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AN EXISTENCE THEOREM FOR A NONLINEAR INTEGRAL EQUATION OF
URYSOHN TYPE IN LP (RN)

WAGDY G. EL-SAYED, MAHMOUD M. EL-BORAI1, MOHAMED M. A. METWALI,
AND NAGWA IBRAHIM SHEMAIS

ABSTRACT. The aim of this paper is investigating and solvability of the nonlinear inte-
gral Equation due to Urysohn, in the space of pth Lebesgue integrable functions on
RN, (Lp(RN)). The Urysohn integral equations are enjoying interest among mathemati-
cians, physicists and engineers. We try to assume the sufficient conditions under which
the existence theorem of the given integral equation can be proved. The main tool is
using Dabo fixed point theorem via a certain measure of noncompactness introduced by
Aghajani et. Al [3] in the space Lp(RN), as an application to prove the desired exis-
tence theorem of our Urysohn integral equation. At the end of this paper, we introduce
an example that ensure the importance of the hypothesis that assumed in our existence
theorem.

1. INTRODUCTION

Many applications in mathematics, physics,..., etc, depend on the class of integral
equations, where the methods of integral equations are used in solving some physical
problems. It worth mention that Urysohn integral equation is one of the most fre-
quently studied equation in nonlinear analysis, which have many useful applications in
describing problems in the real world. The technique of measure of noncompactness
is the main tool for solvability of several types of integral equations, see, for example,
[1,2,5-22,24], and the references cited therein. Besides, it has been frequently applied
in several branches of nonlinear analysis. The first measure of noncompactness was
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introduced by Kuratowski (Kuratowski, 1934). The most important fixed point theorem
of this measure was introduced by Darbo (Darbo, 1955). In the last years, authors have
applied this result to establish the existence and uniqueness of solutions for integral
equations in Banach spaces. The space Lp(RN ) is one of the most important spaces
where several integral equations have been solved in this apace. The additional advan-
tage of this space depends on the fact that the functions of the space Lp(RN ) are not
necessary to be continuous.

In [4], the authors discussed the solvability of the Urysohn integral equation

x(t) = f(t) +

∫ ∞
0

u(t, s, x(s))ds,

in [3] the authors proved the existence theorem for the functional integral equation

u(t) = f(t, u(t)) +

∫
RN

k(t, s)(Qu)(s)ds,

while the authors in [10] studied the existence of integral solutions of the following
integral equation

x(t) = f1

(
t,

∫ t

0
k(t, s)f2(s, x(s)ds

)
.

In [11], the authors studied the existence of solutions for the perturbed functional inte-
gral equations of convolution type

x(t) = f1(t, x(t)) + f2

(
t,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
, t ∈ R+

in the spaceLp(R+) (the space of lebesgue integrable functions on R+). The measures
of noncompactness play major roles in fixed point theory .

In the present work, we will use special measure of noncompactness due to Aghajani
et. al [3] to prove the existence theorem of the Urysohn integral equation

(1.1) u(x) = f(x) + g(x, u(x)) +

∫
RN

ψ(x, y, (Qu)(y))dy,

by using Darbo fixed point theorem.

2. NOTATION, DEFINITIONS, AND AUXILIARY FACTS

We will collect in this section some definitions and basic results which will be used
further on throughout the paper.

First, we denote Lp(U) (U ∈ RN ) the space of Lebesgue integrable functions on U

with the standard norm ‖ x ‖Lp(U)=
(∫
U | x(t) |p dt

) 1
p .
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Theorem 2.1. [3,21,22] Let F be a bounded set in Lp(RN ) with 1 ≤ p <∞. The closure
of F in Lp(RN ) is compact if and only if

lim
h→0
‖ τhf − f ‖Lp(RN )= 0 uniformly in f ∈ F,

where τhf(x) = f(x + h) for all x, h ∈ RN . Also for ε > 0 there is a bounded and
measurable subset Ω ⊂ (RN ) such that

‖ f ‖(RN\Ω)< ε for all f ∈ F.

Next, we recall the concept of measure of noncompactness, let E be an infinite di-
mensional Banach space with norm ‖.‖ and zero element θ. Denote byME the family
of all nonempty and bounded subsets of E , NE and NW

E the family of all nonempty
relatively compact and weakly relatively compact sets, respectively. The symbols X̄ and
ConvX stand for the closure and closed convex hull of a subset X of E, respectively.The
symbol X̄W stands for the weak closure of a set X while, we denote Br = B(θ, r) the
closed ball centered at θ and with radius r.

Definition 2.1. (Measure of noncompactness) [23] A mapping µ :ME → [0,∞) is said
to be a measure of noncompactness in E if it satisfies the following conditions:

(1) the family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE , where
kerµ is called the kernel of the measure µ.

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).
(3) µ(ConvX) = µ(X) = µ(X).
(4) µ[λX + (1− λ)Y ] ≤ λµ(X) + (1− λ)µ(Y ), λ ∈ [0, 1].

(5) If Xn ∈ME , Xn = X̄n and Xn+1 ⊂ Xn for n = 1, 2, . . . and if

lim
n→∞

µ(Xn) = 0, then X∞ =

∞⋂
n=1

Xn 6= φ.

Theorem 2.2. [3] Suppose 1 ≤ p < ∞ and X is a bounded subset of (RN ). For x ∈ X
and ε > 0

wT (x, ε) = sup{‖ τhx− x ‖Lp(BT ): ‖h‖RN < ε},

wT (X, ε) = sup{wT (x, ε) : x ∈ X},

wT (X) = lim
ε→0

wT (X, ε),

w(X) = lim
T→∞

wT (X),

d(X) = lim
T→∞

sup{‖x‖Lp(RN\BT ) : x ∈ X},

where BT = {a ∈ RN : ‖a‖RN ≤ 1}. Then

µ(X) = w(X) + d(X)
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is a measure of non compactness on Lp(RN ).

In the end of this section, we recall the fixed point of Darbo which enables us to prove
the solvability of several integral equations considered in nonlinear analysis. To quote
this theorem we need the following definitions.

Theorem 2.3. (Darbo fixed point theorem) [25] Let Ω be a nonempty, bounded, closed
and convex subset of E and let f : Ω → Ω be a continuous transformation which is a
contraction with respect to the measure of noncompactness µ, i.e. there exists a constant
k ∈ [0, 1) such that

µ(fX) ≤ kµ(X),

for any nonempty subset X of Ω. Then f has at least one fixed point in the set Ω.

3. MAIN RESULTS

In this section, we study the existence of solutions to,(1.1) in the space Lp(RN).
We consider the equation(1.1) under the following assumptions:

(i) f ∈ Lp(RN ),

(ii) g : RN × R → R satisfies Carathéodory condition and there exists a constant
l ∈ [0, 1) and a1 ∈ Lp(RN ) such that

| g(x, u)− g(y, v) |≤ |a1(x)− a1(y) |+ l |u− v|,

for any u, v ∈ R and almost all x, y ∈ RN ,
(iii) g(., 0) ∈ Lp(RN ),
(iv) ψ : RN × RN × R→ R such that

| ψ(x, y, u) |≤ k(x, y)[a2(y) + b | u |], a2 ∈ Lp(RN )

b > 0 where k(x, y) satisfies Carathéodory condition k : RN × RN → R+ and
there exist g1, g2 ∈ Lp(RN ) and g∗ ∈ Lq(RN ) (1

p + 1
q = 1) s.t | k(x, y) |≤

g∗(y).g1(x) for all x, y ∈ RN and

| k(x1, y)− k(x2, y) |≤ g∗(y)|g2(x1)− g2(x2)|.

(v) The operator Q is bounded linear operator and maps continuously the space
Lp(RN ) into itself. Moreover, there exists a nondecreasing function h : R+ →
R+ such that

‖ Qu ‖Lp(RN )≤ h(‖ u ‖Lp(RN ))

for any u ∈ Lp(RN ).
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(vi) There exists a positive constant r0 to the inequality

lr0+ ‖ f ‖Lp(RN ) + ‖ g(., 0) ‖Lp(RN )

+ b ‖ k ‖1 h(r0)+ ‖ k ‖1‖ a2 ‖Lp(RN )≤ r0,

where

(Ku)(x) =

∫
RN

k(x, y)u(y)dy

and

‖ K ‖1= {sup ‖ Ku ‖Lp(RN ) :‖ u ‖Lp(RN )≤ r0}.

Now, we are in a position to state our min result.

Remark 3.1. The linear fredholm integral operator K : Lp(RN )→ Lp(RN ) is continuous
operator and ‖ K ‖1≤ ∞.

Theorem 3.1. Under the assumptions (i)-(vi) then the integral equation (1.1) has at least
one solution in the space Lp(RN ).

Proof. First of all, we define the operator F : Lp(RN )→ Lp(RN ), by

(Fu)(x) = f(x) + g(x, u(x)) +

∫
RN

ψ(x, y, (Qu)(y))dy.

It is clear that Fu is measurable for any u ∈ Lp(RN ). Next, we will prove that Fu ∈
Lp(RN ) for any u ∈ Lp(RN ). To establish this we use the above assumptions, then, we
have the following inequality

| (Fu)(x) |=
∣∣∣∣f(x) + g(x, u(x)) +

∫
RN

ψ(x, y, (Qu)(y))dy

∣∣∣∣
≤ | f(x) | + | g(x, u(x)) | +

∫
RN

| ψ(x, y, (Qu)(y)) | dy

≤ | f(x) | + | g(x, u(x))− g(x, 0) | + | g(x, 0) | +
∫
RN

| ψ(x, y, (Qu)(y)) | dy

≤ | f(x) | +l | u(x) | + | g(x, 0) | +
∫
RN

k(x, y)(a2(y) + b | (Qu)(y) |)dy

≤ | f(x) | +l | u(x) | + | g(x, 0) | +
∫
RN

k(x, y)a2(y)dy + b

∫
RN

k(x, y) | (Qu)(y) | dy.

‖ Fu ‖Lp(RN )≤‖ f ‖Lp(RN ) +l ‖ u ‖Lp(RN ) + ‖ g(., 0) ‖Lp(RN ) + ‖ K ‖Lp(RN )

(‖ a2 ‖Lp(RN ) +b ‖ Qu ‖Lp(RN ))

≤ ‖ f ‖Lp(RN ) +l ‖ u ‖Lp(RN ) + ‖ g(., 0) ‖Lp(RN ) + ‖ K ‖1
× ‖ a2 ‖Lp(RN ) +b ‖ K ‖1 h(‖ u ‖)

< ∞.
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Hence, F (u) ∈ Lp(RN ) and F is will defined, also we see that F is continuous in
Lp(RN ), because g(x, .), k and Q are continuous for a.e. x ∈ RN .

Next, we show that F : Br0 → Br0 , let u ∈ Br0 where (‖ u ‖≤ r0)

‖ Fu ‖Lp(RN ) ≤ ‖ f ‖Lp(RN ) +lr0+ ‖ g(., 0) ‖Lp(RN )

+ ‖ K ‖1 (‖ a2 ‖Lp(RN ) +bh(r0))

≤ r0.

For any nonempty set X ⊂ Br0 we have w0(FX) ≤ lw0(X) to do this, we fix arbitrary
T > 0 and ε > 0, let us choose u ∈ X and for x, h ∈ BT with ‖ h ‖RN≤ ε. Then, we
have

|(Fu)(x+ h)− (Fu)(x)| ≤ |f(x+ h)− f(x)|+ |g(x+ h, u(x+ h))− g(x, u(x))|

+

∫
RN

|ψ(x+ h, y, (Qu)(y))− ψ(x, y, (Qu)(y))|dy

≤ |f(x+ h)− f(x)|+ |g(x+ h, u(x+ h))− g(x+ h, u(x))|

+ |g(x+ h, u(x))− g(x, u(x))|+
∫
RN

(|k(x+ h, y)− k(x, y)|[a2(y) + b|(Qu)(y)|])dy

≤ |f(x+ h)− f(x)|+ |a1(x+ h)− a1(x+ h)|+ |a1(x+ h)− a1(x)|

+ l|u(x+ h)− u(x)|+
∫
RN

|k(x+ h, y)− k(x, y)|a2(y)dy

+ b

∫
RN

(|k(x+ h, y)− k(x, y)|)|(Qu)(y)|dy

≤ |f(x+ h)− f(x)|+ l|u(x+ h)− u(x)|+ |a1(x+ h)− a1(x)|

+

∫
RN

g∗(y)|g2(x+ h)− g2(x)|a2(y)dy + b

∫
RN

g∗(y)|g2(x+ h)− g2(x)||(Qu)(y)|dy.

Therefore, we have

‖τhFu− F‖Lp =

(∫
BT

|(Fu)(x+ h)− (Fu)(x)|pdx
) 1

p

≤
(∫

BT

|f(x+ h)− f(x)|pdx
) 1

p

+ l

(∫
BT

|u(x+ h)− u(x)|pdx
) 1

p

+

(∫
BT

|a1(x+ h)− a1(x)|pdx
) 1

p

+

(∫
BT

(

∫
RN

|g∗(y)|q|g2(x+ h)− g2(x)|q|a2(y)|qdy)
p
q dx

) 1
p

+ b

(∫
BT

(

∫
RN

|g∗(y)|q|g2(x+ h)− g2(x)|q|(Qu)(y)|qdy)
p
q dx

) 1
p

.
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‖τhFu− Fu‖Lp ≤ ‖τhf − f‖Lp(BT ) + l‖τhu− u‖Lp(BT ) + |τha1 − a1‖Lp(BT )

+ ‖g∗‖Lq(RN )‖τhg2 − g2‖Lp(BT )‖a2‖Lp(RN ) + b‖g∗‖LqRN )‖τhg2 − g2‖Lp(BT )‖Qu‖LpRN )

≤ wT (f, ε) + lwT (u, ε) + wT (a1, ε) + wT (g2, ε) ‖g∗‖Lq(RN )‖a2‖Lp(RN )

+ b‖g∗‖Lq(RN )w
T (g2, ε) h(‖u‖Lp(RN )).

Then, we have,

wT (Fx, ε) ≤ wT (f, ε) + lwT (X, ε) + wT (a1, ε) + ‖g∗‖Lq(RN )‖a2‖Lp(RN )w
T (g2, ε)

+ b‖g∗‖Lq(RN )w
T (g2, ε)h(r0).

wT (g2, ε) ,wT (f, ε), and wT (a1, ε)→ 0 as ε→ 0.

Then, we obtain

(3.1) w(FX) ≤ lw(X), l ∈ [0, 1).

In the following, we fix an arbitrary number T > 0. Then, taking into account our
assumptions, for an arbitrary function u ∈ X, we obtain

(∫
RN \BT

|(Fu)(x)|pdx

) 1
p

≤

(∫
RN\BT

|f(x)|pdx

) 1
p

+

(∫
RN\BT

|g(x, u(x))|pdx

) 1
p

+

(∫
RN\BT

|ψ(x, y, (Qu)(y))|pdy

) 1
p

≤ ‖f‖Lp(RN\BT ) +

(∫
RN\BT

|g(x, 0)|pdx

) 1
p

+

(∫
RN\BT

|g(x, u(x))− g(x, 0)|pdx

) 1
p

+

(∫
RN\BT

|(
∫
RN

|k(x, y)| × [a2(y) + b|(Qu)(y)|]dy)|pdx

) 1
p

≤ ‖f‖Lp(RN\BT ) + l

(∫
RN\BT

|u(x)|pdx

) 1
p

+

(∫
RN\BT

|g(x, 0)|pdx

) 1
p

+

(∫
RN\BT

(

∫
RN

|k(x, y)|q|a2(y)|qdy)
p
q dx

) 1
p

+ b

(∫
RN\BT

(

∫
RN

|k(x, y)|qdy)
p
q dx

) 1
p

‖(Qu)(y)‖Lp
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≤ ‖f‖Lp(RN\BT ) + l ‖ u ‖Lp(RN\BT )

+ ‖ g(., 0) ‖Lp(RN\BT ) + ‖ g∗ ‖Lq(RN ) × ‖ g1 ‖Lp(RN\BT )

×
(
‖ a2 ‖Lp(RN\BT ) +bh(‖u‖

Lp(RN ))
)
.

Also we have ‖f‖Lp(RN\BT ), ‖ g(., 0) ‖Lp(RN\BT ), ‖ g1 ‖Lp(RN\BT )→ 0 as T → ∞ and
hence we obtain that

(3.2) d(FX) ≤ ld(X).

From (3.1)and (3.2), we get

(3.3) µ(FX) ≤ l µ(X).

�

From the above inequality(3.3) and the Theorem (2.3) we obtain that the operator F
satisfies all conditions of Darbo fixed point theorem, which enables us to deduce that F
has a fixed point u in Br0 and thus the integral equation (1.1) has at least one solution
in Lp(RN ) . Thus the proof is finished. Next, we will need the following theorem that
help us in a coming example.

Theorem 3.2. [13] Let Ω ⊆ RN be a measure space and suppose k : Ω × Ω → R is a
measurable function for which there is constant C > 0 such that∫

I
|k(x, y)|dx ≤ C a.e. y ∈ Ω

and ∫
I
|k(x, y)|dy ≤ C a.e. x ∈ Ω.

If K : Lp(Ω)→ Lp(Ω) is defined by

(Kf)(x) =

∫
Ω
f(y) dy,

then K is a bounded and continuous operator and ‖K‖1 ≤ C.

Example 1. Consider the integral equation

u(x) = e−‖x‖ +
sinu

‖ x ‖ +3

+

∫
R2

(
e−(|x1|+|y2|+1)

(|x2|+ 4)2(1 + |y1|2)

)(
p

√
x1

1 + |y2|2
+

1

4
e−|u|u(y)

)
dy,

(3.4)
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this equation is a special case of (1.1) where x = (x1, x2) ∈ R2 and ‖x‖ is the Euclidean
norm, with f(x) = e−‖x‖ , g(x, u(x)) = sinu

‖x‖+3 ,

ψ(x, y, (Qu)(y)) = (
e−(|x1|+|y2|+1)

(|x2|+ 4)2(1 + |y1|2)
)( p

√
x1

1 + |y2|2
+

1

4
e−|u|u(y)).

First, note that f(x) ∈ Lp(RN ) i.e the assumption (i) is satisfied with

‖f‖p
Lp(R2)

=

∫
R2

|e−‖x‖|Pdx =
2π

p2
.

Next the function g(x, u(x)) satisfies the assumption (ii) with

a1(x) =
1

‖ x ‖ +3

and l = 1
3 , indeed by using Mean value Theorem, we have

|g(x, u)− g(y, v)| =
∣∣∣∣ sinu

‖ x ‖ +3
− sin v

‖ y ‖ +3

∣∣∣∣
≤

∣∣∣∣ 1

‖ x ‖ +3
− 1

‖ y ‖ +3

∣∣∣∣ | sinu | + 1

‖ y ‖ +3
| sinu− sin v |

≤ | 1

‖ x ‖ +3
− 1

‖ y ‖ +3
|+ 1

3
| u− v |=| a1(x)− a1(y) | +l | u− v |,

where a1(x) ∈ Lp(R2) as

‖a1‖pLp(R2)
=

∫
R2

| 1

‖x‖+ 3
|Pdx =

∫ 2π

0

∫ ∞
0

r

(r + 3)p
dr dθ

= 2π

(
1

3p−2(p− 2)
+

3

3p−1(1− p)

)
,

for all p > 2. Also it is easily seen that g(., 0) satisfies the assumption (iii) with ‖g(., 0)‖ =

0. In the sequel ψ(x, y, (Qu)(y)) satisfies the assumption (iv) where

|k(x, y)| = | e−(|x1|+|y2|+1)

(|x2|+ 4)2(1 + |y1|2)
,

b = 1
4 , and a2(x) = p

√
x1

1+|y2|2 , ‖a2‖Lp(R2) = 0 we get g1(x) = g2(x) = e−|x1|

(|x2|+4)2
and

g∗(y) = e−|y2|

(1+|y1|2)
, we see that g1, g2, g∗ ∈ Lp(R2) for all 1 ≤ p <∞. Also we have∫

R2

|k(x, y)|dx =

∫ ∞
−∞

∫ ∞
−∞

e−(|x1|+|y2|+1)

(|x2|+ 4)2(1 + |y1|2)
dx1dx2 ≤

1

e
,

∫
R2

|k(x, y)|dy =

∫ ∞
−∞

∫ ∞
−∞

e−(|x1|+|y2|+1)

(|x2|+ 4)2(1 + |y1|2)
dy1dy2 ≤

π

8e
.

Thus from Theorem (3.1), ‖K‖1 ≤ 1
e , also Q(u)(x) = e−|u|u(x) satisfies the assumption

(v) with h(t) = t.
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Finally, the inequality from assumption (vi), has the form

lr0+ ‖ f ‖Lp(R2) + ‖ g(., 0) ‖Lp(R2) +b ‖ k ‖1 h(r0)+ ‖ k ‖1‖ a2 ‖Lp(R2)

= (
2π

p2
)
1
p +

1

4e
r0 +

r0

3
= (

2π

p2
)
1
p + (

4e+ 3

12e
)r0 ≤ r0.

Thus, for the number r0 we can take r0 = (2π
p2

)
1
p × 12e

(8e−3) . Hence, all the assumptions of
Theorem (3.1) are satisfied and so, (3.4) has at least one solution in the space Lp(R2) if
p > 2.
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[4] J. BANAŚ, M. PASLAWSKA-POLUDNIAK: Monotonic Solutions of Urysohn integral equation on un-
bounded interval, Comput. Math. Appl., 47 (2004), 1947–1954.

[5] M. A. DARWISH: On aperturbed fuctional integral equation of Urysohn type, Appl. Math. Comput.,
218 (2012), 8800–8805.

[6] M. A. DARWISH, J. HENDERSON, D. O’REGAN: Existence and asymptotic solvability of solutions of
aperturbed fractional functional-integral equation with linear modifications of argument, Bull. Korean
Math. Soc., 48 (2011), 539–553.

[7] W. G. EL-SAYED, A. A. EL-BARY, M. A. DARWISH: Solvability of Urysohn integral equation, Appl.
Math. Comput., 145 (2003), 487–493.

[8] A. A. EL-BARY, M. A. DARWISH, W. G. EL-SAYED: On an existence theorem for urysohn integral
equations via measure of noncompactness, Math. Sci. Res. J., 6(9) (2002), 441–448.

[9] D. FRANCO, G. INFANTE, D. O’REGAN: Positive and Nontrivial Solutions for the Urysohn Integral
Equation, Acta Math. Sin., (Engl. ser). 22 (2006), 1745–1750.
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