

Advances in Mathematics: Scientific Journal **9** (2020), no.11, 10023–10031 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.110

QUASI-VALUATION MAPS BASED ON SUBALGEBRA AND IDEAL CONCEPT IN BM-ALGEBRA

JULIE THOMAS AND K. INDHIRA¹

ABSTRACT. The notion of SQV-map and IQV-map in a BM-algebra are introduced and the relation between them are studied. Using these notions, the binary operation in BM-algebra is found to be uniformly continuous by constructing (pseudo) metric spaces. A quotient BM-algebra is constructed using the congruence relation induced by the IQV-map on it. The relation between the induced congruence relation and an ideal obtained from an IQV-map are studied. The condition under which two BM-algebras become homeomorphic is also derived by defining suitable IQV-maps on them.

1. INTRODUCTION

Logic plays an important role in foundations of mathematics. Study on the structure of logical algebras in different aspects (see [2]), may help the researchers who use algebra and logic to construct their models. In this article, we consider a structure called BM-algebra which is a class of abstract algebra, introduced by Kim and Kim [3]. Megalai and Tamilarasi [4] renamed this algebraic structure as TM-algebra. Several authors have considered different characterizations of BM-algebra ([9], [10], [7]) and made fuzzifications to BM/TM-algebra ([1], [5], [6], [8]) over the range of [0,1]. As a generalization of it, algebraic systems with maps over the range \mathbb{R} namely quasi-valuation can be considered.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. BM-algebra, quasi-valuation maps, quotient BM-algebra, pseudo-metric, isometry, homeomorphism.

10024 J. THOMAS AND K. INDHIRA

In this paper, we put forth the concept of quasi-valuation maps based on an ideal (briefly, IQV-maps) and a subalgebra (briefly, SQV-maps) in BM-algebras, and then we investigate the relations between them. We obtain conditions for a real-valued function on a BM-algebra to be an IQV-map. Using the notion of an IQV-map, we construct a (pseudo) metric on a BM-algebra, and prove that the binary operation in it is uniformly continuous. We introduce a congruence relation from an IQV-map and construct a quotient structure which is again a BM-algebra. Further we obtain an isometry between two BM-algebras by defining suitable IQV-maps and a homomorphism.

2. QV-MAPS ON BM-ALGEBRAS

Definition 2.1. A BM-algebra is a triple $(\mathcal{A}, *, \theta)$ where $\mathcal{A}(\neq \phi)$ is a set with a fixed element θ and a binary operation *, satisfying the following two conditions: (1) $a * \theta = a$ and (2) (a * b) * (a * c) = c * b for all $a, b, c \in \mathcal{A}$.

We introduce the concept of a quasi-valuation map based on a subalgebra (briefly, SQV-map) in a BM-algebra.

Definition 2.2. By a SQV-map of a BM-algebra A, we mean a real valued map $\rho : A \to \mathbb{R}$ such that the following condition is satisfied:

(2.1)
$$\rho(a * b) \ge \rho(a) + \rho(b) \text{ for all } a, b \in \mathcal{A}.$$

Example 1. Consider the BM-algebra $(\mathcal{A}, *, \theta)$ where $\mathcal{A} = \{\theta, p, q\}$ with the binary operation * given by $\theta * \theta = p * p = q * q = \theta, \theta * p = p * q = q * \theta = q$ and $\theta * q = p * \theta = q * p = p$. Let ρ be a real-valued map on \mathcal{A} defined by $\rho(\theta) = -2, \rho(p) = -3$ and $\rho(q) = -4$. Then ρ is a SQV-map of \mathcal{A} .

Proposition 2.1. For any SQV-map ρ of a BM-algebra A, we have for all $a \in A$

(1) $\rho(a) \le (\frac{1}{2})\rho(\theta);$ (2) $\rho(a) \le 0.$

Proof.

- (1) For any $a \in A$, we have $\rho(\theta) = \rho(a * a) \ge \rho(a) + \rho(a)$. Then $2\rho(a) \le \rho(\theta)$ which implies $\rho(a) \le (\frac{1}{2})\rho(\theta)$.
- (2) For any $a, b \in A$, we have $\rho(b) = \rho(a * (a * b)) \ge \rho(a) + \rho(a) + \rho(b) = 2\rho(a) + \rho(b)$ and so $2\rho(a) \le 0$, which implies $\rho(a) \le 0$.

Definition 2.3. By a quasi-valuation map based on an ideal (briefly, IQV-map) of a BM-algebra \mathcal{A} , we mean a real valued map $\rho : \mathcal{A} \to \mathbb{R}$ such that the following two conditions are satisfied: $\rho(\theta) = 0$ and

(2.2)
$$\rho(a) \ge \rho(a * b) + \rho(b) \text{ for all } a, b \in \mathcal{A}.$$

This ρ is called an I-valuation map (IV-map) of \mathcal{A} if $\rho(a) = 0 \implies a = \theta, \forall a \in \mathcal{A}$.

Example 2. Let $(\mathcal{A}, *, \theta)$ be a BM-algebra where $\mathcal{A} = \{\theta, p, q\}$ and binary operation * defined as in Example 1. Consider a real valued map ρ on \mathcal{A} defined by $\rho(\theta) = 0, \rho(p) = -1$ and $\rho(q) = -2$. Then ρ is an IQV-map of \mathcal{A} .

Theorem 2.1. If A is a BM-algebra with an IQV-map ρ satisfying the property $\rho(\theta * a) \ge \rho(a)$ for all $a \in A$, then ρ is a SQV-map of A.

Proof. Let $a, b \in \mathcal{A}$, then

$$\rho(a * b) \ge \rho((a * b) * a) + \rho(a)$$
$$= \rho((a * a) * b) + \rho(a)$$
$$= \rho(\theta * b) + \rho(a)$$
$$\ge \rho(a) + \rho(b).$$

Thus ρ is a SQV-map of A.

Proposition 2.2. We have the following properties for any IQV-map ρ .

- (1) $\rho(a * b) + \rho(b * a) \leq 0$ for all $a, b \in \mathcal{A}$.
- (2) $\rho(a * b) \ge \rho(a * c) + \rho(c * b)$ for all $a, b, c \in \mathcal{A}$.

Proof.

- (1) We have $\rho(a * b) \le \rho(a) \rho(b)$ and $\rho(b * a) \le \rho(b) \rho(a)$. Thus we get $\rho(a * b) + \rho(b * a) \le 0$.
- (2) Using (2.1), we have ρ(a*b) ≥ ρ((a*b)*(a*c)) + ρ(a*c) = ρ(c*b) + ρ(a*c) for all a, b, c ∈ A.

For any real-valued function ρ on \mathcal{A} , consider the following two sets: $I_{\rho} := \{a \in \mathcal{A} | \rho(a) = 0\}$ and $J_{\rho} := \{a \in \mathcal{A} | \rho(a) \ge 0\}$.

Theorem 2.2. If ρ is an IQV- map of a BM-algebra A, then the set J_{ρ} is an ideal of A called the ideal induced by ρ .

Proof. Clearly, $\theta \in J_{\rho}$. Let $a, b \in \mathcal{A}$ be such that $a * b \in J_{\rho}$ and $b \in J_{\rho}$. Then, $\rho(a * b) \ge 0$ and $\rho(b) \ge 0$. Therefore $\rho(a) \ge \rho(a * b) + \rho(b) \ge 0$ and so $a \in J_{\rho}$. Hence J_{ρ} is an ideal of \mathcal{A} .

Theorem 2.3. If ρ is an IQV- map of a BM-algebra A with the condition $J_{\rho} = \{\theta\}$, then the set I_{ρ} is an ideal of A.

Proof. Clearly, $\theta \in I_{\rho}$. Let $a, b \in \mathcal{A}$ be such that $a * b \in I_{\rho}$ and $y \in I_{\rho}$. Then $\rho(a * b) = 0$ and $\rho(b) = 0$. Using equation (2.2) we get $\rho(a) \ge \rho(a * b) + \rho(b) = 0$. But we have assumed that $J_{\rho} = \{\theta\}$. Thus $\rho(a) = 0$. Therefore $a \in I_{\rho}$ so that I_{ρ} is an ideal of \mathcal{A} .

Define a mapping $d_{\rho} : \mathcal{A} \times \mathcal{A} \to \mathbb{R}$, with $(a, b) \mapsto -\rho(a * b) - \rho(b * a)$, for a real-valued function ρ on a BM-algebra \mathcal{A} .

Lemma 2.1. If A is a BM-algebra with an IQV-map ρ , then d_{ρ} is a pseudo-metric induced by ρ on A, and so (A, d_{ρ}) is a pseudo-metric space.

Proof. Let \mathcal{A} is a BM-algebra with an IQV-map ρ . It follows from Proposition 2.2 (1) that $d_{\rho}(a, b) \geq 0$ for all $a, b \in \mathcal{A}$. It is obvious that $d_{\rho}(a, a) = 0$ and $d_{\rho}(a, b) = d_{\rho}(b, a)$ for all $a, b \in \mathcal{A}$. Let $a, b, c \in \mathcal{A}$. By using Proposition 2.2 (2), we get

$$d_{\rho}(a,b) + d_{\rho}(b,c) = (-\rho(a*b) - \rho(b*a)) + (-\rho(b*c) - \rho(c*b))$$

$$\geq -\rho(a*c) - \rho(c*a) \text{ by Proposition 2.2 (2)}$$

$$= d_{\rho}(a,c).$$

Therefore (\mathcal{A}, d_{ρ}) is a pseudo-metric space.

Theorem 2.4. Let A is a BM-algebra with an IQV-map ρ . If ρ satisfies the condition $J_{\rho} = \{\theta\}$, then (A, d_{ρ}) is a metric space.

Proof. We have (\mathcal{A}, d_{ρ}) is a pseudo-metric space by Lemma 2.1, since ρ is an IQVmap of a BM-algebra \mathcal{A} . Since $J_{\rho} = \{\theta\}$ we get $\rho(a) \leq 0 \ \forall a \in \mathcal{A}$. Let $a, b \in \mathcal{A}$ be such that $d_{\rho}(a, b) = 0$. Then $0 = d_{\rho}(a, b) = -\rho(a*b) - \rho(b*a)$. ie, $\rho(a*b) + \rho(b*a) = 0$ and so $\rho(a*b) = 0$ and $\rho(b*a) = 0$ since $\rho(a) \leq 0$. It follows that $a*b = \theta$ and $b*a = \theta$ which implies a = b. Therefore (\mathcal{A}, d_{ρ}) is a metric space.

Proposition 2.3. Let ρ be an IQV- map of a BM-algebra A. Then every pseudo-metric d_{ρ} induced by ρ satisfies the following inequalities for all $a, b, x, y \in A$.

(1)
$$d_{\rho}(a,b) = d_{\rho}(a * x, b * x) = d_{\rho}(x * a, x * b)$$

10026

(2)
$$d_{\rho}(a * b, x * y) \leq d_{\rho}(a * b, x * b) + d_{\rho}(x * b, x * y)$$

Proof.

(1) Consider
$$a, b, x \in A$$
. Since $(a * x) * (b * x) = a * b$ and $(b * x) * (a * x) = b * a$,
we get $\rho(a * b) = \rho((a * x) * (b * x))$ and $\rho(b * a) = \rho((b * x) * (a * x))$.

$$d_{\rho}(a,b) = -\rho(a*b) - \rho(b*a) = -\rho((a*x)*(b*x)) - \rho((b*x)*(b*x)) = d_{\rho}(a*x,b*x).$$

Similarly, $d_{\rho}(a, b) = d_{\rho}(x * a, x * b)$.

(2) Using Proposition 2.2 (2), we get $\rho((a * b) * (x * y)) \ge \rho((a * b) * (x * b)) + \rho((x * b) * (x * y))$ and $\rho((x * y) * (a * b)) \ge \rho((x * y) * (x * b)) + \rho((x * b) * (a * b))$ for all $a, b, x, y \in A$. Therefore for all $a, b, x, y \in A$,

$$\begin{aligned} d_{\rho}(a * b, x * y) &= -\rho((a * b) * (x * y)) - \rho((x * y) * (a * b)) \\ &\leq -(\rho((a * b) * (x * b)) + \rho((x * b) * (x * y))) \\ &- (\rho((x * y) * (x * b)) + \rho((x * b) * (a * b))) \\ &= d_{\rho}(a * b, x * b) + d_{\rho}(x * b, x * y). \end{aligned}$$

Let $(\mathcal{A}_1, *_1, \theta_1)$ and $(\mathcal{A}_2, *_2, \theta_2)$ be BM-algebras. Define a binary operation \odot on $\mathcal{A}_1 \times \mathcal{A}_2$ by $(a, b) \odot (x, y) = (a *_1 x, b *_2 y)$ for all $(a, b), (x, y) \in \mathcal{A}_1 \times \mathcal{A}_2$. Then $(\mathcal{A}_1 \times \mathcal{A}_2, \odot, (\theta_1, \theta_2))$ is a BM-algebra.

Lemma 2.2. If d_{ρ} is a pseudo-metric on a BM-algebra \mathcal{A} with the real valued function ρ defined on \mathcal{A} , then $(\mathcal{A} \times \mathcal{A}, d_{\rho}^*)$ is a pseudo-metric space, where $d_{\rho}^*((a, b), (x, y)) = \max\{d_{\rho}(a, x), d_{\rho}(b, y)\}$ for all $(a, b), (x, y) \in \mathcal{A} \times \mathcal{A}$.

Proof. Let d_{ρ} is a pseudo-metric on \mathcal{A} . Obviously for all $(a, b), (x, y) \in \mathcal{A} \times \mathcal{A}$, we get $d_{\rho}^{*}((a, b), (x, y)) \geq 0$. We have, for any $(a, b), (x, y) \in \mathcal{A} \times \mathcal{A}$, $d_{\rho}^{*}((a, b), (a, b)) = \max\{d_{\rho}(a, a), d_{\rho}(b, b)\} = 0$ and

$$d_{\rho}^{*}((a,b),(x,y)) = \max\{d_{\rho}(a,x), d_{\rho}(b,y)\}$$
$$= \max\{d_{\rho}(x,a), d_{\rho}(y,b)\}$$
$$= d_{\rho}^{*}((x,y),(a,b)).$$

Now suppose $(a, b), (x, y), (u, v) \in \mathcal{A} \times \mathcal{A}$. Then $d_{\rho}^*((a, b), (u, v)) + d_{\rho}^*((u, v), (x, y))$

J. THOMAS AND K. INDHIRA

$$= \max\{d_{\rho}(a, u), d_{\rho}(b, v)\} + \max\{d_{\rho}(u, x), d_{\rho}(v, y)\}$$

$$\geq \max\{d_{\rho}(a, u) + d_{\rho}(u, x), d_{\rho}(b, v) + d_{\rho}(v, y)\}$$

$$\geq \max\{d_{\rho}(a, x), d_{\rho}(b, y)\} = d_{\rho}^{*}((a, b), (x, y)).$$

Therefore $(\mathcal{A} \times \mathcal{A}, d_{o}^{*})$ is a pseudo-metric space.

Theorem 2.5. Let $\rho : \mathcal{A} \to \mathbb{R}$ be an IQV- map of a BM-algebra \mathcal{A} with the condition $J_{\rho} = \{\theta\}$. Then $(\mathcal{A} \times \mathcal{A}, d_{\rho}^*)$ is a metric space.

Proof. By Lemma 2.1, we know that d_{ρ} is a pseudo-metric on a BM-algebra \mathcal{A} where $\rho : \mathcal{A} \to \mathbb{R}$ is an IQV- map of \mathcal{A} with $J_{\rho} = \{\theta\}$. Also from Lemma 2.2 we get $(\mathcal{A} \times \mathcal{A}, d_{\rho}^*)$ is a pseudo-metric space. Let $(a, b), (x, y) \in \mathcal{A} \times \mathcal{A}$ be such that $d_{\rho}^*((a, b), (x, y)) = 0$. Therefore $0 = d_{\rho}^*((a, b), (x, y)) = \max\{d_{\rho}(a, x), d_{\rho}(b, y)\}$, and so $d_{\rho}(a, x) = 0 = d_{\rho}(b, y)$ since $d_{\rho}(a, b) \geq 0$ for all $(a, b) \in \mathcal{A} \times \mathcal{A}$. Hence $0 = d_{\rho}(a, x) = -\rho(a * x) - \rho(x * a)$ and $0 = d_{\rho}(b, y) = -\rho(b * y) - \rho(y * b)$. It follows from the assumption that $\rho(a * x) = 0 = \rho(x * a)$ and $\rho(b * y) = 0 = \rho(y * b)$. So since ρ is an IQV- map, we get $a * x = \theta = x * a$ and $b * y = \theta = y * b$. Using property given in Definition 2.1, we have x = a and y = b, and so (a, b) = (x, y). Hence $(\mathcal{A} \times \mathcal{A}, d_{\rho}^*)$ is a metric space. \Box

Theorem 2.6. If $\rho : \mathcal{A} \to \mathbb{R}$ is an IQV- map of a BM-algebra \mathcal{A} with the condition $J_{\rho} = \{\theta\}$, then the binary operation * in the BM-algebra \mathcal{A} is uniformly continuous.

Proof. For any $\epsilon > 0$, if $d_{\rho}^*((a,b),(x,y)) < \epsilon/2$, then $d_{\rho}(a,x) < \epsilon/2$ and $d_{\rho}(b,y) < \epsilon/2$. Using Proposition 2.3, we get

$$d_{\rho}(a * b, x * y) \leq d_{\rho}(a * b, x * b) + d_{\rho}(x * b, x * y)$$
$$= d_{\rho}(a, x) + d_{\rho}(b, y)$$
$$< \epsilon/2 + \epsilon/2 = \epsilon.$$

Hence the binary operation $* : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is uniformly continuous.

Theorem 2.7. Let ρ be an IQV- map of a BM-algebra \mathcal{A} . Define a relation τ_{ρ} on \mathcal{A} by $(a,b) \in \tau_{\rho} \iff \rho(a*b) + \rho(b*a) = 0$ for all $a, b \in \mathcal{A}$. Then τ_{ρ} is a congruence relation on \mathcal{A} . We say τ_{ρ} is the congruence relation induced by ρ .

Proof. Since τ_{ρ} induced by a pseudo-metric, it is an equivalence relation on \mathcal{A} . Assume $a, b, x, y \in \mathcal{A}$ be such that $(a, b) \in \tau_{\rho}$ and $(x, y) \in \tau_{\rho}$. Then, $\rho(a*b)+\rho(b*a) =$

10028

0 and $\rho(x * y) + \rho(y * x) = 0$. It follows that

$$-\rho((a * x) * (b * y)) - \rho((b * y) * (a * x)) = d_{\rho}(a * x, b * y) \le d_{\rho}(a, b)$$
$$= -\rho(a * b) - \rho(b * a) = 0.$$

Therefore, $\rho((a * x) * (b * y)) + \rho((b * x) * (a * x)) = 0$, and so $(a * x, b * y) \in \tau_{\rho}$. Hence τ_{ρ} is a congruence relation on \mathcal{A} .

Definition 2.4. Let ρ be an IQV- map of a BM-algebra \mathcal{A} and τ_{ρ} be a congruence relation on \mathcal{A} induced by ρ . For any $a \in \mathcal{A}$, the set $a_{\rho} := \{b \in \mathcal{A} | (a, b) \in \tau_{\rho}\}$ is called an equivalence class of a. Let the set of all equivalence classes be denoted by \mathcal{A}_{ρ} ; that is, $\mathcal{A}_{\rho} := \{a_{\rho} | a \in \mathcal{A}\}$. Now define a binary operation " $*_{\rho}$ " on \mathcal{A}_{ρ} as: $a_{\rho} *_{\rho} b_{\rho} = (a * b)_{\rho} \forall a_{\rho}, b_{\rho} \in \mathcal{A}_{\rho}$. The resulting algebra $(\mathcal{A}_{\rho}, *_{\rho}, \theta_{\rho})$ is called the quotient algebra of \mathcal{A} induced by ρ .

Theorem 2.8. Let ρ be an IQV- map of a BM-algebra A. Then the quotient algebra $(A_{\rho}, *_{\rho}, \theta_{\rho})$ induced by ρ is a BM-algebra.

Proof. Since ρ is an IQV- map of \mathcal{A} , the operation $*_{\rho}$ is well-defined. For any $a_{\rho}, b_{\rho}, c_{\rho} \in \mathcal{A}_{\rho}$, we have $a_{\rho} *_{\rho} a_{\rho} = (a * a)_{\rho} = \theta_{\rho}$ and $(a_{\rho} *_{\rho} b_{\rho}) *_{\rho} (a_{\rho} *_{\rho} c_{\rho}) = ((a * b) * (a * c))_{\rho} = (c * b)_{\rho} = c_{\rho} *_{\rho} b_{\rho}$. Hence, $(\mathcal{A}_{\rho}, *_{\rho}, \theta_{\rho})$ is a BM-algebra. \Box

Remark 2.1. $d_{\rho}^{\#} : \mathcal{A}_{\rho} \times \mathcal{A}_{\rho} \to \mathbb{R}$ defined by $d_{\rho}^{\#}(a_{\rho}, b_{\rho}) = d_{\rho}(a, b)$ is a well defined metric on \mathcal{A}_{ρ} . Then the natural projection map $\pi : \mathcal{A} \to \mathcal{A}_{\rho}$ defined by $\pi(a) = a_{\rho}$ is an isometry (ie, preserves distances). Moreover, the quotient topology on \mathcal{A}_{ρ} coincide with the metric topology induced by $d_{\rho}^{\#}$.

Proposition 2.4. Suppose $(\mathcal{A}, *, \theta)$ and $(\mathcal{B}, *_1, \theta_1)$ be two BM-algebras. Let $\Phi : \mathcal{A} \to \mathcal{B}$ be a BM-homomorphism, and $\sigma : \mathcal{B} \to \mathbb{R}$ be an IQV- map on \mathcal{B} . Then $\rho = \sigma \circ \Phi$ is an IQV- map on \mathcal{A} .

Proof. Let $a, b \in \mathcal{A}$. Then $\rho(a) = \sigma \circ \Phi(a) = \sigma(\Phi(a)) \ge \sigma(\Phi(a) *_1 \Phi(b)) + \sigma(\Phi(b)) = \sigma(\Phi(a * b)) + \sigma(\Phi(b)) = \rho(a * b) + \rho(b)$ and $\rho(\theta) = \sigma \circ \Phi(\theta) = \sigma(\Phi(\theta)) = \sigma(\theta_1) = 0$. Hence ρ is an IQV- map on \mathcal{A} .

Proposition 2.5. Suppose $(\mathcal{A}, *, \theta)$ and $(\mathcal{B}, *_1, \theta_1)$ be two BM-algebras with a BMhomomorphism Φ and $\sigma : \mathcal{B} \to \mathbb{R}$ be an IQV- map on \mathcal{B} . Let $\rho = \sigma \circ \Phi$. Then Φ preserves distances under the pseudo metric induced by ρ and σ .

J. THOMAS AND K. INDHIRA

Proof. We know that ρ and σ are IQV- maps on \mathcal{A} and \mathcal{B} respectively. Therefore pseudo-metrics induced by ρ and σ are $d_{\rho}(a, b) = -\rho(a * b) - \rho(b * a) \quad \forall a, b \in \mathcal{A}$ and $d_{\sigma}(u, v) = -\sigma(u *_1 v) - \sigma(v *_1 u) \quad \forall u, v \in \mathcal{B}$ respectively. Then

$$d_{\rho}(a,b) = -\rho(a*b) - \rho(b*a)$$

= $-\sigma(\Phi(a*b)) - \sigma(\Phi(b*a))$
= $-\sigma(\Phi(a)*_{1}\Phi(b)) - \sigma(\Phi(b)*_{1}\Phi(a))$
= $d_{\sigma}(\Phi(a), \Phi(b)) \ \forall a, b \in \mathcal{A}.$

Corollary 2.1. If Φ is a bijection, then it is an isometry and hence is a homeomorphism.

Proof. Suppose $a \in A$. Let $\epsilon \in \mathbb{R}^+$ and $\delta = \epsilon$. Then $d_{\rho}(a, b) < \delta$ for some $b \in A$ $\implies d_{\sigma}(\Phi(a), \Phi(b)) < \delta = \epsilon$. Thus, Φ is continuous on A. Similarly since Φ^{-1} is also an isometry, it is also continuous on B. Hence Φ is a homeomorphism. \Box

REFERENCES

- J. THOMAS, K. INDHIRA, V. M. CHANDRASEKARAN: *T-normed fuzzy TM-subalgebra of TM-algebras*, International Journal of Computational Intelligence Systems, **12**(2) (2019), 706–712.
- [2] M. KAVIYARASU, K. INDHIRA: Review on BCI/BCK-algebras and development, International Journal of Pure and Applied Mathematics 117(11) (2017), 377–383.
- [3] C. B. KIM, H. S. KIM: On BM-algebras, Scientiae Mathematicae Japonicae, **63**(3) (2006), 421–428.
- [4] K. MEGALAI, A. TAMILARASI: TM-algebra an introduction, IJCA, Special Issue on CASCT., (2010), 17–23.
- [5] K. MEGALAI, A. TAMILARASI: *Fuzzy subalgebras and fuzzy T-ideals in TM-algebra*, Journal of Mathematics and Statistics, **7**(2) (2011), 107–111.
- [6] S. M. MOSTAFA, M. A. NABY, O. R. ELGENDY: *Fuzzy TM-ideals of TM-algebras*, Journal of American Science, 7(9) (2011), 17–21.
- [7] C. PRABPAYAK: Some Homomorphism Properties of TM-algebras, Applied Mechanics and Materials, 866 (2017), 406–409.
- [8] A. B. SAEID: Fuzzy BM-algebras, Indian Journal of Science and Technology, 3(5) (2010), 523–529.
- [9] A. WALENDZIAK: *BM-algebras and related topics*, Mathematica Slovaca, 64(5) (2014), 1075– 1082.

[10] A. WALENDZIAK: BG/BF₁/B/BM-algebras are congruence permutable, Mathematica Aeterna, 5(2) (2015), 351–356.

DEPARTMENT OF MATHEMATICS VELLORE INSTITUTE OF TECHNOLOGY VELLORE-632014, INDIA *Email address*: julietp369@gmail.com

DEPARTMENT OF MATHEMATICS VELLORE INSTITUTE OF TECHNOLOGY VELLORE-632014, INDIA *Email address*: kindhira@vit.ac.in