ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.11, 9129–9136 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.11.18

INTERVAL VALUED ANTI FUZZY NEAR ALGEBRA OVER INTERVAL VALUED ANTI FUZZY FIELD

P. NARASIMHA SWAMY¹, C. SARASWATHI, AND L. BHASKAR

ABSTRACT. The notion of an interval valued anti fuzzy field and interval valued anti fuzzy near-algebra over an interval valued anti fuzzy field is introduced. Using this notion we have described some basic properties with suitable examples.

1. INTRODUCTION

Zadeh [12] initiated the notion of a fuzzy set in 1965. Kim, Jun and Yon [7] have studied the concept of an anti fuzzy sub near-rings and anti fuzzy ideals of nearrings. Chandrasekhara Rao and Swaminathan [4] introduced the concept of an anti homomorphism in fuzzy ideals of near-rings. Brown [3] introduced the concept of near-algebras. In [9] Srinivas and Narasimha swamy have introduced the concept of fuzzy near-algebra over fuzzy field. Srinivas, et. al. [10], [1] discussed anti fuzzy near-algebra over an anti fuzzy field and also an anti homomorphism and anti fuzzy ideal of near-algebras. Some basic information about the interval valued fuzzy set given in [6]. Biswas [2] defined interval-valued fuzzy subgroups of the same nature of Rosenfeld fuzzy subgroups. Davvaz [5] introduced fuzzy ideals of near-rings with interval valued membership functions.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 16Y30, 03E72.

Key words and phrases. Near-algebra, Anti fuzzy field, Anti fuzzy near algebra, interval valued number.

Thillaigovindan et al. [11] have studied interval valued fuzzy ideals and anti fuzzy ideals of near-rings. Interval valued fuzzy near algebra over interval valued fuzzy field is introduced by Narasimha Swamy, et. al. in [8].

In this paper we introduce the concept of an interval valued anti fuzzy field and interval valued anti fuzzy near-algebra over interval valued anti fuzzy field.

2. PRELIMINARIES

For the sake of continuity we recall some basic definitions.

An interval valued number \tilde{p} on [0,1] is a closed subinterval of [0,1], that is $\tilde{p} = [p^-, p^+]$ such that $0 \le p^- \le p^+ \le 1$ where p^- and p^+ are lower and upper limits of \tilde{p} respectively. The set of all closed sub intervals of [0,1] is denoted by D[0, 1]. In this notation $\tilde{0} = [0^-, 0^+]$ and $\tilde{1} = [1^-, 1^+]$. We also identify the interval [p, p] by the number $p \in [0, 1]$. For any two interval numbers $\tilde{p} = [p^-, p^+]$ and $\tilde{q} = [q^-, q^+]$ on [0, 1], we define

(i) $\widetilde{p} \leq \widetilde{q} \Leftrightarrow p^- \leq q^-$ and $p^+ \leq q^+$,

- (ii) $\widetilde{p} = \widetilde{q} \Leftrightarrow p^- = q^-$ and $p^+ = q^+$,
- (iii) $\widetilde{p} < \widetilde{q} \Leftrightarrow \widetilde{p} \le \widetilde{q} \text{ and } \widetilde{p} \neq \widetilde{q}$,

(iv) $k\overline{p} = [kp^-, kp^+]$, for $0 \le k \le 1$.

For any interval valued numbers $\tilde{p}_i = [p_i^-, p_i^+], \tilde{q}_i = [q_i^-, q_i^+] \in D[0, 1], i \in I$ an index set we define

$$\max^{i} \{ \widetilde{p}_{i}, \widetilde{q}_{i} \} = [\max^{i} \{ p_{i}^{-}, q_{i}^{-} \}, \max^{i} \{ p_{i}^{+}, q_{i}^{+} \}],\\ \min^{i} \{ \widetilde{p}_{i}, \widetilde{q}_{i} \} = [\min^{i} \{ p_{i}^{-}, q_{i}^{-} \}, \min^{i} \{ p_{i}^{+}, q_{i}^{+} \}].\\ \inf^{i} \widetilde{a}_{i} = [\inf^{i}_{i \in I} a_{i}^{-}, \inf^{i}_{i \in I} a_{i}^{+}] \text{ and}\\ \sup^{i} \widetilde{a}_{i} = [\sup^{i}_{i \in I} a_{i}^{-}, \sup^{i}_{i \in I} a_{i}^{+}].$$

Definition 2.1. Let Z be a non-empty set. A mapping $\tilde{\mu} : Z \to D[0,1]$ is called an interval valued fuzzy subset of Z. For all $x \in Z, \tilde{\mu} = [\mu^-, \mu^+], \mu^-$ and μ^+ are fuzzy subsets of Z such that $\mu^- \leq \mu^+$. Thus $\tilde{\mu}(x)$ is an interval (a closed subset of [0,1]) not a number from the interval [0, 1] as in the case of fuzzy set. Let $\tilde{\mu}, \tilde{\nu}$ be an interval valued fuzzy subset of Z. Then the following are holds:

(i)
$$\widetilde{\mu} \leq \widetilde{\nu} \Leftrightarrow \widetilde{\mu}(x) \leq \widetilde{\nu}(x),$$

(ii) $\widetilde{\mu} = \widetilde{\nu} \Leftrightarrow \widetilde{\mu}(x) = \widetilde{\nu}(x),$
(iii) $\widetilde{\mu} = \widetilde{\nu} \Leftrightarrow \widetilde{\mu}(x) = \widetilde{\nu}(x),$
(iv) $(\widetilde{\mu} \cup \widetilde{\nu})(x) \Leftrightarrow \max^{i} \{\widetilde{\mu}(x), \widetilde{\nu}(x)\},$

$$\begin{array}{l} (\mathbf{v}) \ (\widetilde{\mu} \cap \widetilde{\nu})(x) \Leftrightarrow \min^{i} \{\widetilde{\mu}(x), \widetilde{\nu}(x)\}, \\ (\mathbf{vi}) \ \bigcap_{i \in I} \ \widetilde{\mu}_{i}(x) = \inf^{i} \{\widetilde{\mu}_{i}(x) : i \in I\}, \\ (\mathbf{vii}) \ \bigcup_{i \in I} \ \widetilde{\mu}_{i}(x) = \sup^{i} \{\widetilde{\mu}_{i}(x) : i \in I\}. \\ Here \ \inf^{i} \{\widetilde{\mu}_{i}(x)/i \in \Lambda\} = \left[\inf_{i \in \Lambda} \{\mu_{i}^{-}(x)\}, \inf_{i \in \Lambda} \{\mu_{i}^{+}(x)\}\right] \text{ is called interval valued infimum norm and } \sup^{i} \{\widetilde{\mu}_{i}(x)/i \in \Lambda\} = \left[\sup_{i \in \Lambda} \{\mu_{i}^{-}(x)\}, \sup_{i \in \Lambda} \{\mu_{i}^{+}(x)\}\right] \text{ is called interval valued interval valued supremum norm} \end{array}$$

Definition 2.2. A mapping $\min^i : D[0,1] \times D[0,1] \to D[0,1]$ defined by $\min^i(\overline{a},\overline{b}) = [\min(a^-, b^-), \min(a^+, b^+)]$ for all $\overline{a}, \overline{b} \in [0,1]$ is called an interval min-norm. A mapping $\max^i : D[0,1] \times D[0,1] \to D[0,1]$ defined by $\max^i(\overline{a},\overline{b}) = [\max(a^-, b^-), \max(a^+, b^+)]$ for all $\overline{a}, \overline{b} \in [0,1]$ is called interval max-norm. Let \min^i and \max^i be the interval valued min-norm and interval valued max-norm on D[0,1] respectively. Then the following are true.

- (1) $\min_{i} \{\bar{a}, \bar{a}\} = \bar{a} \text{ and } \max_{i} \{\bar{a}, \bar{a}\} = \bar{a} \forall \bar{a} \in D[0, 1].$
- (2) $\min^{i}\{\bar{a},\bar{b}\} = \min^{i}\{\bar{b},\bar{a}\}$ and $\max^{i}\{\bar{a},\bar{b}\} = \max^{i}\{\bar{b},\bar{a}\} \forall \bar{a},\bar{b} \in D[0,1].$
- (3) If $\forall \ \bar{a}, \bar{b}, \bar{c} \in D[0, 1], \ \bar{a} \ge \bar{b}, \ then \ \min^i \{\bar{a}, \bar{c}\} \ge \min^i \{\bar{b}, \bar{c}\} \ and \ \max^i \{\bar{a}, \bar{c}\} \le \max^i \{\bar{b}, \bar{c}\}.$

Definition 2.3. A right near-algebra Y over a field Z is a linear space Y over Z on which a multiplication is defined such that

(i) Y forms a semigroup under multiplication,

(*ii*) multiplication is right distributive over addition(i.e. (a + b)c = ac + bc) for every $a, b, c \in Y$, and

(*iii*) $\lambda(ab) = (\lambda a)b$ for every $a, b \in Y$ and $\lambda \in Z$.

3. INTERVAL VALUED ANTI FUZZY FIELD

Definition 3.1. Let $\tilde{\Psi}$ be an interval valued anti fuzzy subset of a field Z. Then $\tilde{\Psi}$ is called an Interval Valued Anti Fuzzy Field of Z if the following conditions hold:

(i)
$$\tilde{\Psi}(l+d) \leq \max(\tilde{\Psi}(l), \tilde{\Psi}(d)) = \tilde{\Psi}(l) \lor \tilde{\Psi}(d)$$
 for every $l, d \in Z$,

(ii) $\tilde{\Psi}(-l) \leq \tilde{\Psi}(l)$ for every $r \in Z$,

9131

(iii)
$$\tilde{\Psi}(ld) \leq \max(\tilde{\Psi}(l), \tilde{\Psi}(d)) = \tilde{\Psi}(l) \lor \tilde{\Psi}(d)$$
 for every $l, d \in Z$,
(iv) $\tilde{\Psi}(l^{-1}) \leq \tilde{\Psi}(l)$ for every $l(\neq 0) \in Z$.

Theorem 3.1. If $\tilde{\Psi}$ is an interval valued anti fuzzy field of Z, then (i) $\tilde{\Psi}(0) < \tilde{\Psi}(l)$ for every $l \in Z$, $(ii) \tilde{\Psi}(1) < \tilde{\Psi}(l)$ for every $l \neq 0 \in Z$ and $(iii) \tilde{\Psi}(0) < \tilde{\Psi}(1)$.

 $(i) \forall l \in \mathbb{Z}, \tilde{\Psi}(0) = \tilde{\Psi}(l-l) \le \max(\tilde{\Psi}(l), \tilde{\Psi}(-l)) \le \max(\tilde{\Psi}(l), \tilde{\Psi}(l)) = \tilde{\Psi}(l).$ (ii) For any $l(\neq 0) \in Z$, $\tilde{\Psi}(1) = \tilde{\Psi}(ll^{-1}) \leq \max(\tilde{\Psi}(l), \tilde{\Psi}(l^{-1})) \leq \max(\tilde{\Psi}(l), \tilde{\Psi}(l)) = 0$ $\tilde{\Psi}(l).$ (*iii*) Particularly for l = 1 in (*i*), we get $\tilde{\Psi}(0) < \tilde{\Psi}(1)$. \square

Note: If $\tilde{\Psi}$ is an interval valued anti fuzzy field of Z, then $\tilde{\Psi}(0) < \tilde{\Psi}(1) < \tilde{\Psi}(l)$ for every $l \neq 0 \in Z$.

Theorem 3.2. $\tilde{\Psi}$ is an interval valued anti fuzzy field of Z iff the following two conditions holds:

(i) $\tilde{\Psi}(l-d) < \max(\tilde{\Psi}(l), \tilde{\Psi}(d))$ for every $l, d \in Z$; (ii) $\tilde{\Psi}(ld^{-1}) < \max(\tilde{\Psi}(l), \tilde{\Psi}(d))$ for every $l, d \neq 0 \in \mathbb{Z}$.

Proof. Suppose that Ψ is an interval valued anti fuzzy field of Z. Then

(i) $\tilde{\Psi}(l-d) = \tilde{\Psi}(l+(-d)) < \max(\tilde{\Psi}(l), \tilde{\Psi}(-d)) < \max(\tilde{\Psi}(l), \tilde{\Psi}(d))$ for every $l, d \in \mathbb{Z}$, (*ii*) $\tilde{\Psi}(ld^{-1}) \leq \max(\tilde{\Psi}(l), \tilde{\Psi}(d^{-1})) \leq \max(\tilde{\Psi}(l), \tilde{\Psi}(d))$ for every $l, d \neq 0 \in \mathbb{Z}$. Conversely, suppose that the two conditions of the hypothesis hold. Now $\tilde{\Psi}(-l) = \tilde{\Psi}(0-l) < \max(\tilde{\Psi}(0), \tilde{\Psi}(l)) < \max(\tilde{\Psi}(l), \tilde{\Psi}(l)) = \tilde{\Psi}(l),$ $\tilde{\Psi}(l+d) = \tilde{\Psi}(l-(-d)) \le \max(\tilde{\Psi}(l), \tilde{\Psi}(-d)) \le \max(\tilde{\Psi}(l), \tilde{\Psi}(d)),$ $\tilde{\Psi}(l^{-1}) = \tilde{\Psi}(1l^{-1}) < \max(\tilde{\Psi}(1), \tilde{\Psi}(l)) < \max(\tilde{\Psi}(l), \tilde{\Psi}(l)) = \tilde{\Psi}(l)$ (for $l \neq 0$)

and

 $\tilde{\Psi}(ld) = \tilde{\Psi}(l(d^{-1})^{-1}) \le \max(\tilde{\Psi}(l), \tilde{\Psi}(d^{-1}) \le \max(\tilde{\Psi}(l), \tilde{\Psi}(d)).$ Thus Ψ is an interval valued anti fuzzy field of Z.

Theorem 3.3. Let Z and Z' be two fields. Let $\Phi : Z \to Z'$ be an onto homomorphism. If $\tilde{\Psi}$ is an interval valued anti fuzzy field of Z and $\tilde{\Psi'}$ is an interval valued anti fuzzy field of Z', then $\Phi^{-1}(\tilde{\Psi'})$ is an interval valued anti fuzzy field of Z and $\Phi(\tilde{\Psi})$ is an interval valued anti fuzzy field of Z'.

9132

4. INTERVAL VALUED ANTI FUZZY NEAR-ALGEBRAS

Definition 4.1. Let L be a near algebra over a field Z. An interval valued anti fuzzy subset $\tilde{\vartheta}$ of L is called an Interval Valued Anti Fuzzy Near Algebra of L over an interval valued anti fuzzy field $\tilde{\Psi}$ of Z if it satisfies the following four conditions:

(i) $\tilde{\vartheta}(a+d) \leq \max(\tilde{\vartheta}(a), \tilde{\vartheta}(d)) = \tilde{\vartheta}(a) \lor \tilde{\vartheta}(d),$ (ii) $\tilde{\vartheta}(\lambda a) \leq \max(\tilde{\Psi}(\lambda), \tilde{\vartheta}(a)) = \tilde{\Psi}(\lambda) \lor \tilde{\vartheta}(a),$ (iii) $\tilde{\vartheta}(ad) \leq \max(\tilde{\vartheta}(a), \tilde{\vartheta}(d)) = \tilde{\vartheta}(a) \lor \tilde{\vartheta}(d),$ (iv) $\tilde{\Psi}(1) < \tilde{\vartheta}(a)$ for all $a, d \in L$ and $\lambda \in Z$, 1 is the unity in Z.

5. Examples and Results

Let $Z = Z_2 = \{0,1\}_{+2,\times_2}$ be a field. And let $\tilde{\Psi} : Z \to D[0,1]$ be an interval valued anti fuzzy subset of Z defined by $\tilde{\Psi}(0) = [0,0.1]$, $\tilde{\Psi}(1) = [0.1,0.2]$, $\tilde{\Psi}(a - d) \leq \max(\tilde{\Psi}(a), \tilde{\Psi}(d))$ and $\tilde{\Psi}(ad^{-1}) \leq (\tilde{\Psi}(a), \tilde{\Psi}(d))$ (particularly for $d \neq 0$). Then $\tilde{\Psi}$ is an interval valued anti fuzzy field of Z.

Let $L = \{0, p, q, r\}$ be a set with two binary operations "+" and "." whose composition tables are as follows

		p					p		
0	0	p	q	r	0	0	0	0	0
p	p	0	r	q	p	0	$\begin{array}{c} q \\ 0 \end{array}$	0	q
q	q	r	0	p	q	0	0	0	0
r	r	q	p	0	r	0	q	0	q

Scalar multiplication on *L* is defined by $0 \cdot x = 0, 1 \cdot x = x$ for every $x \in L$, where $0, 1 \in Z$. Clearly *L* is a near-algebra over the field *Z*.

Let $\tilde{\vartheta} : L \to D[0,1]$ be an interval valued anti fuzzy subset of L defined by $\tilde{\vartheta}(0) = [0.5, 0.6]$ and $\tilde{\vartheta}(p) = \tilde{\vartheta}(q) = \tilde{\vartheta}(r) = [0.7, 0.8]$. Then $\tilde{\vartheta}$ is an interval valued anti fuzzy near algebra of L over an interval valued anti fuzzy field $\tilde{\Psi}$ of Z.

Theorem 5.1. If $\tilde{\vartheta}$ is an interval valued anti fuzzy near algebra of L over interval valued anti fuzzy field $\tilde{\Psi}$ of Z, then $\tilde{\Psi}(0) \leq \tilde{\vartheta}(a)$ and $\tilde{\vartheta}(0) \leq \tilde{\vartheta}(a)$ for every $a \in L$.

Proof. By the definition of an interval valued anti fuzzy field and interval valued anti fuzzy near algebra, we have $\tilde{\Psi}(0) \leq \tilde{\Psi}(1)$, $\tilde{\Psi}(1) \leq \tilde{\vartheta}(a)$. This implies that $\tilde{\Psi}(0) \leq \tilde{\vartheta}(a)$ for every $a \in L$. Now

$$\begin{split} \tilde{\vartheta}(0) &= \tilde{\vartheta}(a-a) \\ &= \tilde{\vartheta}(1a-1a) \\ &\leq \max(\max(\tilde{\Psi}(1),\tilde{\vartheta}(a)),\max(\tilde{\Psi}(-1),\tilde{\vartheta}(a))) \\ &\leq \max(\max(\tilde{\vartheta}(a),\tilde{\vartheta}(a)),\max(\tilde{\Psi}(1),\tilde{\vartheta}(a))) \\ &\leq \max(\tilde{\vartheta}(a),\max(\tilde{\vartheta}(a),\tilde{\vartheta}(a))) \\ &= \tilde{\vartheta}(a). \end{split}$$

Theorem 5.2. $\tilde{\vartheta}$ is an interval valued anti fuzzy near algebra of *L* over an interval valued anti fuzzy field $\tilde{\Psi}$ of *Z* iff the following conditions hold:

$$\begin{split} (i)\tilde{\vartheta}(\lambda l + \mu d) &\leq \max(\max(\tilde{\Psi}(\lambda), \tilde{\vartheta}(l)), \max(\tilde{\Psi}(\mu), \tilde{\vartheta}(d))), \\ (ii)\tilde{\vartheta}(ld) &\leq \max(\tilde{\vartheta}(l), \tilde{\vartheta}(d)) \text{ and } (iii)\tilde{\Psi}(1) \leq \tilde{\vartheta}(l) \\ \text{for each } l, d \in L; \ \lambda, \mu \in Z. \end{split}$$

Proof. Suppose that $\tilde{\vartheta}$ is an interval valued anti fuzzy near algebra of L over interval valued anti fuzzy field $\tilde{\Psi}$ of Z. Then for every $\lambda, \mu \in Z$ and $l, d \in L$, we have $\tilde{\vartheta}(\lambda l + \mu d) \leq \max(\tilde{\vartheta}(\lambda l), \tilde{\vartheta}(\mu d)) \leq \max(\max(\tilde{\Psi}(\lambda), \tilde{\vartheta}(l)), \max(\tilde{\Psi}(\mu), \tilde{\vartheta}(d)))$. Since $\tilde{\vartheta}$ is an interval valued anti fuzzy near algebra of L, then the remaining two conditions hold directly. Conversely, suppose that the three conditions of the hypothesis hold. Then

$$\begin{split} \tilde{\vartheta}(l+d) &= \tilde{\vartheta}(1l+1d) \\ &\leq \max(\max(\tilde{\Psi}(1),\tilde{\vartheta}(l)),\max(\tilde{\Psi}(1),\tilde{\vartheta}(d))) \\ &\leq \max(\max(\tilde{\vartheta}(l),\tilde{\vartheta}(l)),\max(\tilde{\vartheta}(d),\tilde{\vartheta}(d))) \\ &\leq \max(\tilde{\vartheta}(l),\tilde{\vartheta}(d)), \\ \tilde{\vartheta}(\lambda l) &= \tilde{\vartheta}(\lambda l+0l) \\ &\leq \max(\max(\tilde{\Psi}(\lambda),\tilde{\vartheta}(l)),\max(\tilde{\Psi}(0),\tilde{\vartheta}(l))) \\ &\leq \max(\max(\tilde{\Psi}(\lambda),\tilde{\vartheta}(l)),\max(\tilde{\vartheta}(l),\tilde{\vartheta}(l))) \\ &\leq \max(\max(\tilde{\Psi}(\lambda),\tilde{\vartheta}(l)),\max(\tilde{\vartheta}(l),\tilde{\vartheta}(l))) \\ &= \max(\tilde{\Psi}(\lambda),\tilde{\vartheta}(l)). \end{split}$$

Also we have $\tilde{\vartheta}(ld) \leq \max(\tilde{\vartheta}(l), \tilde{\vartheta}(d))$ and $\tilde{\Psi}(1) \leq \tilde{\vartheta}(l)$.

Hence $\tilde{\vartheta}$ is an interval valued anti fuzzy near algebra of *L* over interval valued anti fuzzy field $\tilde{\Psi}$ of *Z*.

Theorem 5.3. Intersection of a family of interval valued anti fuzzy near algebras is an interval valued anti fuzzy near algebra.

Definition 5.1. For any family of interval valued anti fuzzy sets $\{\tilde{\vartheta}_i : i \in \Lambda\}$ of a Near Algebra *L*, the union of $\{\tilde{\vartheta}_i : i \in \Lambda\}$ is defined by $(\bigvee_{i \in \Lambda} \tilde{\vartheta}_i)(a) = \sup\{\tilde{\vartheta}_i(a) : i \in \Lambda\}$.

Theorem 5.4. If $\{\tilde{\vartheta}_i : i \in \Lambda\}$ is a collection of interval valued anti fuzzy near algebras of a near algebra L, then so is $\bigvee_{i \in \Lambda} \vartheta_i$.

Proof. Let $\{\tilde{\vartheta}_i : i \in \Lambda\}$ be a family of interval valued anti fuzzy near algebras of L over interval valued anti fuzzy field $\tilde{\Psi}$ of Z. Let $a, d \in L$ and $\lambda \in Z$. Then

$$\begin{split} (\bigvee_{i \in \Lambda} \vartheta_i)(a+d) &= \sup\{\vartheta_i(a+d) : i \in \Lambda\} \\ &\leq \sup\{\max(\tilde{\vartheta}_i(a), \tilde{\vartheta}_i(d)) : i \in \Lambda\} \\ &= \max\{\sup(\tilde{\vartheta}_i(a) : i \in \Lambda), \sup(\tilde{\vartheta}_i(d) : i \in \Lambda)\} \\ &= \max\{\sup(\tilde{\vartheta}_i(a) : i \in \Lambda), \sup(\tilde{\vartheta}_i(d))\}, \\ (\bigvee_{i \in \Lambda} \tilde{\vartheta}_i)(\lambda a) &= \sup\{\tilde{\vartheta}_i(\lambda a) : i \in \Lambda\} \\ &\leq \sup\{\max(\tilde{\Psi}(\lambda), \tilde{\vartheta}_i(a)) : i \in \Lambda\} \\ &= \max\{\sup(\tilde{\Psi}(\lambda), \sup(\tilde{\vartheta}_i(a)) : i \in \Lambda\} \\ &= \max\{\sup(\tilde{\Psi}(\lambda), \sup(\tilde{\vartheta}_i(a) : i \in \Lambda)\} \\ &= \max\{\tilde{\Psi}(\lambda), (\bigvee_{i \in \Lambda} \tilde{\vartheta}_i)(a)\}, \\ (\bigvee_{i \in \Lambda} \tilde{\vartheta}_i)(ad) &= \sup\{\tilde{\vartheta}_i(ad) : i \in \Lambda\} \\ &\leq \sup\{\max(\tilde{\vartheta}_i(a), \tilde{\vartheta}_i(d)) : i \in \Lambda\} \\ &= \max\{\sup(\tilde{\vartheta}_i(a) : i \in \Lambda), \sup(\tilde{\vartheta}_i(d) : i \in \Lambda)\} \\ &= \max\{\sup(\tilde{\vartheta}_i(a) : i \in \Lambda), \sup(\tilde{\vartheta}_i(d) : i \in \Lambda)\} \\ &= \max\{(\bigvee_{i \in \Lambda} \tilde{B}_i)(a), (\bigvee_{i \in \Lambda} \tilde{\vartheta}_i)(d)\}. \end{split}$$

Since each $\tilde{\vartheta}_i$ is an interval valued anti fuzzy near algebra of L, then for each i we have $\tilde{\Psi}(1) \leq \tilde{\vartheta}_i(a)$ for every $a \in L$. This implies that $\tilde{\Psi}(1) \leq (\bigvee_{i=1}^{N} \tilde{\vartheta}_i)(a)$.

Thus $\bigvee_{i \in \Lambda} \tilde{\vartheta}_i$ is an interval valued anti fuzzy near algebra of L over the interval valued anti fuzzy field $\tilde{\Psi}$ of Z.

Acknowledgment

The authors very much grateful to Prof. T. Srinivas for his valuable comments and suggestions for improving this paper.

References

- L. BHASKAR, P. NARASIMHA SWAMY, K. VIJAY KUMAR, T. SRINIVAS: Anti Vague Near Algebra Over Anti Vague Field, AIP Conference Proceeding, (2246)(020001-1 to 020001-5)(2020), 665-674.
- [2] R. BISWAS: Rosenfelds Fuzzy Subgroups with Interval Valued Membership Functions, Fuzzy Sets and Systems, 63 (1994), 87-90.
- [3] H. BROWN: Near-algebras, Illinois J. Math., 12 (1968), 215-227.
- [4] K. CHANDRASEKHARA RAO, V. SWAMINATHAN: Anti Homomorphism in Fuzzy Ideals, Int. J. Comput. Math. Sci., 4(7)(2010), 320-323.
- [5] B. DAVVAZ: *Fuzzy Ideals of Near-rings With Interval Valued Membership Functions*, Journal of Sciences Islamic Republic of Iran, **12**(2)(2001), 171-175.
- [6] M. GEHRKE, C. WALKER, E. WALKER: Some Basic Theory of Interval Valued Fuzzy Sets, North American Fuzzy Information Processing Society, 8 (2001), 1332-1336.
- [7] K. H. KIM, Y. B. JUN, Y. H. YON: On Anti Fuzzy Ideals in Near-rings, Iran. J. Fuzzy Syst., 2(2) (2005), 71-80.
- [8] P. NARASIMHA SWAMY, C. SARASWATHI, T. SRINIVAS: Interval Valued Fuzzy Nearalgebra Over Interval Valued Fuzzy Field, International Review of Pure and Applied Mathematics, 14(1) (2018), 87-94.
- [9] T. SRINIVAS, P. NARASIMHA SWAMY: *A Note on Fuzzy Near-algebras*, International Journal of Algebra, **5**(22) (2011), 1085-1098.
- [10] T. SRINIVAS, P. NARASIMHA SWAMY, T. NAGAIAH: Anti Fuzzy Near-algebras Over Anti Fuzzy Fields, Annals of Fuzzy Mathematics and Informatics, 4(2) (2012), 243-252.
- [11] N. THILLAIGOVINDAN, V. CHINNADURAI, K. KADALARASI: Interval Valued Fuzzy Ideals of Near-rings, The Journal of Fuzzy Mathematics, 23 (2015), 471-484.
- [12] L. A. ZADEH: Fuzzy Sets, Inform. Control, 8 (1965), 338-353.

DEPARTMENT OF MATHEMATICS, GITAM (DEEMED TO BE UNIVERSITY), HYDERABAD, INDIA *Email address*: swamy.pasham@gmail.com

DEPARTMENT OF MATHEMATICS, GITAM (DEEMED TO BE UNIVERSITY), HYDERABAD, INDIA *Email address*: saraswathi.kodipalli@gmail.com

DEPARTMENT OF MATHEMATICS, KAKATIYA UNIVERSITY, TELANGANA, INDIA *Email address*: bhaskarlavudya1226@gmail.com

9136