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ABSTRACT. In this paper, real definite integrals are approximated with the anti-
Newtonian and anti-Gaussian rule. The anti mixed rule contributes a better ap-
proximation to that of individual anti-Gaussian and anti-Newtonian rule for the
numerical treatment of real definite integral. The validity and applicability of the
proposed the scheme is illustrated through six tests and compared with an abso-
lute error of proposed rule with constituent rules and to the analytical solutions.

1. INTRODUCTION

The numerical computation of an integral is performed with numerical quadra-
ture techniques. On the abscissa, an approximate value of an integral is obtained
by Newtona’s quadrature. In this work, we have suggested anti-Newtoni-an with
anti Gaussian quadrature rule and Gaussian type rules for the construction of the
mixed rule that is compared with Singh and Dash [3]. The idea of anti-Gaussian
quadrature was first thought by Dirk P.Laurie [5].The error equalin magnitude
but of opposite sign to that of Gaussian n point formula is obtained in an anti-
Gaussian rule with points of precision (2n − 1) integrates the polynomial (n + 1)

is of precision up to (2n − 1). Das and Pradhan [7], have taken the initiative to
construct mixed rules of higher precision with hybridization of lower precision

1corresponding author
2020 Mathematics Subject Classification. 65D30, 65D32.
Key words and phrases. anti-Gaussian rules, anti-Newtonian rules, mixed rule, Steffenson’s for-

mulae, precision.
10081



10082 S. R. JENA, D. NAYAK, A. K. PAUL, AND S. C. MISHRA

rules. Many researchers have come forward in this field in order to evaluate real
definite integrals Jena and Dash [4, 12, 23, 37, 40], Dash and. Das [13], Dash
and Jena [8, 34] [35, 36], Davis and Rabinowitz [15], Jena et al. [1, 14, 27, 31]
developed to approximate real definite integrals via hybrid quadrature domain
Richardson extrapolation and applied mixed quadrature rule on electromagnetic
field problems . J. Ma et al. [10] proposed to generalize Gaussian rules for sys-
tems of arbitrary functions. Jena and Nayak [2, 18, 19, 32], Nayak et al. [39]
implemented in the field of electrical sciences to obtain the instantaneous current
in the RLC- circuit and applied hybrid quadrature rule to find the approximate so-
lution of nonlinear Fredholm integral equation with the separable kernel. Patra et
al. [16] used a mixed quadrature rule with Gaussian quadrature for approximate
evaluation of real definite integrals. The authors Jena and Mishra [11], Mishra
and Jena [21] Jena and Singh [9,20,33], Meher et al. [22,38], Singh et al. [24],
also suggested mixed rules for approximate evaluation of complex analytic func-
tions. Besides, the others who have come forward to help indirectly to the current
methods are Jena and Gebremedhin [28], Gebremedhin and Jena [25, 29], Jena
and Mohanty [26], Mohanty and Jena [30]. The highlights of our method is the
hybridization of Gaussian, anti-Gaussian, as well as anti-Newtonian rule and a
nice comparison to Singh and Dash [3], where they used only the anti-Gaussian
with Gaussian rules for the mixed rule. Let G(n)

w is the corresponding Newtona’s
quadrature formula for n point where q be the weight function on [m,n],

G(n)
w =

n∑
j=m

q
(n)
j f(t

(n)
j ),

of degree for the integral (2n− 1),

I =

n∫
m

f(t)q(t)dt,

G
(n)
w (t) = I(t),∀t ∈ P 2n−1, A(n+1) =

n+1∑
j=1

αj−1f(ζj−1).

It is an anti Newtonian formula for (n+1) point and Gn(t) be n point Newtonian
formula, then A(n+1)(t) = 2I(t) − Gn(t) where t defined as polynomial of degree
≤ 2n+ 1. The paper is synchronized in the following manner. Section 2 deals with
anti-Newtonian Simpson’s rule . The anti-Gaussian three-point rule is described
in Section 3. Section 4 contains the construction of the anti-Newtonian mixed
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quadrature rule. The error analysis and error bound is investigated in Section
5. The numerical results are verified in section 6. Remarks and conclusions are
reported in Section 7.

2. NEWTONIAN AND ANTI-NEWTONIAN RULE

We choose the Simpson’s 1
3
rd rule

RS 1
3
rd(f) =

1

3
[f(−1) + f(1) + 4f(0)]

to develop anti Simpson’s 3
8
th rule (RS 3

8
th(f)). We choose the Simpson’s 1

3
rd rule

(RS 1
3
rd(f)) ( [5]):

RS 3
8
th(f) = 2

1∫
−1

f(t)dt−RS 1
3
rd(f),

α1f(−1) + α2f(ξ1) + α3f(ξ2) + α4f(1) = 2

1∫
−1

f(t)dt−RS 1
3
rd(f).

A system of six equations in six unknowns is obtained for the integrated of polyno-
mial of degree five. A system of six equations in six unknowns is obtained for the
integrated of polynomial of degree five (αj(j = 1(1)4), ξj(j = 1, 2), f(t) = tj(j =

0(1)5)):

α1 + α2 + α3 + α4 = 2

−α1 + α2ξ1 + α3ξ2 + α4 = 0

−α1 + α2ξ1
2 + α3ξ2

2 + α4 =
2

3

−α1 + α2ξ1
3 + α3ξ2

3 + α4 = 0

−α1 + α2ξ1
4 + α3ξ2

4 + α4 =
2

15

−α1 + α2ξ1
5 + α3ξ2

5 + α4 = 0.

The solution of above system of equations is α1 = α4 = −1
9
, α2 = α3 = 10

9
, ξ1 =√

2
5
, ξ2 = −

√
2
5
. Hence the anti Simpson’s 3

8
th rule becomes

(2.1) RS 3
8
th(f) = [

10

9
{f(−

√
2

5
) + f(

√
2

5
)} − 1

9
{f(−1) + f(1)}].
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The corresponding error is obtained as

ES 3
8
th(f) =

4

3× 5!
f iv(0)− 64

175× 6!
f vi(0) . . . .

3. ANTI-GAUSSIAN AND GAUSSIAN RULE

Let us take Gauss Legendre two point rule,

RGL2(f) = [f(− 1√
3
) + f(

1√
3
)].

In the same vein of (2.1) and referring [5], anti Gaussian three point rule can be
expressed as

RSGL
3(f) =

1

13
[5f(−

√
13

15
) + f(

√
13

15
) + 16f(0)]

RSGL
3(f) =− 1

135× 6!
f iv(0) +

1016

675× 7!
f vi(0) . . . .

(3.1)

4. MIXED RULE

In this section, paragraph various anti- mixed rules are suggested.

4.1. Anti-Newtonian And Anti-Gaussian Rule.
Referring (2.1) and (3.1)

(4.1) I = RS 3
8
th(f) + ES 3

8
th(f),

(4.2) I = RRGL
3(f) + ERGL

3(f),

where, (ES 3
8
th(f)) and (ESGL

3) denote the errors for rules (RS 3
8
th(f))

and (RRGL
3(f)) respectively, for the evaluation of integrals I(f). Expressions (4.1)

and (4.2) with Maclaurin’s expansion are

(4.3) ES 3
8
th(f) =

4

3× 5!
f iv(0)− 64

175× 6!
f vi(0) · · ·

(4.4) ESGL
3(f) = − 1

135× 5!
f iv(0) +

1016

675× 7!
f vi(0) · · · .
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Eliminating f vi(0) from (4.3) and (4.4) by multiplying 1
1080

with (4.1) and adding
it with (4.2) we receive

I(f) = RRGL
3S 3

8
th(f) + ESGL

3S 3
8
th(f),

where

RRGL
3S 3

8
th(f) =

1

5
[3RRGL

3(f) + 2RS 3
8
th(f)],

(4.5) ESGL
3(f) =

1

5
[3ERGL

3(f) + 2ES 3
8
th(f)] =

2744

2362× 6!
f vi(0) . . . .

4.2. Anti-Simpson’s
3

8
th Rule With Steffenson’s Four Point Rule.

From (2.1) and Steffenson’s four point rule (referring [16])

Rst4(f) = [
11

12
{f(−3

5
) + f(

3

5
)}+ 1

12
{f(−1

5
) + f(

1

5
)}]

ESst4(f) =
38

5625
f iv(0) +

13136

9375× 7!
f vi(0) . . .

where RS 3
8
th(f) and Rst4(f) is of precision three and ES 3

8
th(f) and Est4(f) is the

errors due to the former and later rules respectively

I = Rst4RS 3
8
th(f) + ERst4RS 3

8
th(f),

(4.6) Rst4RS 3
8
(f) =

1

49
[125Rst4 − 76RS 3

8
(f)].

Here (4.6) is the mixed rule of precision five and the error for this approximation
is

(4.7) ERst4RS 3
8
(f) =

1

49
[125Est4(f)− 76ES 3

8
(f)] =

27728

25725× 6!
f vi(0) . . . .
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5. ERROR BOUNDS OF MIXED RULES

In this section we have determined the error analysis and error bound in the
form of Theorems 1, 2, 3, 4.

Theorem 5.1. Let the smooth function f(t) is defined on −1 ≤ t ≤ 1, then the
error ERGL

3S 3
8
(f) due to the mixed rule RRGL

3S 3
8
(f) is obtained as ERGL

3S 3
8
(f) =

2744
23625×6!f

vi(0) . . . .

Proof. Expression (4.5) justifies the proof of this theorem. �

Theorem 5.2. Let the smooth function f(t) is defined on −1 ≤ t ≤ 1, then the error
due to the mixed rule ERst4RS 3

8
(f) is ERst4RS 3

8
(f) = 27728

25725×6!f
vi(0) . . . .

Proof. Expression (4.7) conforms the proof of this theorem. �

Theorem 5.3. The error bound for ESGL
3S 3

8
th(f) = I(f)− RRGL

3S 3
8
th(f) is evalu-

ated by |ESGL
3S 3

8
th(f)| ≤ 2M

225
, M = max

−1≤x≤1
|f v(x)|.

Proof. From ERGL
3(f) = − 3

5×135×6!f
iv(η1), η1 ∈ [−1, 1], (by Conte and Boor [17])

we have ES 3
8
th(f) =

8
15×5!f

iv(η2), η2 ∈ [−1, 1] (by Conte and Boor [6,17]) and

|ERGL
3S 3

8
th(f)| ∼=

1

225
[f iv(d)− f iv(c)] =

1

225

∫ 1

−1
f v(t)dt =

1

225
(d− c)f v(γ)

for some γ ∈ [−1, 1], where |d− c| ≤ 2, and then |ESGL
3S 3

8
th(f)| ≤ 2

225
f v(γ).

Hence |EGGL
3S 3

8
th(f)| ≤ 2M

225
, where M = max

−1≤x≤1
|f v(x)|. �

Theorem 5.4. The error bound for ERst4S 3
8
th(f) = I(f)−Rst4RS 3

8
th(f) is computed

as |ERst4RS 3
8
th(f)| ≤ 76M

2205
, where M = max

−1≤t≤1
|f v(t)|.

Proof. From ERst4(f) =
38

5625
f iv(η1), η1 ∈ [−1, 1], we have ERS 3

8
th(f) =

4
3×5!f

iv(η2),

η2 ∈ [−1, 1], and ERst4S 3
8
th(f) =

38
2205

[f iv(η2)− f iv(η1)].

So, |ERst4RS 3
8
th(f)| ∼= 38

2205
[f iv(d) − f iv(c)] = 38

2205

∫ 1

−1 f
v(t)dt, |d − c| ≤ 2, i.e.,

= 38
2205

(d− c)f v(γ), for some γ ∈ [−1, 1]. Then

|ERst4SR 3
8
th(f)| ≤

76

2205
f v(γ), |ERst4RS 3

8
th(f)| ≤

76M

2205
.

�
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6. NUMERICAL RESULTS

The approximate value of the following real integrals are computed and re-
ported in Table 1.
I1 =

∫ 1

−1 e
tdt = 2.3504023872876, I2 =

∫ 1

0
e−t

2
dt = 0.746824132812427

I3 =
∫ 1

0
et

2
dt = 1.462651745907181, I4 =

∫ 3

1
sin2t

t
dt = 0.794825180668111

I5 =
∫ 1

0

√
tdt = 0.666666666666667 and I6 =

∫ 3

2
ln
√
t

t
dt = 0.181623986723595.

TABLE 1. Anti mixed quadrature rule with mixed rule of Gaussian
and anti-Newtonian and corresponding error

SRS 1
3
(f) ERGL

2(f) Est4(f) ESGL
3(f) ERS 3

8
(f)

I1 0.011651369 0.007706299 0.007038361 0.007711361 0.011628766
I2 0.000356296 0.000229445 0.000210774 0.000229898 0.000353997
I3 0.013078837 0.008483857 0.007774726 0.008505229 0.012984982
I4 0.005373406 0.003734838 0.003378927 0.003724421 0.054225285
I5 0.028595479 0.007220672 0.006879202 0.006832563 0.017855491
I6 0.000053749 0.000035368 0.000032331 0.000035408 0.000053571

7. CONCLUSION

The mixed rule is an efficient as compared to constituent rules and approxi-
mate analytical solutions for different integrals through the present rule are nice
agreement with the corresponding exact results. The beneficial approach of the
proposed rule is compared with the existing method numerically with minimized
errors through error analysis. The proposed method may be extended to the ap-
proximate solution of analytic functions in the complex plane.
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