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ASYMPTOTIC PROPERTIES OF THIRD-ORDER NONLINEAR NEUTRAL
DIFFERENTIAL EQUATIONS WITH VARIABLE DELAY ARGUMENTS

R. ELAYARAJA, M. SATHISH KUMAR1, AND V. GANESAN

ABSTRACT. The present paper focuses on the oscillation and asymptotic prop-
erties of the third-order nonlinear neutral differential equations with variable
delay arguments. By applying the Riccati transformation and the integral av-
eraging technique, we give an analytical method for the estimation of Riccati
differential inequality to establish several oscillation criteria for the discussed
equation, which show that any solution either oscillates or converges to zero.
We give several theorems and related examples to prove the significance of new
theorems.

1. INTRODUCTION

Consider third-order nonlinear neutral differential equations with variable de-
layed arguments

(1.1)

(
a(t)

([
y(t) + A(t)y(t− η(t))

]′′)λ)′
+

m∑
j=1

Bj(t)fj(y(t− σj(t))) = 0,

λ ≥ 1, where m ≥ 1 is an integer. Further, assume that

(H1) a(t), A(t) ∈ C
(
[t0,+∞),R+) and Bj(t), σj(t) ∈ C

(
[t0,+∞),R+) for j =

1, 2, ...,m.
(H2) a′(t) ≥ 0, 0 ≤ A(t) ≤ A0 < 1, lim

t→+∞
(t−η(t)) =∞ and lim

t→+∞
(t−σj(t)) =∞

for j = 1, 2, ...,m.
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(H3) fj(v) ∈ C(R,R), there exists a constants ξj > 0 such that fj(v)/vλ ≥ ξj

for v 6= 0 and j = 1, 2, ...,m.

We shall considering the case,

R[t0, t] =

∫ t

t0

ds

a1/λ(s)
, R[t0, t] =∞ as t→∞,(1.2)

and we define Z(t) = y(t) + A(t)y(t− η(t)), Z [1] = a(Z ′′)λ, Z [2] = (Z [1])′. If y(t),
Z(t), Z ′(t), Z [1](t) ∈ C1

(
[t∗,+∞)) for all t ∈ [t∗,+∞) and y(t) satisfies equation

(1.1) for some t∗ ≥ t0, then the function y is called a solution of equation (1.1).
Such a solution (which is non-trivial) of equation(1.1) is called oscillatory if it
has a sequence of large zeros lending to∞; it is non-oscillatory otherwise.

After more than a quarter of a century, there has been an increasing interest
in studying the oscillation and asymptotic behavior of differential equations and
their applications. We refer the monographs Agarwal et al. [11], Erbe et al.
[7], Gyori and Ladas [5]. In particular, a wide attention was made over last
few years on the oscillation and non-oscillation of first/second order differential
equations. Comparatively, there are not many related results for third-order
which received less attention in the literature. Many authors have worked on
various aspects of oscillation and asymptotic behavior of third order see in [1,2,
4,6,8–10,12–16] and the references cited therein.

B. Baculíková et al. [1], J. Džurina et al. [6], E.Thandapani and T. Li [4]
studied a oscillatory results of third-order neutral differential equations[

a(t)[x(t) + p(t)x(δ(t))′′]γ
]′

+ q(t)xγ(τ(t)) = 0, t ≥ t0.

B. Baculíková [2], Y. Jiang et al. [15] studied several oscillation results for third-
order neutral differential equation using the Riccati / comparison method[

a(t)[x(t) + p(t)x(δ(t))′′]α
]′

+ q(t)f(x(τ(t))) = 0, t ≥ t0.

If λ = 1, Jiang and Li [16] established asymptotic behavior of equation (1.1)
using generalized Riccati and integral averaging technique.

Till necessarily, there is no paper provide oscillation criteria of equation (1.1)
under the condition of λ ≥ 1 and canonical case of a(t). Therefore, we present
some new results for all solutions of equation (1.1) to be either oscillates or
tends to 0 asymptotically by employing generalized Riccati substitutions and
integral averaging technique under (1.2) and also present related examples.
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2. MAIN RESULTS

In this section, we prove our main results followed by lemmas.

Lemma 2.1 ( [16], Lemma 3). Assume that u(t) > 0, u′(t) > 0 and u′′(t) ≤ 0

for t ≥ t0. If σ ∈ C([t0,∞), [0,∞)), σ(t) ≤ t and lim
t→∞

σ(t) = ∞, then for every

α ∈ (0, 1), there exists a Tα ≥ t0 such that u(σ(t))
σ(t)

≥ αu(t)
t

for t ≥ Tα.

Lemma 2.2 ( [16], Lemma 4). Assume that u(t) > 0, u′(t) > 0 and u′′(t) ≤ 0 for
t ≥ t0. Then for each β ∈ (0, 1), there exists a T ≥ t0 such that u(t) ≥ β tu

′(t)
2

for
t ≥ Tβ.

Theorem 2.1. Let (H1)− (H3) and (1.2) holds. If there exists ζ ∈ C1([t0,∞),R),
such that for all sufficiently large tk > t1 ≥ t0 (k = 2, 3) and for some b, c ∈ (0, 1),
we have ∫ ∞

t2

[
Φ(s)− ζ(s)a(s)

(λ+ 1)λ+1

(
ζ ′(s)

ζ(s)
+ (λ+ 1)ω1/λ(s)

)]
ds =∞(2.1)

and ∫ ∞
t3

∫ ∞
v

1

a1/λ(u)

(
m∑
j=1

ξj

∫ ∞
u

Bj(s) ds

)1/λ

du dv =∞,(2.2)

where
Φ(t) =

ζ(t)
{

(a(t)ω(t))′ + a(t)ω
λ+1
λ (t) +

(1− A0)
λbλcλ

2λtλ

m∑
j=1

ξjBj(t)(t− σj(t))2λ
}
.

(2.3)

Then every solution y(t) of (1.1) is either oscillatory or satisfies lim
t→∞

y(t) = 0.

Proof. Conversely, assume y(t) be a non-oscillatory solution of equation (1.1).
Without loss of generality, we may suppose that there exists a t1 ≥ t0 such that
y(t) > 0, y(t − η(t)) > 0 and y(t + σj(t)) > 0 for all t ≥ t1 and j = 1, 2, ...,m.
Then we have Z(t) > 0 for all t ≥ t1, in view of (1.1) and (H3), we have

Z [2](t) +
m∑
j=1

Bj(t)ξjy
λ(t− σj(t)) ≤ 0.(2.4)

Assumption of (1.2), there exists following two cases:

(C1) : Z(t) > 0, Z ′(t) > 0, Z ′′(t) > 0, and Z [2](t) ≤ 0,
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or

(C2) : Z(t) > 0, Z ′(t) < 0, Z ′′(t) > 0, and Z [2](t) ≤ 0.

Assume (C1) holds. By virtue Z(t) > 0 and Z ′(t) > 0 that

y(t) = Z(t)− A(t)y(t− η(t)) ≥ Z(t)− A0Z(t− η(t)) ≥ (1− A0)Z(t),

that is

y(t) ≥ (1− A0)Z(t).(2.5)

Using (2.5) in (2.4), we get

Z [2](t) ≤ −(1− A0)
λ

m∑
j=1

ξjBj(t)Z
λ(t− σj(t)).(2.6)

Define

δ(t) = ζ(t)

[
Z [1](t)

(Z ′(t))λ
+ a(t)ω(t)

]
.(2.7)

Then δ(t) > 0 and

δ′(t) = ζ ′(t)

[
Z [1](t)

(Z ′(t))λ
+ a(t)ω(t)

]
+ ζ(t)

[
Z [1](t)

(Z ′(t))λ
+ a(t)ω(t)

]′

=
ζ ′(t)

ζ(t)
δ(t) + ζ(t)

{
(a(t)ω(t))′ +

Z [2](t)

(Z ′(t))λ
− λa(t)

(
Z ′′(t)

Z ′(t)

)λ+1}
.(2.8)

From (2.7) we have(
Z ′′(t)

Z ′(t)

)λ+1

=

[
δ(t)

ζ(t)a(t)
− ω(t)

]λ+1
λ

.(2.9)

Substituting (2.6) and (2.9) in (2.8), we have

δ′(t) ≤ ζ ′(t)

ζ(t)
δ(t) + ζ(t)(a(t)ω(t))′ − ζ(t)(1− A0)

λ

m∑
j=1

ξjBj(t)
Zλ(t− σj(t))

(Z ′(t))λ

−λ ζ(t) a(t)

[
δ(t)

ζ(t)a(t)
− ω(t)

]λ+1
λ

.(2.10)
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Using the inequality

X
λ+1
λ − (X − Y )

λ+1
λ ≤ Y

1
λ

[(λ+ 1

λ

)
X −

(1

λ

)
Y

]
.

Take X = δ(t)
ζ(t)a(t)

and Y = ω(t). Now

[
δ(t)

ζ(t)a(t)

]λ+1
λ

−

[
δ(t)

ζ(t)a(t)
− ω(t)

]λ+1
λ

≤ (ω(t))
1
λ

[(λ+ 1

λ

) δ(t)

ζ(t)a(t)
−
(1

λ

)
ω(t)

]
,

which implies

[
δ(t)

ζ(t)a(t)
− ω(t)

]λ+1
λ

≥ δ
λ+1
λ (t)

(ζ(t)a(t))
λ+1
λ

−
(λ+ 1

λ

) ω
1
λ (t)

ζ(t)a(t)
δ(t) +

ω
λ+1
λ (t)

λ
,

which with (2.10) gives

δ′(t) ≤ ζ ′(t)

ζ(t)
δ(t) + ζ(t)(a(t)ω(t))′ − ζ(t)(1− A0)

λ

m∑
j=1

ξjBj(t)
Zλ(t− σj(t))

(Z ′(t))λ

− λ

(ζ(t)a(t))
1
λ

δ
λ+1
λ (t) + (λ+ 1)ω

1
λ (t)δ(t)− ζ(t)a(t)ω

λ+1
λ (t).

If b ∈ (0, 1) with the help of Lemma 2.1, then we have

δ′(t) ≤ ζ ′(t)

ζ(t)
δ(t) + ζ(t)(a(t)ω(t))′

−ζ(t)(1− A0)
λ

m∑
j=1

ξjBj(t)b
λ

(
(t− σj(t))

t

)λ
Zλ(t− σj(t))
(Z ′(t− σj))λ

− λ

(ζ(t)a(t))
1
λ

δ
λ+1
λ (t) + (λ+ 1)ω

1
λ (t)δ(t)− ζ(t)a(t)ω

λ+1
λ (t).

If c ∈ (0, 1) and take u(t) = Z ′(t) by the help of Lemma 2.2, we have
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δ′(t) ≤ ζ ′(t)

ζ(t)
δ(t) + ζ(t)(a(t)ω(t))′

−ζ(t)
(1− A0)

λbλcλ

2λtλ

m∑
j=1

ξjBj(t)(t− σj(t))2λ

− λ

(ζ(t)a(t))
1
λ

δ
λ+1
λ (t) + (λ+ 1)ω

1
λ (t)δ(t)− ζ(t)a(t)ω

λ+1
λ (t)

≤ ζ(t)(a(t)ω(t))′ − ζ(t)a(t)ω
λ+1
λ (t)(2.11)

−ζ(t)
(1− A0)

λbλcλ

2λtλ

m∑
j=1

ξjBj(t)(t− σj(t))2λ

+

[
ζ ′(t)

ζ(t)
+ (λ+ 1)ω

1
λ (t)

]
δ(t)−

[
λ

(ζ(t)a(t))
1
λ

]
δ

λ+1
λ (t)

≤ −Φ(t)+

[
ζ ′(t)

ζ(t)
+ (λ+ 1)ω

1
λ (t)

]
δ(t)−

[
λ

(ζ(t)a(t))
1
λ

]
δ

λ+1
λ (t),

where Φ(t) is defined in (2.3). Now using the following inequality, for all λ > 0,
then for all U, V > 0, one has

Uv − V v
λ+1
λ ≤ λλ

(λ+ 1)λ+1

Uλ+1

V λ
.(2.12)

Set U = ζ′(t)
ζ(t)

+ (λ+ 1)ω
1
λ (t), V = λ

(ζ(t)a(t))
1
λ

, one can obtain that

δ′(t) ≤ −Φ(t) +
ζ(t)a(t)

(λ+ 1)λ+1

(
ζ ′(t)

ζ(t)
+ (λ+ 1)ω1/λ(t)

)
.(2.13)

Integrating (2.13) from t2 to t, gives∫ t

t2

(
Φ(t)− ζ(t)a(t)

(λ+ 1)λ+1

(
ζ ′(t)

ζ(t)
+ (λ+ 1)ω1/λ(t)

))
ds ≤ −δ(t) + δ(t2),

letting t→∞, which contradicts to (2.1).
Assume (C2) holds. Let Z(t) > 0, Z ′(t) < 0, t ≥ t3, then there exists a

constant c1 ≥ 0, such that limt→∞ Z(t) = c1. We claim that c1 = 0. Assume on
the contrary that c1 > 0, we have c1 + ε > Z(t) > c1 for any ε > 0, t ≥ t3. Choose
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0 < ε < c1(1−A0)
A0

, we obtain from (H1), we have

y(t) = Z(t)− A(t)y(t− η(t)) > c1 − A(t)y(t− η(t))

> c1 − A0Z(t− η(t))

> c1 − A0(L+ ε) := N(c1 + ε) > NZ(t),(2.14)

where N = c1−A0(c1+ε)
c1+ε

> 0. Using (2.4) and (2.14), we obtain

Z [2](t) ≤ −
m∑
j=1

ξj Bj(t) y
λ(t− σj(t))

≤ −Nλ

m∑
j=1

ξj Bj(t)Z
λ(t− σj(t))

≤ −Nλ

m∑
j=1

ξj Bj(t)Z
λ(t).(2.15)

Integrating (2.15) from t to∞ yields

Z [1](t) ≥ Nλ

m∑
j=1

ξj

∫ ∞
t

Bj(s)Z
λ(s) ds,(2.16)

and using the fact that Z(t) > c1 in (2.16), we find

Z ′′(t) ≥ c1N

a1/λ(t)

(
m∑
j=1

ξj

∫ ∞
t

Bj(s) ds

)1/λ

.(2.17)

Again, integrating (2.17) from t to∞ yields

−Z ′(t) ≥ c1N

∫ ∞
t

1

a1/λ(u)

(
m∑
j=1

ξj

∫ ∞
u

Bj(s) ds

)1/λ

du.(2.18)

Finally, integrating (2.18) from t4 to∞, we deduce that

Z(t4) ≥ c1N

∫ ∞
t4

∫ ∞
v

1

a1/λ(u)

(
m∑
j=1

ξj

∫ ∞
u

Bj(s) ds

)1/λ

du dv.

The last inequality contradict (2.2), we have c1 = 0. By making use of 0 ≤
y(t) ≤ Z(t), that concludes limt→∞ y(t) = 0. �

Next, we examine the oscillation results of solutions of (1.1) by Philos-type
[3]. Let S0 = {(t, s) : a ≤ s < t < +∞} , S = {(t, s) : a ≤ s ≤ t < +∞} the
continuous function E(t, s), E : S→ R belongs to the class function <
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(i) E(t, t) = 0 for t ≥ t0 and E(t, s) > 0 for (t, s) ∈ S0,
(ii) ∂E(t,s)

∂s
≤ 0, (t, s) ∈ S0 and some locally integrable function e(t, s) such

that

−E(t, s)

[
ζ ′(t)

ζ(t)
+ (λ+ 1)ω

1
λ (t)

]
=
∂E(t, s)

∂s
+ e(t, s),

for all (t, s) ∈ S0.

Theorem 2.2. Let (H1) − (H3), (1.2) and (2.2) holds. If there exists ζ ∈
C1([t0,∞),R), such that for all sufficiently large t5 > t1 ≥ t0 and for some E ∈ <,
we have
(2.19)

lim sup
t→∞

1

E(t, t5)

∫ t

t4

(
E(t, s)Φ(s)− 1

(λ+ 1)λ+1

ζ(s)a(s)|e(t, s)|λ+1

Eλ(t, s)

)
ds =∞,

where Φ(t) defined in (2.3). Then every solution y(t) of (1.1) is either oscillatory
or satisfies lim

t→∞
y(t) = 0.

Proof. Proceeding by the similar argument as in proof of Theorem 2.1, we obtain
the inequality (2.11),

δ′(t) ≤ −Φ(t) + P (t)δ(t)−Q(t)δ
λ+1
λ (t),(2.20)

where Φ(t) is defined in (2.3) and set

P (t) =
ζ ′(t)

ζ(t)
+ (λ+ 1)ω

1
λ (t), Q(t) =

λ

(ζ(t)a(t))
1
λ

.

Multiplying E(t, s) integrating (2.20) from t5 to t, one can get that∫ t

t5

E(t, s)Φ(s)ds ≤
∫ t

t5

E(t, s)
{
− δ′(s) + P (s)δ(s)−Q(s)δ

λ+1
λ (s)

}
ds

= E(t, t5)δ(t5) +

∫ t

t5

{
∂

∂s
E(t, s) + E(t, s)Φ(s)

}
δ(s) ds

−
∫ t

t5

E(t, s)Q(s)δ
λ+1
λ (s) ds

≤ E(t, t5)δ(t5) +

∫ t

t5

|e(t, s)|δ(s) ds−
∫ t

t5

E(t, s)Q(s)δ
λ+1
λ (s) ds

≤ E(t, t5)δ(t5) +

∫ t

t5

{
|e(t, s)|δ(s)− E(t, s)Q(s)δ

λ+1
λ (s)

}
ds.
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Now using the inequality (2.12), set U = |e(t, s)| and V = E(t, s)Q(t), we get
that ∫ t

t5

E(t, s)Φ(s)ds ≤ E(t, t5)δ(t5) +

∫ t

t5

1

(λ+ 1)λ+1

ζ(s)a(s)|e(t, s)|λ+1

Eλ(t, s)
ds.

Hence

1

E(t, t5)

∫ t

t5

(
E(t, s)Φ(s)− 1

(λ+ 1)λ+1

ζ(s)a(s)|e(t, s)|λ+1

Eλ(t, s)

)
ds ≤ δ(t5)

which contradicts to (2.19). �

Example 1. Consider the equation

(2.21)
(([

y(t) + (1/5)y(t/5)
]′′)3)′

+
6

t7
y3(t/4) +

24

t7
y3(t/2) = 0, t ≥ 1.

Compared with (1.2), wee see that λ = 3, a(t) = 1, A(t) = A0 = 1/5(≤ 1),
η = t/5, B1(t) = 6/t7, B2(t) = 24/t7, σ1(t) = t/4 and σ2(t) = t/2. By taking
ζ(t) = t, ω(t) = 0. The conditions (H1) − (H3) and R[t0, t] = ∞, are satisfied.
Then, ∫ ∞

t2

[
b3c3

32750s3
(3ξ1 + 786ξ2)−

1

256

]
ds =∞

and ∫ ∞
t3

∫ ∞
v

(∫ ∞
u

(6ξ1 + 24ξ2)

s7
ds
)1/3

du dv =∞,

where b, c ∈ (0, 1) and ξ1, ξ2 > 0, we see that (2.1) and (2.2) are clearly satisfied.
So we get the equation (2.21) is oscillatory and x(t) = t−1 is a one such solution
of equation (2.21).

3. CONCLUSION

We present some new oscillatory and asymptotic properties are obtained by
means of inequality technique and generalized Riccati substitution if λ ≥ 1.
Our obtained results are improve and extend some of the results of Y. Jiang, T.
Li [16]. In addition, we can consider the oscillation of equation (1.1) under
R[t0, t] < ∞ and we can try to get some oscillation criteria of equation (1.1) if
A(t) < 0 and arbitrary choose of λ in the future work.
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