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SOFT IRRESOLUTE AND SOFT α TOPOLOGICAL VECTOR SPACES

M. SURAIYA BEGUM1, M. SHEIK JOHN, AND K. M. ARIFMOHAMMED

ABSTRACT. The focus of this work is to investigate the idea of soft irresolute and
soft α topological vector spaces. This space is determined by using the notion of
soft irresolute mappings and soft semi open sets (S̃S-open).

1. INTRODUCTION

The soft set Molodtsov [7] is the one of the best mathematical tool to deal with
uncertainties, which the generalization of fuzzy set Zadeh [9]. It has many ap-
plication in different fields such as game theory, Riemann-Integration, probability
and so on. The algebraic operations over the soft sets were given by Maji et.al [5].
The algebraic-topological aspects of soft set has widely developed nowadays. Ak-
tag et.al. [2] investigated the mathematical notion of soft groups. The notion of
soft topological vector space is introduced by Roy [8] by assuming the parameter
set as usual vector space. This paper is an elaborate study of soft irresolute and
soft α topological vector spaces.

2. PRELIMINARIES

In every part of this paper, we mention soft irresolute topological vector space
as S̃ITV S, soft topological vector space as S̃TV S and S̃-set means soft set, K̃ is
the field of complex or real number which is endowed with usual topology σ.
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Definition 2.1. [8] The S̃TV S(W̃τ , P,K) is defined as follows: The mappings h̃ :

S̃(W̃τ ) × S̃(W̃τ ) → S̃(W̃τ ) defined by h̃(w̃1p, w̃2p) = w̃1p + w̃2p and f̃ : S̃(W̃τ ) ×
S̃(W̃τ )→ S̃(W̃τ ) defined by f̃(ζ̂ , w̃p) = ζ̂w̃p are both S̃-continuous. The domain of h̃
and f̃ are endowed with S̃-product topologies.

Definition 2.2. [3] A S̃-set B̃P in S̃V S(W̃ , P ) is said to be S̃-absorbing if for every
w̃p∈̃B̃P , there exists a S̃-real number η̂, where η̂(λ) > 0, for all λ∈̃P such that
η̂−1w̃p∈̃B̃P .

Definition 2.3. [1,4] A S̃-set B̃P of a S̃TS(W̃τ , P ) is called

(1) S̃α-open if B̃P ⊆̃S̃-int(S̃-cl(S̃-int(B̃P ))).
(2) S̃S-open if B̃P ⊆̃S̃-cl(S̃-int(B̃P )).

Definition 2.4. [1, 6] Let (Ṽτ , P ) and (W̃τ , P ) be two S̃TS and f̃ : (Ṽτ , P ) →
(W̃τ , P ). Then f̃ is called

(1) S̃-irresolute if for every S̃S-open set ÃP in W̃τ , f̃−1(ÃP )∈̃Ṽτ is S̃S-open in
Ṽτ .

(2) S̃α-irresolute for every S̃α-open set B̃P in W̃τ , f̃−1(B̃P )∈̃Ṽτ is S̃α-open in Ṽτ .

3. SOFT IRRESOLUTE AND SOFT α TOPOLOGICAL VECTOR SPACES

In this section, we elucidate and investigate the notions of S̃ITV S, S̃αTV S and
its rudimentary properties.

Definition 3.1. A S̃TV S(W̃τ , P,K) is said to be S̃ITV S with the field K (complex
or real) if the following conditions hold:

(1) for any two soft points ṽ1, ṽ2∈̃W̃ and for every soft semi open neighborhood
D̃P of ṽ1+ ṽ2∈̃W̃ we have a S̃S-open neighborhoods B̃P and C̃P ∈̃W̃ of ṽ1, ṽ2
respectively, such that B̃P + C̃P ⊆̃D̃P .

(2) for any ṽ∈̃W̃ and δ∈̃K̃ for any S̃S-open neighborhood D̃P of δ̇̃W in W̃ ,
we have S̃S-open neighborhoods B̃P of δ in K̃ and C̃P of ṽ in W̃ such that
B̃P

˙̃CP ⊆̃D̃P .

Definition 3.2. In a S̃TV S(W̃τ , P,K):

(1) The soft right translation Tṽ : (W̃τ , P,K) → (W̃τ , P,K) is defined by
Tṽ = x̃+ ṽ ∀ x̃, ṽ∈̃W̃ .
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(2) The soft left translation ṽT : (W̃τ , P,K) → (W̃τ , P,K) is defined by

ṽT = ṽ + x̃ ∀ x̃, ṽ∈̃W̃ .
(3) The soft multiplication Mζ̂ : (W̃τ , P,K) → (W̃τ , P,K) is defined by

Mζ̂ = ζ̂ ṽ, ṽ∈̃W̃ and ζ̂∈̃K̃.

Theorem 3.1. For a S̃ITV S(W̃τ , P,K) over the field K̃

(1) the soft(left)right translation is soft irresolute.
(2) the soft multiplication is soft irresolute.

Proof.
(1) Define soft right translation Tṽp : (W̃τ , P,K) → (W̃τ , P,K) by Tṽp(x̃p) =

x̃p + ṽp here x̃p, ṽp∈̃W̃ . Let B̃P ∈̃W̃ be a S̃S-open neighborhood of x̃p + ṽp. There
exists S̃S-open neighborhoods C̃P , D̃P ∈̃W̃ of x̃p and ṽp respectively such that C̃P +
D̃P ⊆̃B̃P , by Definition 3.1.

(2) Define soft multiplication Mζ̂ : (W̃τ , P,K) → (W̃τ , P,K) by Mζ̂(x̃p) = ζ̂ .x̃p.
�

Theorem 3.2. For S̃ITV S(W̃τ , P,K) over the field K̃ if G̃P ∈̃S̃SO(W̃τ , P,K), then

(1) G̃P + ỹp∈̃S̃SO(W̃τ , P,K), ỹp∈̃W̃ .
(2) ζ̂˙̃GP ∈̃S̃SO(W̃τ , P,K), ζ̂∈̃K̃.

Proof.
(1) Assume that w̃p, x̃p∈̃W̃ . Let x̃p∈̃G̃P + w̃p. Now x̃p = ỹp + w̃p. Then we

have x̃p∈̃G̃P + w̃p − w̃p = G̃P , where ỹp∈̃G̃P . Define soft right translation T−w̃p by
image of x̃p under T−w̃p is equal to x̃p + (−w̃p) = ỹp. Hence T−w̃p is soft irresolute
because the space (W̃τ , P,K) is S̃ITV S by the above theorem. Thus for a S̃S-
open neighborhood G̃P containing T−w̃p(x̃p) = ỹp, a S̃S-open neighborhood C̃P of
x̃p exists with the condition T−w̃p(C̃P ) = C̃P − w̃p∈̃G̃P , which implies C̃P ⊆̃G̃P + w̃p.

(2) Let ζ̂∈̃K̃, (ζ̂ 6= 0̃) and x̃p∈̃ζ̂˙̃GP . That is x̃p = ζ̂˙̃yp where ỹp∈̃G̃P . Since
x̃p∈̃ζ̂ .G̃P , we have ζ̂ .ỹp∈̃ζ̂ .G̃P ⇒ ỹp∈̃G̃P . Define soft multiplicationMζ̂−1 : (W̃τ , P,K)→
(W̃τ , P,K) by image of x̃p underMζ̂−1 is equal to ζ̂−1.x̃p = ỹp. NowMζ̂−1 is S̃ITV S,
because (W̃τ , P,K) is S̃ITV S and by the above theorem. Therefore for any S̃S-
open neighborhood G̃P containing Mζ̂−1(x̃p) = ỹp there exists S̃S-open neighbor-
hood D̃P of x̃p such that image of D̃P under Mζ̂−1 is equal to ζ̂−1.D̃P ⊆̃G̃P . Now we
have D̃P is contained in ζ̂ .G̃P . Hence ζ̂ .G̃P is an element of S̃SO(W̃τ , P,K). �

Theorem 3.3. For a S̃S-open set G̃P ∈̃S̃SO(W̃ ) in a S̃ITV S, G̃P + H̃P ∈̃S̃SO(W̃ )

where H̃P in a soft subset of W̃ .
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Proof. Let C̃P ⊆̃W̃ and G̃P ∈̃S̃SO(W̃ ). Now for every soft point ṽp∈̃H̃P , G̃P +

ṽp∈̃S̃SO(W̃ ), by Theorem. For every soft point ṽp∈̃H̃P ,

G̃P + H̃P = G̃P + {ṽp2 + ṽp1 + ...}

= G̃P +
⋃̃
ṽpi , i∈̃4

=
⋃̃

ṽpi∈̃ ˜HP

G̃P + ṽpi

Hence G̃P + H̃P ∈̃S̃SO(W̃ ). �

Theorem 3.4. Let (W̃τ , P,K) be a S̃ITV S over the field K̃, where K̃ is endowed with
soft topology σ. Then φ̃ : (K̃, σ)×(W̃τ , P,K)→ (W̃τ , P,K) defined by φ̃(ζ̂ , ṽp) = ζ̂ .ṽp
where ζ̂∈̃K̃ and ṽp∈̃W̃P is soft irresolute.

Proof. Assume B̃P ∈̃W̃ is a S̃S-open neighborhood of ζ̂ .ṽp in W̃ . There exist a S̃S-
open neighborhoods C̃P of ζ̂ in K̃ and D̃P of ṽp in W̃ such that C̃P .D̃P is contained
in B̃P that is φ̃(C̃P × D̃P ) = C̃P .D̃P . Then we have φ̃(C̃P × D̃P ) is contained in B̃P ,
since W̃ is S̃ITV S. Therefore C̃P × D̃P in a S̃S-open neighborhood of ζ̂ × ṽp in
K̃ × W̃ . Hence φ̃ is soft irresolute. �

Theorem 3.5. Let (W̃τ , P,K) be a S̃ITV S over the field K̃. Then η̂ : (W̃τ , P,K) ×
(W̃τ , P,K)→ (W̃τ , P,K) defined by x̃p, ṽp is soft irresolute.

Proof. Consider any two soft points x̃p, ṽp in W̃ . Let η̂(x̃p, ṽp) = x̃p + ṽp. Assume
C̃P ∈̃W̃ is a S̃S-open neighborhood of x̃p+ ṽp in W̃ . Since W̃ is S̃ITV S, there exist
S̃S-open neighborhoods M̃P , Ñ ∈̃W̃ of x̃p and ṽp respectively with the condition
M̃P + ÑP ⊆̃C̃P . That is η̂(M̃P , ÑP ) = η̂(M̃P × ÑP ) = M̃P + ÑP ⊆̃C̃P . Therefore
M̃P × ÑP is a S̃S-open neighborhood of x̃p × ṽp in (W̃τ , P,K) × (W̃τ , P,K), since
M̃P , ÑP are the S̃S-open neighborhoods of x̃p, ṽp in (W̃τ , P,K) respectively. Hence
η̂ is soft irresolute. �

Definition 3.3. A S̃-function g : (W̃τ , P,K)→ (W̃τ , P,K) is said to be S̃I-homeomorphism
if g is

(1) S̃-bijective.
(2) S̃-irresolute.
(3) S̃S-open.
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Theorem 3.6. For a S̃ITV S, the S̃-translation Tṽp(x̃p) = x̃p + ṽp and S̃-multipli-
cation Mζ̂(ỹp) = ζ̂ .ỹp where x̃p, ṽp, ỹp∈̃W̃ and ζ̂∈̃K̃ are S̃I-homeomorphism onto
itself.

Proof. Define S̃-translation Tṽp by image of x̃p under Tṽp is equal to x̃p+ṽp ∀ x̃p, ṽp∈̃W̃ .
Obviously, Tṽp is S̃-bijective. Tṽp is S̃-irresolute, by theorem. Also for any S̃S-
open set B̃P ∈̃W̃ , Tṽp(B̃P ) = B̃P + ṽp is S̃S-open. S̃I-homeomorphism for S̃-
multiplication can be proved in the similar manner. �

Definition 3.4. A S̃ITV S(W̃τ , P,K) over the field K̃ is said to be S̃I-homogeneous
space, there exists a S̃I-homeomorphism g̃ : (W̃τ , P,K) → (W̃τ , P,K) such that
g̃(B̃P ) = C̃P for each B̃P , C̃P ∈̃ W̃ .

Proposition 3.1. Every S̃ITV S is S̃I-homogeneous space.

Proof. Let ṽp, w̃p∈̃W̃ and ṽ = x̃p + w̃p where x̃p∈̃W̃ . Define a S̃-left translation
x̃pT : (W̃τ , P,K) → (W̃τ , P,K) by x̃pT (w̃p) = x̃p + w̃p = ṽp. By Theorem 3.6, x̃pT
is S̃I-homeomorphism. Hence (W̃τ , P,K) is S̃I-homogeneous space. �

Theorem 3.7. In a S̃ITV S(W̃τ , P,K), for any S̃-subspace Ṽ1 of W̃ and a non-null
S̃S-open subset Ṽ2 of W̃ , if Ṽ2⊆̃Ṽ1 then Ṽ1 is S̃S-open subset of W̃ .

Proof. Let B̃P be a non-null S̃S-open in W̃ and B̃P ⊆̃Ṽ1. By Theorem 3.1 TB̃P
=

B̃P + ṽp is S̃S-open subset of W̃ for all ṽp∈̃Ṽ1. Hence Ṽ1 =
⋃
ṽpi ∈̃Ṽ1

(B̃P + ṽp) is

S̃S-open in W̃ being the arbitrary union of S̃S-open sets. �

Proposition 3.2. For any two S̃-subsets B̃P , C̃P of S̃ITV S(W̃τ , P,K), S̃-scl(B̃P )+S̃-
scl(C̃P ) is contained in S̃-(B̃P + C̃P ).

Proof. Assume x̃p∈̃S̃-scl(B̃P ) and ỹp∈̃S̃-scl(C̃P ). Let G̃P be a S̃S-open neighbor-
hood of x̃p + ỹp. Then there exist S̃S-open neighborhoods H̃P and ĨP of x̃p and
ỹp respectively, such that H̃P + ĨP ⊆̃G̃P . By assumption x̃P ∈̃S̃-scl(B̃P ) and ỹp∈̃S̃-
scl(C̃P ) there exist ṽp + w̃p∈̃(B̃P + C̃P ) ∩ (H̃P + ĨP )⊆̃(B̃P + C̃P ) ∩ G̃P . That is
x̃p + ỹp∈̃S̃-scl(B̃P + C̃P ). �

Theorem 3.8. Every S̃S-open subspace of a S̃ITV S(W̃τ , P,K) is S̃S-closed in (W̃τ , P,K).

Proof. Consider a S̃S-open subspace Ṽ1 of a W̃ , S̃I-homeomorphism, Ṽ1 + ṽp is
S̃S-open for any ṽp∈̃W̃ \ Ṽ1. Therefore Ṽ2 =

⋃
ṽpi ∈̃W̃\Ṽ1

(Ṽ1 + ṽp) is also S̃S-open.

Thus Ṽ1 = W̃ \ Ṽ2 is S̃S-closed. �
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Theorem 3.9. For any two S̃-subsets G̃P and H̃P of S̃ITV S(W̃τ , P,K), G̃P + H̃P =

S̃-scl(G̃P + H̃P , where H̃P is S̃S-open and G̃P is any S̃-set.

Proof. Since G̃P ⊆̃S̃-scl(G̃P , we have G̃P + H̃P ⊆̃S̃-scl(G̃P + H̃P . To prove the con-
verse, let x̃p∈̃S̃-scl(G̃P + H̃P and x̃p = ỹp + w̃p where w̃p∈̃H̃P and ỹp∈̃S̃-scl(G̃P .
Then S̃S-open neighborhood M̃P of θ (θ being the zero element of W̃ ) exists with
the condition, image of M̃P under Tw̃p is equal to M̃P + w̃p which is contained in
H̃P . Since M̃P is a S̃S-open neighborhood of θ in W̃ , we have −M̃P is also the
S̃S-open neighborhood θ of W̃ . By assumption ỹp∈̃S̃-scl(G̃P ), ṽp∈̃G̃P ∩ (ỹp \ M̃P ).
Now

x̃p = ỹp + w̃p

∈̃ṽp + M̃P + w̃p

⊆̃G̃P + H̃P .

Therefore S̃-scl(G̃P ) + H̃P is contained in G̃P + H̃P . Thus G̃P + H̃P = S̃-scl(G̃P ) +

H̃P . �

Theorem 3.10. In a S̃ITV S(W̃τ , P,K), each S̃-open subspace Ṽ in S̃ITV S.

Proof. Let (Ṽτ , P ) be an S̃-topological subspace of (W̃τ , P,K). Now it satisfies the
below properties:

(1) for each ṽ1p, ṽ2p∈̃Ṽ , ṽ1p + ṽ2p∈̃Ṽ ,
(2) for ṽp∈̃Ṽ and η̂∈̃K̃, η̂ṽp∈̃Ṽ .

Let ṽ1p, ṽ2p∈̃Ṽ and ṽ1p + ṽ2p has a S̃S-open neighborhood B̃P in Ṽ . Then B̃P is
a S̃S-open neighborhood in W̃τ . Therefore there is S̃S-open neighborhoods C̃
of ṽ1p and D̃P of ṽ2p such that C̃P + D̃P ⊆̃B̃P , since W̃τ is S̃ITV S. Also C̃P ∩̃Ṽ
and D̃P ∩̃Ṽ are both S̃S-open in W̃τ which contains ṽ1p and ṽ2p respectively. Thus
C̃P ∩̃Ṽ + D̃P ∩̃Ṽ = (C̃P + D̃P )∩̃Ṽ ⊆̃B̃P . Now for any η̂∈̃K̃ and ṽp∈̃W̃τ , consider
a S̃S-open neighborhood B̃P of η̂ṽp in Ṽ which is also S̃S-open in W̃τ . Hence
there exists S̃S-open neighborhood H̃P of η̂ in K̃ and C̃P of ṽp in W̃τ such that
H̃P C̃P ⊆̃B̃P , as W̃τ is S̃ITV S. Also, H̃P ∩̃K̃ and C̃P ∩̃Ṽ are S̃S-open in K̃ and W̃τ

respectively. Thus the space (W̃τ , P,K) is S̃ITV S. �

Definition 3.5. Let (W̃τ , P,K) be a S̃TV S. If the S̃-addition map f̃ : W̃τ×W̃τ → W̃τ

defined by f̃(ṽ1p, ṽ2p) = ṽ1p + ṽ2p and the S̃-multiplication map g̃ : K̃ × W̃τ → W̃τ

defined by g̃(η̂, ṽp) = η̂ṽp are both S̃αI (soft α-irresolute), then (W̃τ , P,K) is called
S̃STV S and denoted by (αW̃τ , P,K).
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Theorem 3.11. Let (αW̃τ , P,K) be a S̃αTV S. Then

(1) Let B̃P ∈̃ṽpN(W̃τ ) be a S̃α-neighborhood of ṽp∈̃W̃τ and C̃P be a S̃-neighbor-
hood of ṽp, then B̃P ∩̃C̃P is S̃α-neighborhood of ṽp.

(2) Let B̃P ∈̃ṽpN(W̃τ ) be a S̃α-neighborhood of ṽp∈̃W̃τ , then ṽp∈̃B̃P .
(3) Let B̃P ∈̃ṽpN(W̃τ ) be a S̃α-neighborhood of ṽp∈̃W̃τ , then there is a S̃α-neighborhood

C̃P ∈̃ṽpN(W̃τ ) of ṽp such that B̃P ∈̃ũpN(W̃τ ) is a S̃α-neighbor- hood of ũp for
all ũp∈̃C̃p.

(4) Let B̃P ∈̃ṽpN(W̃τ ) be a S̃α-neighborhood of ṽp∈̃W̃τ and B̃P ⊆̃C̃P , then C̃P ∈̃ṽpN(W̃τ )

Proof. (1) Let B̃P ∈̃ṽpN(W̃τ ) and C̃P is a S̃-neighborhood of ṽp. Then ṽp∈̃D̃P ⊆̃C̃P
we have ṽp∈̃F̃P ⊆̃B̃P , where F̃P is a S̃α-open set and D̃P is a S̃-open set. Then
F̃P ∩̃D̃P ⊆̃B̃P ∩̃C̃P is S̃α-open. Hence B̃P ∩̃C̃P ∈̃ṽpN(W̃τ ) is a S̃α-neighborhood of
ṽp.

Proof of (2), (3) and (4) can be derived in the similar manner. �

Theorem 3.12. Let f̃ : αṼτ → αW̃τ be a S̃α-homeomorphism between S̃αTV Ss.
A S̃-subset Ỹ of αṼτ is of S̃α-neighborhood of ỹp∈̃Ṽ if and only if f̃(Ỹ ) is S̃α-
neighborhood of f̃(ỹp).

Proof. Let ỸP be a S̃α-neighborhood of ỹp∈̃ αṼτ . Then ỹp⊆̃Z̃P ⊆̃ỸP . Hence f̃(ỹp)∈̃f̃(Z̃P )⊆̃f̃(ỸP )
and f̃(Z̃P ) is S̃α-open in αW̃τ , since f̃ is S̃pα-open. Thus f̃(ỸP ) is a S̃α-neighborhood
of f̃(ỹp).

Conversely, consider f̃(ỸP ) is a S̃α-neighborhood of f̃(ỹp). Then there exists a
S̃α-open B̃α in αW̃τ with the condition f̃(ỹp)∈̃B̃α⊆̃f̃(ỸP ). Since f̃ is S̃α-irresolute,
f̃−1(B̃α) is S̃α-open and ỹp∈̃f̃−1(B̃α)⊆̃ỸP . Thus ỸP be a S̃α-neighborhood of ỹp.

�

Theorem 3.13. Let (αW̃τ , P,K) be a S̃αTV S. Then every B̃P ∈̃ θN( αW̃τ ) is S̃-
absorbing.

Proof. Assume B̃P ∈̃ θN( αW̃τ ). Then C̃P ⊆̃B̃P we have C̃P ∈̃ θN( αW̃τ ), where C̃P
is a S̃α-open set. Since the space is S̃αTV S, S̃-multiplication is S̃α-irresolute. So
there exists S̃α-open sets G̃P ∈̃ θN( αW̃τ ) and H̃P ∈̃ θN( αW̃τ ) with the condition
M̃ζ̂(G̃P × H̃P )⊆̃C̃P and hence ζ̂w̃p∈̃C̃P ∀ ζ̂(λ) > 0, λ∈̃P and w̃p∈̃H̃P . Thus C̃P is
S̃-absorbing. �
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