits LD(G1, G2, . . . , G6t).

�

Theorem 2.4. Let G be a graph with each vertex of two copies of Py1 and Py2 are
joined to a vertex u0. If e1 and e2 are two edges incident to u0, then G ∪ {e1, e2}
admits LD(G1, G2, . . . , G3t+1) if and only if y1 =

∑3t
i=0 li−2

4
and y2 =

∑3t
i=0 li+2

4
.

Proof. Assume that G ∪ {e1, e2} admits LD(G1, G2, . . . , G3t+1). By Theorem 2.1,
q(G) =

∑3t
i=0 li. Since each vertex of two copies of Py1 and Py2 are joined to a

vertex u0, We have q(G) = 2(y1 + y2 + 2). That is, 2(y1 + y2 + 2) = 2[
∑3t

i=0 li−2

4
+∑3t

i=0 li+2

4
+ 2]. That is, y1 =

∑3t
i=0 li−2

4
and y2 =

∑3t
i=0 li+2

4
.

Conversely, assume that y1 =
∑3t

i=0 li−2

4
and y2 =

∑3t
i=0 li+2

4
. let u1, u2, . . . , uy1

and u
′
1, u

′
2, . . . , u

′
y2

be the vertices of Py1 and Py2 respectively.
Case(i): t = 1. Then y1 = 2 and y2 = 3. Thus the longest path P : u1 − u

′
3

is decomposed into G1 and G3. Let H = G− P . Then H = K1,5 is decomposed
into G2 and G4. Hence G is decomposed into G1, G2, G3 and G4.

Case(ii): t > 1. Then the longest path P : u1 − u
′
y2

consists of length
∑3t

i=0 li
2

.
Therefore P = G1 ∪ (G3 ∪G6 ∪ . . . ∪G3t) ∪ (G5 ∪G8 ∪ . . . ∪G3t−1). Thus P is
decomposed into G1, (G3, G6, . . . , G3t), (G5, G8, . . . , G3t−1). Let H = G∪{e1, e2}−
P . Then H = K

1,

∑3t
i=0

li
2

is decomposed into G2, G4, G7, . . . , G3t+1. Hence G ∪

{e1, e2} admits LD(G1, G2, . . . , G3t+1). �
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3. LUCAS STAR DECOMPOSITION OF GRAPHS

In this section, Lucas star decomposition is forged from Lucas Decomposition.

Definition 3.1. A decomposition (G1, G2, . . . , Gn) of G is said to be Lucas Star
Decomposition (LSD) if

(i) G admits LD.
(ii) Each Gi , i = 1, 2,. . . , n is a star.

Example 1.

(i) In a path graph, P2 admits LSD(G1) and P3 admits LSD(G1, G2).
(ii) S∑n−1

i=0 li
admits LSD.

(iii) In a cycle graph, C3 admits LSD(G1, G2) and C∑n−1
i=0 li

does not admit LSD
if n ≥ 3.

(iv) In a wheel graph, W3 admits LSD(G1, G2, G3) and W∑n−1
i=0 li

does not admit
LSD if n ≥ 3.

Theorem 3.1. A Complete graph Kt admits LSD(G1, G2, . . . , Gt−1), t = 3, 4, 5.

Proof. Choose a vertex v1 ∈ V (Kt). Therefore (t− 1) edges incident to v1. Con-
sider two edges incident to v1 is a star S2. Therfore, S2 = G1. Remaining
(t− 1)− 2 edges incident to v1. We have three cases.

Case(i): No edges incident to v1. Then G2 = K3 − G1. Hence K3 is decom-
posed into G1, G2.

Case(ii): One edge is incident to v1. Then one pair of vertices is degree 2 (say
(u1, u2)) in K4 − S2. Let G2 = {u1u2}. Then K4 − (S2 ∪ G2) = S3 = G3. Hence
K4 is decomposed into G1, G2, G3.

Case(iii): Two edges incident to v1. Then four edges incident to a vertex v2
(say) is a star S4. Therefore, S4 = G4. Choose a vertex v3 ∈ V (K5 − (G1 ∪G4)).
Then three edges incident to a vertex v3 is a star S3. Therefore, S3 = G3. Now,
G2 = K5 − (G1 ∪ G4 ∪ G3). Then G2 = S1. Hence K5 is decomposed into
G1, G2, G3, G4. �

Remark 3.1. A complete graph Kt, t ≥ 6 does not admit LSD.

Theorem 3.2. Let G be a complete graph Kj, j = 2, 3, 4, 5 with the origin and
terminus of y- copies of P2 is attached to any two vertices of Kj. Then the following
conditions hold:
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(i) If j = 2, 3, then G has only one LSD(G1, G2, . . . , G3t+2).
(ii) If j = 4, then G admits LSD(G1, G2, . . . , G3t+1) and (G1, G2, . . . , G3t+3).

(iii) If j = 5, then G admits LSD(G1, G2, . . . , G3t+3) and (G1, G2, . . . , G3t+4).

Proof.

(i) Since j = 2, 3, q(G) = 2y1 + 1 or 2y2 + 3. By Theorem 2.1, y1 =∑n−1
i=0 li−1

2
and y2 =

∑n−1
i=0 li−3

2
. Suppose n = 3t + 2. Then y1 =

∑3t+1
i=0 li−1

2
and

y2 =
∑3t+1

i=0 li−3

2
. choose a pair of vertex (u, v) with deg(u, v) = ∆. Then

G2 = {uv} and q(G2) = 1. Let w be a vertex such that deg(w) = 2. Then
G1 = {uw} ∪ {wv} and q(G1) = 2. let H = G − (G1 ∪ G2). Then all
the edges of

∑3t+1
i=0 li−3

2
is incident to u and v. Therefore, K

1,

∑3t+1
i=0

li−3

2

=

G5 ∪ G8 ∪ · · · ∪ G3t+2 and K
1,

∑3t+1
i=0

li−3

2

= (G3 ∪ G6 ∪ · · · ∪ G3t) ∪ (G4 ∪

G7 ∪ · · · ∪ G3t+1). Hence G is decomposed into G1, G2, G3, G6, . . . , G3t,
G4, G7, . . . , G3t+1, G5, G8, . . . , G3t+2.

(ii) Let j = 4. Then q(G) = 2y + 6. Therefore, y =
∑n−1

i=0 li−6

2
. suppose

n = 3t + 1. we have the following cases.
Case (i): t = 1. Then n = 4. Thus, y =

∑3
i=0 li−6

2
. Therefore, y = 2.

Hence G is decomposed into G1, G2, G3, G4.
Case (ii): t > 1. Then y =

∑3t
i=0 li−6

2
. choose a vertex u ∈ V (K4).

Therefore three edges incident to u. Then S2 = G1 and S1 = G2.
choose a vertex v ∈ V (K4 − (G1 ∪ G2)) with deg(v) = ∆. There-
fore, K

1,

∑3t
i=0

li−2

2

is a star decomposed into G4, (G7, . . . , G3t+1). Now,

H = G − (K
1,

∑3t
i=0

li−2

2

∪ G1 ∪ G2). Then H = (K
1,

∑3t
i=0

li−4

2

is a star de-

composed into G3, (G5, G8, . . . , G3t−1) and (G6, G9, . . . , G3t). Thus G is
decomposed into G1, G2, G3, (G5, G8, . . . , G3t−1), (G4, G7, . . . , G3t+1) and
(G6, G9, . . . , G3t). Hence G admits LSD (G1, G2, . . . , G3t+1).

Suppose n 6= 3t + 1. Then n = 3t + 3 or n = 3t + 2 and n ≤ 3.
Case (i): n = 3t + 3. Then y =

∑3t+2
i=0 li−6

2
. Choose a vertex u1 ∈

V (K4). Therefore three edges incident to u1. Then S3 = G3. Now
one pair of vertex is degree 2 (say u2 and u3) in K4 − G3. Let G2 =
{u2u3}. Choose a vertex u4 in K4 ∪ (G2 ∪ G3). Then the edges of a star
K

1,

∑3t+2
i=0

li−2

2

is incident to u4. Therefore, K
1,

∑3t+2
i=0

li−2

2

is decomposed into

G1, (G4, G7, . . . , G3t+1), (G5, G8, . . . , G3t+2). Now, H1 = G− [(G2 ∪G3)∪
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K
1,

∑3t+2
i=0

li−2

2

]. Then H1 is a star K
1,

∑3t+2
i=0

li−6

2

which is decomposed into

(G6, G9, . . . , G3t+3). Hence G admits LSD(G1, G2, . . . , G3t+3).
Case (ii): n = 3t + 2 and n ≤ 3. Then y is a fraction. Thus G does

not admit LSD. Hence G admits LSD(G1, G2, . . . , G3t+1) and (G1, G2, . . . ,

G3t+3).
(iii) Let j = 5. Then q(G) = 2y + 10. Therfore, y =

∑n−1
i=0 li−10

2
.

Case (i): n = 3t+ 3. Then y =
∑3t+2

i=0 li−10

2
. Choose a vertex u ∈ V (K5).

Therefore four edges of the stars S3 and S1 is incident to a vertex u.
Then S3 = G3 and S1 = G2. Choose a vertex v ∈ V (K5 − (G2 ∪ G3))

with deg(v) = 3. Therefore all edges of a star S2 is incident to u. Then
S2 = G1. Now, remaining one edge incident to u. Then G1 = S2. Let
H = G − (G1 ∪ G2 ∪ G3). Then H contains two stars K

1,

∑3t+2
i=0

li−6

2

and

K
1,

∑3t+2
i=0

li−6

2

. Now, K
1,

∑3t+2
i=0

li−6

2

= G6∪G9∪ . . .∪G3t+3 and K
1,

∑3t+2
i=0

li−6

2

=

(G4 ∪G7 ∪ . . . ∪G3t+1) ∪ (G5 ∪G8 ∪ . . . ∪G3t+2). Thus G is decomposed
into G1, G2, G3, (G4, G7, . . . , G3t+1), (G5 ∪ G8 ∪ . . . ∪ G3t+2) and (G6 ∪
G9 ∪ . . . ∪G3t+3). Hence G admits LSD(G1, G2, . . . , G3t+3).

Case (ii): n 6= 3t + 3. Then n = 3t + 4 or n = 3t + 5 and n ≤ 5.
Subcase (i): n = 3t + 4. Then y =

∑3t+3
i=0 li−10

2
. Choose a vertex

u ∈ V (K5). Then four edges incident to u is a star S4. Then S4 = G4.
Choose a vertex v ∈ V (K5 − G4) with three edges incident to v. There-
fore, S3 = G3. Choose a vertex w ∈ V (K5 − (G4 ∪ G3)) with three
edges incident to w. Then S2 is a star all edges incident to w. There-
fore, S2 = G1 and the remaining edge in K5 − (G4 ∪ G3 ∪ G1) = G2.
Let H = G − (G1 ∪ G2 ∪ G3 ∪ G4). Then H is a star K

1,

∑3t+3
i=0

li−10

2

and

K
1,

∑3t+3
i=0

li−10

2

. Then the edges of a star K
1,

∑3t+3
i=0

li−10

2

is decomposed into

(G7, G10, . . . , G3t+4), (G5, G8, . . . , G3t+2) and (G6, G9, . . . , G3t+3). Hence
G admits LSD(G1, G2, . . . , G3t+4).

Subcase (ii): n = 3t + 5 and n ≤ 5. Then y is a fraction. Thus G does
not admit LSD. Hence G admits LSD(G1, G2, . . . , G3t+3) and (G1, G2, . . . ,

G3t+4).

�
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