Advances in Mathematics: Scientific Journal **9** (2020), no.11, 10015–10022 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.109

SOFT IRRESOLUTE AND SOFT α TOPOLOGICAL VECTOR SPACES

M. SURAIYA BEGUM¹, M. SHEIK JOHN, AND K. M. ARIFMOHAMMED

ABSTRACT. The focus of this work is to investigate the idea of soft irresolute and soft α topological vector spaces. This space is determined by using the notion of soft irresolute mappings and soft semi open sets ($\tilde{S}S$ -open).

1. INTRODUCTION

The soft set Molodtsov [7] is the one of the best mathematical tool to deal with uncertainties, which the generalization of fuzzy set Zadeh [9]. It has many application in different fields such as game theory, Riemann-Integration, probability and so on. The algebraic operations over the soft sets were given by Maji et.al [5]. The algebraic-topological aspects of soft set has widely developed nowadays. Aktag et.al. [2] investigated the mathematical notion of soft groups. The notion of soft topological vector space is introduced by Roy [8] by assuming the parameter set as usual vector space. This paper is an elaborate study of soft irresolute and soft α topological vector spaces.

2. Preliminaries

In every part of this paper, we mention soft irresolute topological vector space as $\tilde{S}ITVS$, soft topological vector space as $\tilde{S}TVS$ and \tilde{S} -set means soft set, \tilde{K} is the field of complex or real number which is endowed with usual topology σ .

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 54A05, 54F65.

Key words and phrases. Soft topological vector spaces, soft irresolute topological vector spaces, soft α -irresolute topological vector spaces, soft right(left) translation.

Definition 2.1. [8] The $\tilde{S}TVS(\tilde{W}_{\tau}, P, K)$ is defined as follows: The mappings \tilde{h} : $\tilde{S}(\tilde{W}_{\tau}) \times \tilde{S}(\tilde{W}_{\tau}) \rightarrow \tilde{S}(\tilde{W}_{\tau})$ defined by $\tilde{h}(\tilde{w}_{1p}, \tilde{w}_{2p}) = \tilde{w}_{1p} + \tilde{w}_{2p}$ and \tilde{f} : $\tilde{S}(\tilde{W}_{\tau}) \times \tilde{S}(\tilde{W}_{\tau}) \rightarrow \tilde{S}(\tilde{W}_{\tau})$ defined by $\tilde{f}(\hat{\zeta}, \tilde{w}_p) = \hat{\zeta}\tilde{w}_p$ are both \tilde{S} -continuous. The domain of \tilde{h} and \tilde{f} are endowed with \tilde{S} -product topologies.

Definition 2.2. [3] A \tilde{S} -set \tilde{B}_P in $\tilde{S}VS(\tilde{W}, P)$ is said to be \tilde{S} -absorbing if for every $\tilde{w}_p \in \tilde{B}_P$, there exists a \tilde{S} -real number $\hat{\eta}$, where $\hat{\eta}(\lambda) > 0$, for all $\lambda \in P$ such that $\hat{\eta}^{-1}\tilde{w}_p \in \tilde{B}_P$.

Definition 2.3. [1, 4] A \tilde{S} -set \tilde{B}_P of a $\tilde{S}TS(\tilde{W}_{\tau}, P)$ is called

- (1) $\tilde{S}\alpha$ -open if $\tilde{B}_P \subseteq \tilde{S}$ -int $(\tilde{S}$ -cl $(\tilde{S}$ -int $(\tilde{B}_P)))$.
- (2) $\tilde{S}S$ -open if $\tilde{B}_P \subseteq \tilde{S}$ - $cl(\tilde{S}$ - $int(\tilde{B}_P))$.

Definition 2.4. [1, 6] Let (\tilde{V}_{τ}, P) and (\tilde{W}_{τ}, P) be two $\tilde{S}TS$ and $\tilde{f} : (\tilde{V}_{\tau}, P) \rightarrow (\tilde{W}_{\tau}, P)$. Then \tilde{f} is called

- (1) \tilde{S} -irresolute if for every $\tilde{S}S$ -open set \tilde{A}_P in \tilde{W}_{τ} , $\tilde{f}^{-1}(\tilde{A}_P) \in \tilde{V}_{\tau}$ is $\tilde{S}S$ -open in \tilde{V}_{τ} .
- (2) $\tilde{S}\alpha$ -irresolute for every $\tilde{S}\alpha$ -open set \tilde{B}_P in \tilde{W}_{τ} , $\tilde{f}^{-1}(\tilde{B}_P) \in \tilde{V}_{\tau}$ is $\tilde{S}\alpha$ -open in \tilde{V}_{τ} .

3. Soft irresolute and soft α topological vector spaces

In this section, we elucidate and investigate the notions of $\tilde{S}ITVS$, $\tilde{S}\alpha TVS$ and its rudimentary properties.

Definition 3.1. A $\tilde{S}TVS(\tilde{W}_{\tau}, P, K)$ is said to be $\tilde{S}ITVS$ with the field K (complex or real) if the following conditions hold:

- (1) for any two soft points v₁, v₂∈ W and for every soft semi open neighborhood D_P of v₁ + v₂∈ W we have a SS-open neighborhoods B_P and C_P∈ W of v₁, v₂ respectively, such that B_P + C_P⊆D_P.
- (2) for any ṽ∈W̃ and δ∈K̃ for any S̃S-open neighborhood D̃_P of δW̃ in W̃, we have S̃S-open neighborhoods B̃_P of δ in K̃ and C̃_P of ṽ in W̃ such that B̃_PC_P⊆D̃_P.

Definition 3.2. In a $\tilde{S}TVS(\tilde{W}_{\tau}, P, K)$:

(1) The soft right translation $T_{\tilde{v}} : (\tilde{W_{\tau}}, P, K) \rightarrow (\tilde{W_{\tau}}, P, K)$ is defined by $T_{\tilde{v}} = \tilde{x} + \tilde{v} \forall \tilde{x}, \tilde{v} \in \tilde{W}.$

- (2) The soft left translation $_{\tilde{v}}T : (\tilde{W_{\tau}}, P, K) \rightarrow (\tilde{W_{\tau}}, P, K)$ is defined by $_{\tilde{v}}T = \tilde{v} + \tilde{x} \forall \tilde{x}, \tilde{v} \in \tilde{W}.$
- (3) The soft multiplication $M_{\hat{\zeta}}$: $(\tilde{W}_{\tau}, P, K) \rightarrow (\tilde{W}_{\tau}, P, K)$ is defined by $M_{\hat{\zeta}} = \hat{\zeta}\tilde{v}, \ \tilde{v}\in\tilde{W} \ \text{and} \ \hat{\zeta}\in\tilde{K}.$

Theorem 3.1. For a $\tilde{S}ITVS(\tilde{W}_{\tau}, P, K)$ over the field \tilde{K}

- (1) the soft(left)right translation is soft irresolute.
- (2) the soft multiplication is soft irresolute.

Proof.

(1) Define soft right translation $T_{\tilde{v}_p} : (\tilde{W}_{\tau}, P, K) \to (\tilde{W}_{\tau}, P, K)$ by $T_{\tilde{v}_p}(\tilde{x}_p) = \tilde{x}_p + \tilde{v}_p$ here $\tilde{x}_p, \tilde{v}_p \in \tilde{W}$. Let $\tilde{B}_P \in \tilde{W}$ be a $\tilde{S}S$ -open neighborhood of $\tilde{x}_p + \tilde{v}_p$. There exists $\tilde{S}S$ -open neighborhoods $\tilde{C}_P, \tilde{D}_P \in \tilde{W}$ of \tilde{x}_p and \tilde{v}_p respectively such that $\tilde{C}_P + \tilde{D}_P \in \tilde{B}_P$, by Definition 3.1.

(2) Define soft multiplication $M_{\hat{\zeta}} : (\tilde{W}_{\tau}, P, K) \to (\tilde{W}_{\tau}, P, K)$ by $M_{\hat{\zeta}}(\tilde{x}_p) = \hat{\zeta}.\tilde{x}_p.$

Theorem 3.2. For $\tilde{S}ITVS(\tilde{W}_{\tau}, P, K)$ over the field \tilde{K} if $\tilde{G}_{P} \in \tilde{S}SO(\tilde{W}_{\tau}, P, K)$, then

- (1) $\tilde{G}_P + \tilde{y}_p \in \tilde{S}SO(\tilde{W}_\tau, P, K), \ \tilde{y}_p \in \tilde{W}.$
- (2) $\hat{\zeta}G_P \in \tilde{S}SO(\tilde{W}_\tau, P, K), \hat{\zeta} \in \tilde{K}.$

Proof.

(1) Assume that $\tilde{w}_p, \tilde{x}_p \in \tilde{W}$. Let $\tilde{x}_p \in \tilde{G}_P + \tilde{w}_p$. Now $\tilde{x}_p = \tilde{y}_p + \tilde{w}_p$. Then we have $\tilde{x}_p \in \tilde{G}_P + \tilde{w}_p - \tilde{w}_p = \tilde{G}_P$, where $\tilde{y}_p \in \tilde{G}_P$. Define soft right translation $T_{-\tilde{w}_p}$ by image of \tilde{x}_p under $T_{-\tilde{w}_p}$ is equal to $\tilde{x}_p + (-\tilde{w}_p) = \tilde{y}_p$. Hence $T_{-\tilde{w}_p}$ is soft irresolute because the space (\tilde{W}_{τ}, P, K) is $\tilde{S}ITVS$ by the above theorem. Thus for a $\tilde{S}S$ -open neighborhood \tilde{G}_P containing $T_{-\tilde{w}_p}(\tilde{x}_p) = \tilde{y}_p$, a $\tilde{S}S$ -open neighborhood \tilde{C}_P of \tilde{x}_p exists with the condition $T_{-\tilde{w}_p}(\tilde{C}_P) = \tilde{C}_P - \tilde{w}_p \in \tilde{G}_P$, which implies $\tilde{C}_P \subseteq \tilde{G}_P + \tilde{w}_p$.

(2) Let $\hat{\zeta} \in \tilde{K}$, $(\hat{\zeta} \neq \tilde{0})$ and $\tilde{x}_p \in \tilde{\zeta} G_P$. That is $\tilde{x}_p = \tilde{\zeta} y_p$ where $\tilde{y}_p \in \tilde{G}_P$. Since $\tilde{x}_p \in \hat{\zeta} \cdot \tilde{G}_P$, we have $\hat{\zeta} \cdot \tilde{y}_p \in \hat{\zeta} \cdot \tilde{G}_P \Rightarrow \tilde{y}_p \in \tilde{G}_P$. Define soft multiplication $M_{\hat{\zeta}^{-1}} : (\tilde{W}_{\tau}, P, K) \to (\tilde{W}_{\tau}, P, K)$ by image of \tilde{x}_p under $M_{\hat{\zeta}^{-1}}$ is equal to $\hat{\zeta}^{-1} \cdot \tilde{x}_p = \tilde{y}_p$. Now $M_{\hat{\zeta}^{-1}}$ is $\tilde{S}ITVS$, because (\tilde{W}_{τ}, P, K) is $\tilde{S}ITVS$ and by the above theorem. Therefore for any $\tilde{S}S$ -open neighborhood \tilde{G}_P containing $M_{\hat{\zeta}^{-1}}(\tilde{x}_p) = \tilde{y}_p$ there exists $\tilde{S}S$ -open neighborhood \tilde{D}_P of \tilde{x}_p such that image of \tilde{D}_P under $M_{\hat{\zeta}^{-1}}$ is equal to $\hat{\zeta}^{-1} \cdot \tilde{D}_P \subseteq \tilde{G}_P$. Now we have \tilde{D}_P is contained in $\hat{\zeta} \cdot \tilde{G}_P$. Hence $\hat{\zeta} \cdot \tilde{G}_P$ is an element of $\tilde{S}SO(\tilde{W}_{\tau}, P, K)$. \Box **Theorem 3.3.** For a $\tilde{S}S$ -open set $\tilde{G}_P \in \tilde{S}SO(\tilde{W})$ in a $\tilde{S}ITVS$, $\tilde{G}_P + \tilde{H}_P \in \tilde{S}SO(\tilde{W})$

where \tilde{H}_P in a soft subset of \tilde{W} .

Proof. Let $\tilde{C}_P \subseteq \tilde{W}$ and $\tilde{G}_P \in \tilde{S}SO(\tilde{W})$. Now for every soft point $\tilde{v}_p \in \tilde{H}_P$, $\tilde{G}_P + \tilde{v}_p \in \tilde{S}SO(\tilde{W})$, by Theorem. For every soft point $\tilde{v}_p \in \tilde{H}_P$,

$$\begin{split} \tilde{G}_P + \tilde{H}_P &= \tilde{G}_P + \{\tilde{v}_{p_2} + \tilde{v}_{p_1} + \ldots\} \\ &= \tilde{G}_P + \bigcup_{i=1}^{\infty} \tilde{v}_{p_i}, i \tilde{\epsilon} \triangle \\ &= \bigcup_{\tilde{v}_{p_i} \tilde{\epsilon} \tilde{H}_P} \tilde{G}_P + \tilde{v}_{p_i} \end{split}$$

Hence $\tilde{G}_P + \tilde{H}_P \in \tilde{S}SO(\tilde{W})$.

Theorem 3.4. Let (\tilde{W}_{τ}, P, K) be a $\tilde{S}ITVS$ over the field \tilde{K} , where \tilde{K} is endowed with soft topology σ . Then $\tilde{\phi} : (\tilde{K}, \sigma) \times (\tilde{W}_{\tau}, P, K) \to (\tilde{W}_{\tau}, P, K)$ defined by $\tilde{\phi}(\hat{\zeta}, \tilde{v}_p) = \hat{\zeta}.\tilde{v}_p$ where $\hat{\zeta} \in \tilde{K}$ and $\tilde{v}_p \in \tilde{W}_P$ is soft irresolute.

Proof. Assume $\tilde{B}_P \in \tilde{W}$ is a $\tilde{S}S$ -open neighborhood of $\hat{\zeta}.\tilde{v}_p$ in \tilde{W} . There exist a $\tilde{S}S$ -open neighborhoods \tilde{C}_P of $\hat{\zeta}$ in \tilde{K} and \tilde{D}_P of \tilde{v}_p in \tilde{W} such that $\tilde{C}_P.\tilde{D}_P$ is contained in \tilde{B}_P that is $\tilde{\phi}(\tilde{C}_P \times \tilde{D}_P) = \tilde{C}_P.\tilde{D}_P$. Then we have $\tilde{\phi}(\tilde{C}_P \times \tilde{D}_P)$ is contained in \tilde{B}_P , since \tilde{W} is $\tilde{S}ITVS$. Therefore $\tilde{C}_P \times \tilde{D}_P$ in a $\tilde{S}S$ -open neighborhood of $\hat{\zeta} \times \tilde{v}_p$ in $\tilde{K} \times \tilde{W}$. Hence $\tilde{\phi}$ is soft irresolute.

Theorem 3.5. Let (\tilde{W}_{τ}, P, K) be a $\tilde{S}ITVS$ over the field \tilde{K} . Then $\hat{\eta} : (\tilde{W}_{\tau}, P, K) \times (\tilde{W}_{\tau}, P, K) \rightarrow (\tilde{W}_{\tau}, P, K)$ defined by \tilde{x}_p, \tilde{v}_p is soft irresolute.

Proof. Consider any two soft points \tilde{x}_p, \tilde{v}_p in \tilde{W} . Let $\hat{\eta}(\tilde{x}_p, \tilde{v}_p) = \tilde{x}_p + \tilde{v}_p$. Assume $\tilde{C}_P \in \tilde{W}$ is a $\tilde{S}S$ -open neighborhood of $\tilde{x}_p + \tilde{v}_p$ in \tilde{W} . Since \tilde{W} is $\tilde{S}ITVS$, there exist $\tilde{S}S$ -open neighborhoods $\tilde{M}_P, \tilde{N} \in \tilde{W}$ of \tilde{x}_p and \tilde{v}_p respectively with the condition $\tilde{M}_P + \tilde{N}_P \subseteq \tilde{C}_P$. That is $\hat{\eta}(\tilde{M}_P, \tilde{N}_P) = \hat{\eta}(\tilde{M}_P \times \tilde{N}_P) = \tilde{M}_P + \tilde{N}_P \subseteq \tilde{C}_P$. Therefore $\tilde{M}_P \times \tilde{N}_P$ is a $\tilde{S}S$ -open neighborhood of $\tilde{x}_p \times \tilde{v}_p$ in $(\tilde{W}_\tau, P, K) \times (\tilde{W}_\tau, P, K)$, since \tilde{M}_P, \tilde{N}_P are the $\tilde{S}S$ -open neighborhoods of \tilde{x}_p, \tilde{v}_p in (\tilde{W}_τ, P, K) respectively. Hence $\hat{\eta}$ is soft irresolute.

Definition 3.3. A \tilde{S} -function $g : (\tilde{W}_{\tau}, P, K) \to (\tilde{W}_{\tau}, P, K)$ is said to be $\tilde{S}I$ -homeomorphism if g is

- (1) \tilde{S} -bijective.
- (2) \tilde{S} -irresolute.
- (3) $\tilde{S}S$ -open.

10018

Theorem 3.6. For a $\tilde{S}ITVS$, the \tilde{S} -translation $T_{\tilde{v}_p}(\tilde{x}_p) = \tilde{x}_p + \tilde{v}_p$ and \tilde{S} -multiplication $M_{\hat{\zeta}}(\tilde{y}_p) = \hat{\zeta}.\tilde{y}_p$ where $\tilde{x}_p, \tilde{v}_p, \tilde{y}_p \in \tilde{W}$ and $\hat{\zeta} \in \tilde{K}$ are $\tilde{S}I$ -homeomorphism onto itself.

Proof. Define \tilde{S} -translation $T_{\tilde{v}_p}$ by image of \tilde{x}_p under $T_{\tilde{v}_p}$ is equal to $\tilde{x}_p + \tilde{v}_p \forall \tilde{x}_p, \tilde{v}_p \in \tilde{W}$. Obviously, $T_{\tilde{v}_p}$ is \tilde{S} -bijective. $T_{\tilde{v}_p}$ is \tilde{S} -irresolute, by theorem. Also for any $\tilde{S}S$ -open set $\tilde{B}_P \in \tilde{W}$, $T_{\tilde{v}_p}(\tilde{B}_P) = \tilde{B}_P + \tilde{v}_p$ is $\tilde{S}S$ -open. $\tilde{S}I$ -homeomorphism for \tilde{S} -multiplication can be proved in the similar manner.

Definition 3.4. A $\tilde{S}ITVS(\tilde{W}_{\tau}, P, K)$ over the field \tilde{K} is said to be $\tilde{S}I$ -homogeneous space, there exists a $\tilde{S}I$ -homeomorphism $\tilde{g} : (\tilde{W}_{\tau}, P, K) \to (\tilde{W}_{\tau}, P, K)$ such that $\tilde{g}(\tilde{B}_P) = \tilde{C}_P$ for each $\tilde{B}_P, \tilde{C}_P \in \tilde{W}$.

Proposition 3.1. Every $\tilde{S}ITVS$ is $\tilde{S}I$ -homogeneous space.

Proof. Let $\tilde{v}_p, \tilde{w}_p \in \tilde{W}$ and $\tilde{v} = \tilde{x}_p + \tilde{w}_p$ where $\tilde{x}_p \in \tilde{W}$. Define a \tilde{S} -left translation $\tilde{x}_p T : (\tilde{W}_\tau, P, K) \to (\tilde{W}_\tau, P, K)$ by $\tilde{x}_p T(\tilde{w}_p) = \tilde{x}_p + \tilde{w}_p = \tilde{v}_p$. By Theorem 3.6, $\tilde{x}_p T$ is $\tilde{S}I$ -homeomorphism. Hence (\tilde{W}_τ, P, K) is $\tilde{S}I$ -homogeneous space.

Theorem 3.7. In a $\tilde{S}ITVS(\tilde{W}_{\tau}, P, K)$, for any \tilde{S} -subspace \tilde{V}_1 of \tilde{W} and a non-null $\tilde{S}S$ -open subset \tilde{V}_2 of \tilde{W} , if $\tilde{V}_2 \subseteq \tilde{V}_1$ then \tilde{V}_1 is $\tilde{S}S$ -open subset of \tilde{W} .

Proof. Let \tilde{B}_P be a non-null $\tilde{S}S$ -open in \tilde{W} and $\tilde{B}_P \subseteq \tilde{V}_1$. By Theorem 3.1 $T_{\tilde{B}_P} = \tilde{B}_P + \tilde{v}_p$ is $\tilde{S}S$ -open subset of \tilde{W} for all $\tilde{v}_p \in \tilde{V}_1$. Hence $\tilde{V}_1 = \bigcup_{\tilde{v}_{p_i} \in \tilde{V}_1} (\tilde{B}_P + \tilde{v}_p)$ is $\tilde{S}S$ -open in \tilde{W} being the arbitrary union of $\tilde{S}S$ -open sets. \Box

Proposition 3.2. For any two \tilde{S} -subsets \tilde{B}_P , \tilde{C}_P of $\tilde{S}ITVS(\tilde{W}_{\tau}, P, K)$, \tilde{S} -scl (\tilde{B}_P) + \tilde{S} -scl (\tilde{C}_P) is contained in \tilde{S} - $(\tilde{B}_P + \tilde{C}_P)$.

Proof. Assume $\tilde{x}_p \in \tilde{S}$ - $scl(\tilde{B}_P)$ and $\tilde{y}_p \in \tilde{S}$ - $scl(\tilde{C}_P)$. Let \tilde{G}_P be a $\tilde{S}S$ -open neighborhood of $\tilde{x}_p + \tilde{y}_p$. Then there exist $\tilde{S}S$ -open neighborhoods \tilde{H}_P and \tilde{I}_P of \tilde{x}_p and \tilde{y}_p respectively, such that $\tilde{H}_P + \tilde{I}_P \subseteq \tilde{G}_P$. By assumption $\tilde{x}_P \in \tilde{S}$ - $scl(\tilde{B}_P)$ and $\tilde{y}_p \in \tilde{S}$ - $scl(\tilde{C}_P)$ there exist $\tilde{v}_p + \tilde{w}_p \in (\tilde{B}_P + \tilde{C}_P) \cap (\tilde{H}_P + \tilde{I}_P) \subseteq (\tilde{B}_P + \tilde{C}_P) \cap \tilde{G}_P$. That is $\tilde{x}_p + \tilde{y}_p \in \tilde{S}$ - $scl(\tilde{B}_P + \tilde{C}_P)$.

Theorem 3.8. Every $\tilde{S}S$ -open subspace of a $\tilde{S}ITVS(\tilde{W}_{\tau}, P, K)$ is $\tilde{S}S$ -closed in (\tilde{W}_{τ}, P, K) .

Proof. Consider a $\tilde{S}S$ -open subspace \tilde{V}_1 of a \tilde{W} , $\tilde{S}I$ -homeomorphism, $\tilde{V}_1 + \tilde{v}_p$ is $\tilde{S}S$ -open for any $\tilde{v}_p \in \tilde{W} \setminus \tilde{V}_1$. Therefore $\tilde{V}_2 = \bigcup_{\tilde{v}_{p_i} \in \tilde{W} \setminus \tilde{V}_1} (\tilde{V}_1 + \tilde{v}_p)$ is also $\tilde{S}S$ -open. Thus $\tilde{V}_1 = \tilde{W} \setminus \tilde{V}_2$ is $\tilde{S}S$ -closed.

Theorem 3.9. For any two \tilde{S} -subsets \tilde{G}_P and \tilde{H}_P of $\tilde{S}ITVS(\tilde{W}_{\tau}, P, K)$, $\tilde{G}_P + \tilde{H}_P = \tilde{S}$ -scl $(\tilde{G}_P + \tilde{H}_P)$, where \tilde{H}_P is $\tilde{S}S$ -open and \tilde{G}_P is any \tilde{S} -set.

Proof. Since $\tilde{G}_P \subseteq \tilde{S}$ -scl $(\tilde{G}_P, we have \tilde{G}_P + \tilde{H}_P \subseteq \tilde{S}$ -scl $(\tilde{G}_P + \tilde{H}_P)$. To prove the converse, let $\tilde{x}_p \in \tilde{S}$ -scl $(\tilde{G}_P + \tilde{H}_P)$ and $\tilde{x}_p = \tilde{y}_p + \tilde{w}_p$ where $\tilde{w}_p \in \tilde{H}_P$ and $\tilde{y}_p \in \tilde{S}$ -scl (\tilde{G}_P) . Then $\tilde{S}S$ -open neighborhood \tilde{M}_P of θ (θ being the zero element of \tilde{W}) exists with the condition, image of \tilde{M}_P under $T_{\tilde{w}_p}$ is equal to $\tilde{M}_P + \tilde{w}_p$ which is contained in \tilde{H}_P . Since \tilde{M}_P is a $\tilde{S}S$ -open neighborhood of θ in \tilde{W} , we have $-\tilde{M}_P$ is also the $\tilde{S}S$ -open neighborhood θ of \tilde{W} . By assumption $\tilde{y}_p \in \tilde{S}$ -scl $(\tilde{G}_P), \tilde{v}_p \in \tilde{G}_P \cap (\tilde{y}_p \setminus \tilde{M}_P)$. Now

$$\begin{split} \tilde{x}_p &= \tilde{y}_p + \tilde{w}_p \\ & \tilde{\in} \tilde{v}_p + \tilde{M}_P + \tilde{w}_p \\ & \tilde{\subseteq} \tilde{G}_P + \tilde{H}_P. \end{split}$$

Therefore \tilde{S} - $scl(\tilde{G}_P) + \tilde{H}_P$ is contained in $\tilde{G}_P + \tilde{H}_P$. Thus $\tilde{G}_P + \tilde{H}_P = \tilde{S}$ - $scl(\tilde{G}_P) + \tilde{H}_P$.

Theorem 3.10. In a $\tilde{S}ITVS(\tilde{W}_{\tau}, P, K)$, each \tilde{S} -open subspace \tilde{V} in $\tilde{S}ITVS$.

Proof. Let (\tilde{V}_{τ}, P) be an \tilde{S} -topological subspace of (\tilde{W}_{τ}, P, K) . Now it satisfies the below properties:

- (1) for each $\tilde{v_{1p}}, \tilde{v_{2p}} \in V, \tilde{v_{1p}} + \tilde{v_{2p}} \in V$,
- (2) for $\tilde{v_p} \in \tilde{V}$ and $\hat{\eta} \in \tilde{K}, \hat{\eta} \tilde{v_p} \in \tilde{V}$.

Let $\tilde{v_{1p}}, \tilde{v_{2p}} \in \tilde{V}$ and $\tilde{v_{1p}} + \tilde{v_{2p}}$ has a $\tilde{S}S$ -open neighborhood \tilde{B}_P in \tilde{V} . Then \tilde{B}_P is a $\tilde{S}S$ -open neighborhood in \tilde{W}_{τ} . Therefore there is $\tilde{S}S$ -open neighborhoods \tilde{C} of $\tilde{v_{1p}}$ and \tilde{D}_P of $\tilde{v_{2p}}$ such that $\tilde{C}_P + \tilde{D}_P \subseteq \tilde{B}_P$, since \tilde{W}_{τ} is $\tilde{S}ITVS$. Also $\tilde{C}_P \cap \tilde{V}$ and $\tilde{D}_P \cap \tilde{V}$ are both $\tilde{S}S$ -open in \tilde{W}_{τ} which contains $\tilde{v_{1p}}$ and $\tilde{v_{2p}}$ respectively. Thus $\tilde{C}_P \cap \tilde{V} + \tilde{D}_P \cap \tilde{V} = (\tilde{C}_P + \tilde{D}_P) \cap \tilde{V} \subseteq \tilde{B}_P$. Now for any $\eta \in \tilde{K}$ and $\tilde{v_p} \in \tilde{W}_{\tau}$, consider a $\tilde{S}S$ -open neighborhood \tilde{B}_P of $\eta \tilde{v_p}$ in \tilde{V} which is also $\tilde{S}S$ -open in \tilde{W}_{τ} . Hence there exists $\tilde{S}S$ -open neighborhood \tilde{H}_P of η in \tilde{K} and \tilde{C}_P of $\tilde{v_p}$ in \tilde{W}_{τ} such that $\tilde{H}_P \tilde{C}_P \subseteq \tilde{B}_P$, as \tilde{W}_{τ} is $\tilde{S}ITVS$. Also, $\tilde{H}_P \cap \tilde{K}$ and $\tilde{C}_P \cap \tilde{V}$ are $\tilde{S}S$ -open in \tilde{K} and \tilde{W}_{τ} respectively. Thus the space (\tilde{W}_{τ}, P, K) is $\tilde{S}ITVS$.

Definition 3.5. Let (\tilde{W}_{τ}, P, K) be a $\tilde{S}TVS$. If the \tilde{S} -addition map $\tilde{f} : \tilde{W}_{\tau} \times \tilde{W}_{\tau} \to \tilde{W}_{\tau}$ defined by $\tilde{f}(\tilde{v}_{1p}, \tilde{v}_{2p}) = \tilde{v}_{1p} + \tilde{v}_{2p}$ and the \tilde{S} -multiplication map $\tilde{g} : \tilde{K} \times \tilde{W}_{\tau} \to \tilde{W}_{\tau}$ defined by $\tilde{g}(\hat{\eta}, \tilde{v}_p) = \hat{\eta}\tilde{v}_p$ are both $\tilde{S}\alpha I$ (soft α -irresolute), then (\tilde{W}_{τ}, P, K) is called $\tilde{S}STVS$ and denoted by $(_{\alpha}\tilde{W}_{\tau}, P, K)$.

10020

Theorem 3.11. Let $(_{\alpha}\tilde{W_{\tau}}, P, K)$ be a $\tilde{S}\alpha TVS$. Then

- Let B
 _P∈
 *v
 _p*N(W
 _τ) be a S
 α-neighborhood of v
 _p∈
 *W
 _τ* and C
 _P be a S
 *neighborhood of v
 _p*, then B
 _P∩C
 _P is S
 α-neighborhood of v
 _p.
- (2) Let $\tilde{B}_P \in \tilde{v}_p N(\tilde{W}_{\tau})$ be a $\tilde{S}\alpha$ -neighborhood of $\tilde{v}_p \in \tilde{W}_{\tau}$, then $\tilde{v}_p \in \tilde{B}_P$.
- (3) Let B̃_P∈̃ṽ_pN(W̃_τ) be a Šα-neighborhood of ṽ_p∈̃W̃_τ, then there is a Šα-neighborhood C̃_P∈̃ṽ_pN(W̃_τ) of ṽ_p such that B̃_P∈̃ũ_pN(W̃_τ) is a Šα-neighbor-hood of ũ_p for all ũ_p∈̃C̃_p.
- (4) Let $\tilde{B}_P \in \tilde{v}_p N(\tilde{W}_{\tau})$ be a $\tilde{S}\alpha$ -neighborhood of $\tilde{v}_p \in \tilde{W}_{\tau}$ and $\tilde{B}_P \subseteq \tilde{C}_P$, then $\tilde{C}_P \in \tilde{v}_p N(\tilde{W}_{\tau})$

Proof. (1) Let $\tilde{B}_P \in \tilde{v}_p N(\tilde{W}_{\tau})$ and \tilde{C}_P is a \tilde{S} -neighborhood of \tilde{v}_p . Then $\tilde{v}_p \in \tilde{D}_P \subseteq \tilde{C}_P$ we have $\tilde{v}_p \in \tilde{F}_P \subseteq \tilde{B}_P$, where \tilde{F}_P is a $\tilde{S}\alpha$ -open set and \tilde{D}_P is a \tilde{S} -open set. Then $\tilde{F}_P \cap \tilde{D}_P \subseteq \tilde{B}_P \cap \tilde{C}_P$ is $\tilde{S}\alpha$ -open. Hence $\tilde{B}_P \cap \tilde{C}_P \in \tilde{v}_p N(\tilde{W}_{\tau})$ is a $\tilde{S}\alpha$ -neighborhood of \tilde{v}_p .

Proof of (2), (3) and (4) can be derived in the similar manner.

Theorem 3.12. Let $\tilde{f}: {}_{\alpha}\tilde{V}_{\tau} \rightarrow {}_{\alpha}\tilde{W}_{\tau}$ be a $\tilde{S}\alpha$ -homeomorphism between $\tilde{S}\alpha TVSs$. A \tilde{S} -subset \tilde{Y} of ${}_{\alpha}\tilde{V}_{\tau}$ is of $\tilde{S}\alpha$ -neighborhood of $\tilde{y}_{p} \in \tilde{V}$ if and only if $\tilde{f}(\tilde{Y})$ is $\tilde{S}\alpha$ -neighborhood of $\tilde{f}(\tilde{y}_{p})$.

Proof. Let \tilde{Y}_P be a $\tilde{S}\alpha$ -neighborhood of $\tilde{y}_p \in {}_{\alpha} \tilde{V}_{\tau}$. Then $\tilde{y}_p \in \tilde{Z}_P \subseteq \tilde{Y}_P$. Hence $\tilde{f}(\tilde{y}_p) \in \tilde{f}(\tilde{Z}_P) \subseteq \tilde{f}(\tilde{Y}_P)$ and $\tilde{f}(\tilde{Z}_P)$ is $\tilde{S}\alpha$ -open in ${}_{\alpha}\tilde{W}_{\tau}$, since \tilde{f} is $\tilde{S}p\alpha$ -open. Thus $\tilde{f}(\tilde{Y}_P)$ is a $\tilde{S}\alpha$ -neighborhood of $\tilde{f}(\tilde{y}_p)$.

Conversely, consider $\tilde{f}(\tilde{Y}_P)$ is a $\tilde{S}\alpha$ -neighborhood of $\tilde{f}(\tilde{y}_p)$. Then there exists a $\tilde{S}\alpha$ -open \tilde{B}_{α} in $_{\alpha}\tilde{W}_{\tau}$ with the condition $\tilde{f}(\tilde{y}_p)\in\tilde{B}_{\alpha}\subseteq\tilde{f}(\tilde{Y}_P)$. Since \tilde{f} is $\tilde{S}\alpha$ -irresolute, $\tilde{f}^{-1}(\tilde{B}_{\alpha})$ is $\tilde{S}\alpha$ -open and $\tilde{y}_p\in\tilde{f}^{-1}(\tilde{B}_{\alpha})\subseteq\tilde{Y}_P$. Thus \tilde{Y}_P be a $\tilde{S}\alpha$ -neighborhood of \tilde{y}_p .

Theorem 3.13. Let $(_{\alpha}\tilde{W_{\tau}}, P, K)$ be a $\tilde{S}\alpha TVS$. Then every $\tilde{B}_{P} \in {}_{\theta}N(_{\alpha}\tilde{W_{\tau}})$ is \tilde{S} -absorbing.

Proof. Assume $\tilde{B}_P \in {}_{\theta}N({}_{\alpha}\tilde{W}_{\tau})$. Then $\tilde{C}_P \subseteq \tilde{B}_P$ we have $\tilde{C}_P \in {}_{\theta}N({}_{\alpha}\tilde{W}_{\tau})$, where \tilde{C}_P is a $\tilde{S}\alpha$ -open set. Since the space is $\tilde{S}\alpha TVS$, \tilde{S} -multiplication is $\tilde{S}\alpha$ -irresolute. So there exists $\tilde{S}\alpha$ -open sets $\tilde{G}_P \in {}_{\theta}N({}_{\alpha}\tilde{W}_{\tau})$ and $\tilde{H}_P \in {}_{\theta}N({}_{\alpha}\tilde{W}_{\tau})$ with the condition $\tilde{M}_{\hat{\zeta}}(\tilde{G}_P \times \tilde{H}_P) \subseteq \tilde{C}_P$ and hence $\hat{\zeta}\tilde{w}_p \in \tilde{C}_P \forall \hat{\zeta}(\lambda) > 0, \lambda \in P$ and $\tilde{w}_p \in \tilde{H}_P$. Thus \tilde{C}_P is \tilde{S} -absorbing.

10021

M. SURAIYA BEGUM, M. SHEIK JOHN, AND K. M. ARIFMOHAMMED

10022

Acknowledgment

The first author is thankful to University Grants Commission, New Delhi, India for sponsoring this work under the grant(MANF-2015-17-TAM-56849.

REFERENCES

- M. AKTAG, A. OZKAN: Soft α-open sets and soft α-continuous functions, Abstract and applied analysis, 2014, 1–7.
- [2] H. AKTAS, N. CAGMAN: Soft sets and soft groups, Inform. Sci., 177 (2007), S113–S119.
- [3] M. CHINEY, S. K. SAMANTA: *Soft topological vector spaces*, Annals fuzzy math Inform., 2018, 1–22.
- [4] S. HUSSAIN: Properties of soft semi open and soft semi closed sets, Pensee journal, **76**(2) (2014), 133–143.
- [5] P. K. MAJI, R. BISWAS, A. R. ROY: Soft set theory, Comput. Math. Appl., 45(4-5) (2003), 555–562.
- [6] P. MANJUNDAR, S. K. SAMANTA: On soft mappings, Comput. Math. Appl., 60(9) (2010), 2666–2672.
- [7] D. MOLODTSOV: Soft set theory first results, Comput. Math. Appl., 37(4-5) (1999), 19–31.
- [8] S. ROY: Soft vector spaces and soft topological vector spaces, Jordan J. Math. Statistics, 10(2) (2017), 143–167.
- [9] L. A. ZADEH: Information and control, Fuzzy sets, 8(3) (1965), 338–353.

PG AND RESEARCH DEPARTMENT OF MATHEMATICS N.G.M. COLLEGE, POLLACHI - 642 001, TAMILNADU, INDIA *Email address*: suraiya0291@gmail.com

P.G. AND RESEARCH DEPARTMENT OF MATHEMATICS N.G.M. COLLEGE, POLLACHI - 642 001, TAMILNADU, INDIA *Email address*: sheikjohn@gmail.com

DEPARTMENT OF SCIENCE AND HUMANITIES, KARPAGAM COLLEGE OF ENGINEERING COIMBATORE - 641 032, TAMILNADU, INDIA *Email address*: arifjmc9006@gmail.com