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APPROXIMATE ANALYTICAL SOLUTION OF KLEIN-GORDON EQUATIONS
BY THE MODIFIED ADOMIAN DECOMPOSITION METHOD
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SOMAIA ALI ALAQEL, SUMAYAH GHALEB OTHMAN, AND ZAINAB ALI AL-RABAHI

ABSTRACT. In this work, the authors presented a new modification of Adomian
Decomposition Method (ADM) to resolve Klein-Gordon equation. The Klein-
Gordon Equation describes a wide variety of physical phenomena such as in
wave propagation, in continuum mechanics and in the theoretical description
of spinless particles in relativistic quantum mechanics. The authors applied this
new procedure to solve this equation. The results resulting from the application
of this method were good. And many times the exact solutions were obtained.

1. INTRODUCTION

A Partial Differential Equation (PDE) is an equation involving an unknown
function, its partial derivatives, and the independent variables. PDE’s are clearly
ubiquitous in science; the unknown function might represent such quantities as
temperature, electrostatic potential, concentration of a material, velocity of a
fluid, displacement of an elastic material, acoustic pressure, etc. These quan-
tities may depend on many variables, and one would like to find how the un-
known quantity depends on these variables.

The Klein-Gordon Equation is an important group of partial differential equa-
tions and is present in relativistic quantum mechanics and field theory. The
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nonlinear Klein-Gordon Equation model as many physical phenomena in plasma
physics, particle physics, quantum field theory. The Klein-Gordon Equation pro-
vides a simple but rich model to describe a self-interacting scalar field. From
the mathematical viewpoint, the equation relies in the category of dispersive
equations [1]. In physics, the equation has been used to study various phenom-
ena from ferromagnetism to DNA dynamics and black-hole theory [2]. Many
authors were interested in studying this equation and presented several method
to solve it, such as the Variational Iteration Method [3,4], the Finite Element
Method [5], the Cubic B-Spline Collocation Method [6], the Finite Difference
Method [7], the Decomposition Method [8], Exp-Function Method [9,10], the
Homotopy Perturbation Method [11].

The beginning of the ADM was in 1980s by the scientist George Adomian
[12,13]. The ADM considered an reliable and simple procedure for obtaining
analytical solutions. The ADM used to solve ordinary [14,15,16,17], partial,
integral, fractional differential equation. In this work the authors focused on
solving the Klein-Gordon Equation by using a new differential operator.

2. ANALYSIS OF THE METHOD

We consider the partial Klein-Gordon Equation as following:

(2.1) utt(x, t) + aut(x, t) + cu(x, t) = z(u, ut, utt),

with the following initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x),

where z(u, ux, ut) is a given functions, and f(x), g(x) is the source term. Under
the transformation a = 2n+m, c = n(m+ n).

Equation (2.1) transformed to:

(2.2) utt(x, t) + (2n+m)ut(x, t) + n(n+m)u(x, t) = z(u, ut, utt).

We discuss the solution of the Klein-Gordon Equation using (MADM).
Equation (2.2) can be written in an operator form:

(2.3) Lu(x, t) = z(u, ut, utt),
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where L is second order differential operators define by:

(2.4) Lu(x, t) = e−(m+n)t ∂

∂x
emt

∂

∂x
entu(x, t),

and the inverse operators L−1tt take the formula

(2.5) L−1tt (.) = e−nt
∫ x

0

e−mt
∫ x

0

e(m+n)(.)∂x∂x.

Applying L−1tt of (2.5) to the terms

utt(x, t) + (2n+m)ut(x, t) + n(n+m)u(x, t)

of equation (2.2), we have

L−1tt (utt(x, t) + (2n+m)ut(x, t) + n(n+m)u(x, t))

=e−nt
∫ x

0

e−mt
∫ x

0

e(m+n)(utt(x, t)

+(2n+m)ut(x, t) + n(n+m)u(x, t))∂x∂x.

Therefore

u(x, t) = e−ntu(x, 0)− e−(m+n)t

m
ut(x, 0) +

e−nt

m
ut(x, 0)

− ne−(m+n)t

m
u(x, 0) +

ne−nt

m
u(x, 0) + L−1(z(u, ut, utt)),

and using the initial conditions u(x, 0) = f(x), ux(x, 0) = g(x), we get:

u(x, t) = e−ntf(x)− e−(m+n)t

m
g(x) +

e−nt

m
g(x)− ne−(m+n)t

m
f(x)

+
ne−nt

m
f(x) + L−1(z(u, ut, utt)).

(2.6)

We will define the solution u(x, t) by series gives as follows:

(2.7) u(x, t) =
∞∑
n=0

un(x, t),

the non-linear part of equation (2.2) represented by an infinite series, called
Adomian’s polynomials

(2.8) Nu(x, t) =
∞∑
n=0

An,
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where An define by:

(2.9) An =
1

n!

∂n

∂λn

[
N(

∞∑
i=0

λiui)

]
λ=0

, n = 0, 1, 2, ...

We will put the decomposition series equation (2.8) and equation (2.7) into
equation (2.6), we get:

∞∑
n=0

un(x, t) = δ(x) + L−1z(u, ut, utt) +
∞∑
n=0

An,

we get following recursive relation

u0(x, t) = δ(x),

un+1(x, t) = L−1z(u, ut, utt) +
∞∑
n=0

An.

The n-term approximant

νn(x, t) =
n−1∑
i=0

ui,

with

u(x, t) = lim
n→∞

νn(x, t).

3. APPLICATIONS OF MADM

In order to assess both the applicability and the accuracy of MADM, we apply
MADM to several Klein-Gordon Equations as indicated in the following exam-
ples.
Problem 1: Consider the following homogeneous linear Klein-Gordon equation

(3.1) utt(x, t)− uxx(x, t)− u(x, t) = 0.

With the initial conditions

u(x, 0) = 0,

ut(x, 0) = sinx,

using the MADM in operator form equation (3.1) becomes

(3.2) Lttu(x, t) = uxx(x, t) + u(x, t).
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Applying the operator L−1tt = e−nt
∫ t
0
e−mt

∫ t
0
e(m+n)t(·)∂t∂t , to both sides of equa-

tion (3.2) Where

a = 0, c = −1, n = 1,m = −2

and using the initial conditions yields

u(x, t) =
1

2
et sinx− 1

2
e−t sinx+ L−1tt

(
uxx(x, t)

)
.

Identifying the Zeroth component u0(x, t), by all terms that are not included
under the inverse operator L−1tt and following the above discussion leads to the
recursive relation

u0(x, t) =
1

2
et sinx− 1

2
e−t sinx,

u1(x, t) = L−1tt (u0xx(x, t)),

u1(x, t) = L−1tt

( ∂2
∂x2

(1
2
(et − e−t)

)
sinx

)
,

u1(x, t) = L−1tt

(
− 1

2

(
et − e−t

)
sinx

)
,

u1(x, t) = −1

6
t3 sinx.

(3.3)

Expanding equation (3.3) using Maclaurine series of order 4, we have

(3.4) u0(x, t) = t sinx+
1

6
t3 sinx.

Accordingly, the series solution is given by

u(x, t) = t sinx.

However solving problem (1) using Adomian Decomposition Method (ADM)
where

(3.5) Lttu(x, t) = uxx(x, t) + u(x, t).

Applying the operator L−1tt =
∫ t
0

∫ t
0
(·)dtdt, to both sides of equation (3.5), and

using the initial conditions yields

u(x, t) = t sinx .

Problem 2 Consider the following nonlinear Klein-Gordon Equation

(3.6) utt + 3ut + 2u+ uxu+ uxx = −6t+ 15t2 + 22t3 + 4t4.
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With the initial conditions

u(x, 0) = 0, ut(x, 0) = 0,

the exact solution is u(x, t) = −t3 + 2t4.

Using the MADM in operator form equation (3.6), becomes

(3.7) Ltt = −6t+ 15t2 + 22t3 + 4t4 − uxu− uxx,

by applying the operator L−1tt = e−nt
∫ t
0
e−mt

∫ t
0
e(m+n)t(·)∂t∂t, to both sides of

equation (3.7) where
a = 3, c = 2, n = 1,m = 1,

and using the initial conditions yields

u(x, t) = −t3 + 2t4 − L−1tt (uxu)− L−1tt (uxx).

Identifying the Zeroth component u0(x, t), by all terms that are not included
under the inverse operator L−1tt and following the above discussion leads to the
recursive relation

uo = −t3,

un+1 = −L−1tt (An)− L−1tt (unxx), n ≥ 1.(3.8)

This will enable us to determine the components un(x, t), recurrently. In view of
the recursive relation (3.8) we obtain

u1 = 2t4 − L−1tt (A0)− L−1tt (u0xx),

u2 = −L−1tt (A1)− L−1tt (u1xx) = 0,

un(x, t) = 0, n ≥ 3.

Accordingly, the series solution is given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) = −t3 + 2t4.

However solving problem 2 is given by Adomian Decomposition Method (ADM).
Here

(3.9) Ltt = −6t+ 15t2 + 22t3 + 4t4 − 3ut − 2u− uxu− uxx,

by applying L−1tt (.) =
∫ t
0

∫ t
0
(.) on both side of equation (3.9), we get

u(x, t) = −t3 + 5 t4

4
+

11 t5

10
+

2 t6

15
− L−1tt (−3ut − 2u− uxu− uxx)

un+1 = −3L−1tt unt − 2L−1tt un − L−1tt (An)− L−1tt (unxx), n ≥ 1.
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TABLE 1. Comparison of numerical errors

X EXACT ADM MADM ABS
ERROR
[ADM]

ABS
ERROR
[MADM]

0.0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
0.1 -0.00080000 -0.00080061 -0.000800000 0.00000061 0.00000000
0.2 -0.00480000 -0.00483988 -0.004800000 0.00003988 0.00000000
0.3 -0.01080000 -0.01126271 -0.010800000 0.00046271 0.00000000
0.4 -0.01280000 -0.01544797 -0.012800000 0.00264797 0.00000000
0.5 0.00000000 -0.01028646 0.000000000 0.01028646 0.00000000
0.6 0.04320000 0.01192715 0.043200000 0.03127285 0.00000000
0.7 0.13720000 0.05692417 0.137200000 0.08027583 0.00000000
0.8 0.30720000 0.12514723 0.307200000 0.18205277 0.00000000
0.9 0.58320000 0.20762305 0.583200000 0.37557695 0.00000000
1.0 1.00000000 0.28095238 1.000000000 0.71904762 0.00000000

The first few components are

u0 = −t3,

u1 = 2t4 +
6t5

5
+

2t6

15
,

u2 =
−6t5

5
− 11t6

15
− 4t7

35
− t8

210
.

Accordingly, the series solution is given by

u(x, t) = −t3 + 2 t4 − 3 t6

5
− 4 t7

35
− t8

210
.

Table 1 exhibits a comparison between the errors obtained by using the pro-
posed Modify Adomian Decomposition Method (MADM) and the Standard Ado-
mian Decomposition Method (SADM). Examining this table closely shows the
improvements obtained by using the proposed scheme.

4. CONCLUSION

We have solved the Klein-Gordon equation using the MADM and SADM. As
it is clear from examples in first example, the result was similar in both, in the
second example the result in MADM was more accuracy of the SADM. The new
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method in this work is easy and effective in finding approximate solutions to the
linear and nonlinear Klein-Gordon Equation.
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