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ON THE WELL-POSEDNESS OF A TRANSMISSION EIGENVALUE
PROBLEM

BESIANA COBANI 1 AND LEDIA SUBASHI

ABSTRACT. In the theory of partial differential equations a crucial role plays
the well-posedness of a given problem. In this paper we deal with the existence
and the unicity of a transmission problem with mixed boundary conditions and
the dependence of the solutions from the initial data. First we put the problem
in its variational form with the help of Lax-Milgram lemma. Then, using the
trace theorem and the fact that our problem is elliptic we prove its existence.
Using an important theorem on functional analysis theory [1], we finally show
the desired result on well-posedness.

1. INTRODUCTION

We consider the scattering of electromagnetic waves through a penetrable and
nonhomogeneous obstacle. It is given the mathematical model of the problem,
and we show the existence of the solution and its uniqueness. As tools to achieve
these goals we use Green’s identities, variational approach and Relich lemma.
In this paper we deal with the direct problem, which is a necessary condition
for studying the inverse problem. The interior transmission problem, which
arises in inverse scattering theory, is a boundary values problem compunded of
two partial differential equations of second order defined in a bounded domain
that corresponds to the scatterer. The boundary value problem is not elliptic in
the sense of Agmon-Doughlas-Nirenberg so the classic thoery of PDE does not
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provide a direct answer for its solvability. Its homogeneous version is referred to
as the transmission eigenvalue problem, which is nonlinear and non self-adjoint
eigenvalue problem, more specifically

(1.1) ∇ · A∇w + k2nw = 0 in Ω

(1.2) ∆u+ k2u = 0 in SR \ Ω

(1.3) w − us = −η∂(us + ui)

∂v
+ ui in ∂Ω

(1.4)
∂w

∂v
− ∂us

∂v
=
∂ui

∂v
in ∂Ω

(1.5)
∂u

∂v
= Tu in ∂SR,

where T is the Dirichlet-Neumann operator.
For our purpose, to show that the problem is well-posed we refer to [1] and

more specifically to the following theorem

Theorem 1.1. Let X and Y be two Hilbert spaces and let A : X → Y be a bijective
bounded linear operator with bounded inverse A−1 : Y → X, and B : X → Y a
compact linear operator. Then A + B is injective if and only if it is surjective. If
A + B is injective (and hence bijective) then the inverse (A + B)−1 : Y → X is
bounded.

2. VARIATIONAL FORMULATION OF THE GIVEN PROBLEM

Let uf ∈ H1(SR\Ω) be the unique solution of the following boundary Dirichlet
problem. 

∆uη + k2uη = 0 in SR \ Ω

uη = −η ∂(us+ui)
∂v

in ∂Ω

uη = 0.

The boundary ∂SR can be chosen such that k2 is not a Dirichlet eigenvalue
for−∆ in SR \ Ω).

We note that the values k2 ,for which there exist a nonzero solution u ∈ H1
0 (Ω)

are called Dirichlet eigenvalue of−∆.
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We bring problem (1.1)-(1.5) to its variational form

(∇ · A∇w + k2nw, ϕ) = 0

(∇ · A∇w,ϕ) + (k2nw, ϕ) = 0∫
Ω

∇ · A∇w · ϕdx+ k2n

∫
Ω

wϕdx = 0

−
∫

Ω

(A∇w∇ϕ)dx+

∫
∂Ω

(A∇w) · v · ϕds+ k2n

∫
Ω

wϕdx = 0

(2.1)
∫

Ω

(A∇w · ∇ϕ)dx− k2n

∫
Ω

wϕdx =

∫
∂Ω

∂w

∂vA
ϕds.

Since uη = −η∂(us + ui)

∂v
+ ui in ∂Ω then in ∂Ω we have w = 0, and it follows

∂w

∂vA
= 0 in ∂Ω , so finally∫

Ω

(A∇w · ∇ϕ)dx− k2n

∫
Ω

w · ϕdx = 0.

From the Helmholtz equation we obtain

∆u+ k2u = 0

(∆u+ k2u, ϕ) = 0

(∆u, ϕ) + k2(u, ϕ) = 0∫
SR\Ω

∆u · ϕdx+ k2

∫
SR\Ω

uϕdx = 0

−
∫
SR\Ω

∇u · ∇ϕdx+

∫
∂SR

ϕ
∂u

∂v
ds+

∫
∂Ω

ϕ
∂u

∂v
ds+ k2

∫
SR\Ω

u · ϕdx = 0

−
∫
SR\Ω

∇u · ∇ϕdx+

∫
∂SR

ϕTuds+

∫
∂Ω

ϕ
∂u

∂v
ds+ k2

∫
SR\Ω

u · ϕdx = 0

Considering that u = w − uη and (2.1) we have

−
∫
SR\Ω

∇(w − uη)∇ϕdx+

∫
∂SR

ϕT (w − uη)ds+

∫
∂Ω

ϕ
∂(w − uη)

∂v
ds

+k2

∫
SR\Ω

(w − uη)ϕdx = 0

−
∫
SR\Ω

∇w · ∇ϕdx+

∫
∂SR

ϕTwds+

∫
∂Ω

ϕ
∂w

∂v
ds+ k2

∫
SR\Ω

w · ϕdx = 0
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(2.2)
∫
SR\Ω

∇uη · ∇ϕdx−
∫
∂SR

ϕTuηds+

∫
∂Ω

ϕ
∂ui

∂v
ds− k2

∫
SR\Ω

uηϕdx = 0.

Now we can have the variational formulation of the problem using identities
(2.4) and (2.2).

Find ω ∈ H1(SR) such that∫
Ω

(∇ϕ · A∇w − k2nϕw)dx+

∫
SR\Ω

(∇ϕ · ∇w − k2ϕw)dx

−
∫
∂SR

ϕTωds =

∫
∂Ω

ϕ
∂ui

∂v
ds−

∫
∂SR

ϕTufds

+

∫
SR\Ω

(∇ϕ · ∇uf − k2ϕuf )dx,

(2.3)

for every ϕ ∈ H1(SR). Using Green’s First Identity we have that w := ω|Ω and
u := ω|SR\Ω − uf are solutions of (1.1)-(1.5).

Vice Versa, multilying (1.1) and (1.2) with a test ϕ function then using the
boundary codition (1.4), (1.5) we have that ω = w in Ω and ω = u + uf in
SR \ Ω where ω ∈ H1(SR) and satisfies (2.7), where the pair (w, u) is a solution
of (1.1)-(1.5). Now using the Lax-Milgram lemma we obtain∫

Ω

(∇ϕ · A∇ω + wϕ− wϕ− k2nϕω) +

∫
SR\Ω

(∇ϕ∇ω + wϕ− wϕ− k2ϕω)dx−

−
∫
∂SR

ϕ(T − T0 + T0)ωds =

∫
∂Ω

ϕ
∂ui

∂v
ds−

∫
∂SR

ϕTufds+

∫
SR\Ω

(∇ϕ · ∇uf − k2ϕuf )dx

In H1(SR)×H1(SR) we define the sesquilinear continuous form

a1(ψ, ϕ) :=

∫
Ω

(∇ϕ · A∇ψ + ϕψ)dx+

∫
SR\Ω

(∇ϕ · ∇ψ + ϕψ)dx

−
∫
∂SR

ϕT0ψds,

ϕ, ψ ∈ H1(SR) and

a2(ψ, ϕ) := −
∫

Ω

(nk2 + 1)ϕψdx−
∫
SR\Ω

(k2 + 1)ϕψdx−
∫
∂SR

ϕ(T − T0)ψds

ϕ, ψ ∈ H1(SR), where T0 is defined from [2]. We define also the bounded linear
conjugate functional

F (ϕ) =

∫
∂Ω

ϕ
∂ui

∂v
ds−

∫
∂SR

ϕTufds+

∫
SR\Ω

(∇ϕ · ∇uf − k2ϕuf )dx.
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The problem is written as

a1(ω, ϕ) + a2(ω, ϕ) = f(ϕ), ∀ϕ ∈ H1(SR).

From assumption ξRe(A)ξ ≥ γ|ξ|2, ξ ∈ C3, x ∈ Ω the trace theorem and the
inequality of T0 operator the following inequalities hold

a1(ϕ, ϕ) =

∫
Ω

(∇ϕ · A∇ϕ+ ϕϕ)dx+

∫
SR\Ω

(∇ϕ · ∇ϕ+ ϕϕ)dx

−
∫
∂SR

ϕT0ψds ≥
∫

Ω

(∇ϕ · A∇ϕ)dx+

∫
Ω

ϕϕdx

+

∫
SR\Ω

∇ϕ · ∇ϕdx+

∫
SR\Ω

(ϕϕ)dx+ C̃||ϕ||2H1/2(∂SR)

≥ γ|ξ|2 + ||ϕ||2L2(Ω) + ||∇ϕ||2L2(Ω) + |||ϕ||2
L2(SR\Ω)

+ [ ˜̃C]||ϕ||2H1(SR)

≥ [ ˜̃C]||ϕ||2H1(SR),

which show that a1(., .) is stricly coercive. From Lax-Milgram lemma the op-
erator A : H1(SR) → H1(SR), a1(ω, ϕ) = (Aω, ϕ)H1(SR) has bounded inverse.
From the compactness of Im : H1(SR) → L2(SR) and T − T0 : H1/2(∂SR) →
H−1/2(∂SR), the operator B : H1(SR) → H1(SR) defined as a2(ω, ϕ) =

(Bω,ϕ)H1(SR) is compact. Since our problem satisfies the condition of theorem
[1], to prove the existence of the solution we need to show its uniqueness.

3. UNIQUENESS OF THE PROBLEM

Theorem 3.1. Problem (1.1)− (1.5) has at most one solution.

Proof. Let w ∈ H1(Ω) and us ∈ H1
loc(R

2 \ Ω) be the solution of (1.1)-(1.5) with
incident wave ui = 0. Let SR be a disk centered at the origin with radius R that
contain the closure Ω. We apply Green’s first identity in Ω and (R2 \ Ω)∩SR,
obtaining the following

(∇ · A∇w + k2nw,w) = 0

(∇ · A∇w,w) + (k2nw,w) = 0∫
Ω

∇ · A∇w · wdy + k2n

∫
Ω

wwdy = 0

−
∫

Ω

(A∇w · ∇w)dy +

∫
∂Ω

(A∇w) · v · wds+ k2n

∫
Ω

w · wdy = 0
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(3.1)
∫

Ω

(A∇w · ∇w)dy − k2n

∫
Ω

w · wdy =

∫
∂Ω

∂w

∂vA
wds.

For the Helmholtz equation we have

∆us + k2us = 0

(∆us + k2us, us) = 0

(∆us, us) + k2(us, us) = 0∫
SR\Ω

∆us · usdy + k2

∫
SR\Ω

ususdy = 0

−
∫
SR\Ω

∇us · ∇usdy +

∫
∂SR

us
∂us

∂v
ds+

∫
∂Ω

us
∂us

∂v
ds+ k2

∫
SR\Ω

ususdy = 0

(3.2)
∫
SR\Ω

(|∇us|2 − k2|us|2)dy =

∫
∂SR

us
∂us

∂v
ds−

∫
∂Ω

us
∂us

∂v
ds.

Adding both sides of (3.1), (3.2) we have∫
Ω

(A∇w · ∇w − k2n|w|2)dy +

∫
SR\Ω

(|∆us|2 − k2|us|2)dy =

=

∫
∂Ω

w
∂w

∂vA
ds−

∫
∂Ω

us
∂us

∂v
ds+

∫
∂SR

us
∂us

∂v
ds.

(3.3)

Using the transmission condition∫
∂Ω

w
∂w

∂vA
ds−

∫
∂Ω

us
∂us

∂v
ds =

∫
∂Ω

w
∂us

∂v
ds−

∫
∂Ω

us
∂us

∂v
ds =

=

∫
∂Ω

(w − us)∂u
s

∂v
ds =

∫
∂Ω

(w − us)(u
s − w
η

)ds =

=
1

η

∫
∂Ω

|w − us|2ds.

So finally relation (3.3) can be given as∫
Ω

(A∇w · ∇w − k2n|w|2)dy +

∫
SR\Ω

(|∆us|2 − k2|us|2)dy

=
1

η

∫
∂Ω

|w − us|2ds+

∫
∂SR

us
∂us

∂v
ds

From the assumptions, Im(A) ≤ 0, Im(n) ≤ 0 and η ≥ η0 ≥ 0, the

Im(

∫
∂SR

us
∂us

∂v
ds) ≤ 0
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which Implies that Im(

∫
∂SR

us
∂us

∂v
ds) ≥ 0. From Relich lemma us = 0 inR2\∂SR,

so us = 0 in R2\Ω. From the transmission condition we have w = 0 and
∂w

∂vA
= 0

in ∂Ω. This result can be extended in Ω as well, not only in its boundary due
to the unique principle of continuation. To this purpose, first we extend Re(A)

as a differentiable continuous symetric function with positive values in SR and
Im(A) as a differentiable continuous symmetric function with positive values
with compact support in SR. We define w = 0 in SR \ Ω . Since w = 0 and
∂w

∂vA
= 0 in ∂Ω then w ∈ H1(SR) and ∇ · A∇w + k2nw = 0 in SR. So the

condition of theorem 1.1 are satisfied for function w, we can use the principle
of continuity where q = 0 and since w = 0 in SR \ Ω, then w = 0 in SR. �

So we proved the existence and uniqueness of the solution of problem (1.1)-
(1.5). Using Lax-Milgram lemma we have an estimate of the solution that is
continuously dependent of the initial data, so we can state that the problem is
well-posed.
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