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MHD FLOWS DUE TO NON-COAXIAL ROTATIONS OF POROUS DISK AND
A VISCOUS FLUID AT INFINITY: GRAPHICAL SOLUTIONS USING MATLAB

R. LAKSHMI1 AND SANTHAKUMARI

ABSTRACT. Fluids play a vital role in many aspects of our daily life. We drink
water, breath air, fluids runs through our bodies and it controls the weather.
The study of motion of fluids is a complex phenomena. The equations which
govern the flows of Newtonian fluids are Navier-Stokes equations. In this paper,
the flows which are due to non – coaxial rotations of porous disk and a fluid at
infinity are considered. Analytical solution for the velocity field using Laplace
transform is derived. MATLAB coding is written to get the graphical solutions.
The results are compared with the existing results. MATLAB software provides
accurate results depending on the solution we obtained.

1. INTRODUCTION

Disk shaped bodies are often encountered in many engineering applications.
It has always been interesting to carry out the flows which are rotating. Exam-
ples of such flows are weather patterns, atmospheric fronts and ocean currents.
In particular, the MHD fluid flow problem of a rotating disk finds special places
in several science and engineering applications, for instance, in turbo machin-
ery, in cosmical fluid dynamics, in gaseous and nuclear reactors, in MHD power
generators, flow meters, pumps and so on.
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The flow due to an infinite rotating disk is one of the classical problems which
were first introduced by von Karman (1921). Cochran (1934) used the von
Karman transformations and obtained asymptotic solutions for the steady hy-
drodynamic problem. The flow of a conducting fluid above a rotating disk in
the presence of an external uniform magnetic field was studied by Mistikawy
and Attia (1990, 1991). Erdogan (1995) has studied the unsteady viscous flow
between eccentric rotating disks. Hayat et al. (2001) examined Erdogan’s work
(1997) for a porous disk in the presence of a magnetic field. Ersoy, H.V (2010)
studied MHD flow of a second order /grade fluid due to non-coaxial rotation of
a disk and the fluid at infinity. Islam S, Harron T, Elahi M, Ullah M, Siddiqui,
A.M (2011) worked in steady and unsteady exact inverse solutions for the flow
of a viscous fluid ([1-13]).

In this paper, the exact analytical solution (due to arbitrary periodic oscilla-
tion) describing the flow at large and small times after the start is obtained. Thus
the MHD effect and arbitrary nature of oscillation, the graphical representation
of the flow characteristics is the special feature of this chapter.

2. MATHEMATICAL FORMULATION

The flow of an incompressible electrically conducting fluid is considered. The
fluid is electrically conducting in the presence of a magnetic field. The disk
(z = 0) is assumed to be a porous disk. The fluid fills the space z = 0 and
is in contact with the disk. The axes of rotation of both the disk and the fluid
are assumed to be in the plane x = 0. The distances between axes are being
considered as l1. Initially the disk and the fluid are rotating about z1- axis with
constant angular velocity Ω. At time t = 0, the disk and the fluid start rotate
at z and z1 axes respectively with constant angular velocity Ω. The disk also
oscillates its own plane with frequency n, at time t > 0(Figure. 1). Under
the above assumptions, the equations governing the unsteady motion of the
conducting viscous incompressible fluid are those pertaining to the conservation
of momentum and of mass which are

(2.1)
dV

dt
= −1

ρ
∇ρ1 + ν∇2V +

1

ρ
(JXB)

(2.2) divV = 0
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FIGURE 1. Flow Geometry

The equations governing the flow consists of the Maxwell equations and a gen-
eralized Ohm’s law which after neglecting the displacement currents are

divB = 0

curlB = µmJ

curlE =
(−∂B)

∂t

J = σ(E + V XB)

where V = (u, v, w) is the fluid velocity with u, v, and w as the velocity com-
ponents in the x, y and z – directions respectively, ρ is the fluid density, ρ1 is
the scalar pressure, d

dt
is the material derivative, v is the kinematic viscosity, J

is the current density, B = B0t + b is the total magnetic field which is the sum
of applied magnetic field B0 and induced magnetic field b, µm is the magnetic
permeability and E is the electric field and σ is the electrical conductivity of the
fluid.

For the derivation of Lorentz force in equation (2.1) it is assumed that the
magnetic field is normal to the velocity field, the electric field is negligible and
the induced magnetic field is small compared with the applied magnetic field.
The last assumption is valid when the magnetic Reynolds number is very small
and there is no displacement current.
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In view of the above assumptions the electromagnetic body force involved in
equation (2.1) takes the form

1

ρ
(JXB) =

σ

ρ
[(V XB)XB]

=
σ

ρ
[B0(V.B0)− V (B0.B0)](2.3)

= −σB
2
0

ρ

The relevant boundary and initial conditions are taken in the form

u = −Ωy + Uh(t),

v = Ωx at z = 0 for t > 0,

u = −Ω(y − 1),(2.4)

v = Ωx as z →∞ for all t,

u = −Ω(y − 1),

v = x at t = 0 for z > 0.

where U is the velocity and h(t) is the general periodic oscillation of a disk.
The Fourier series representation of h(t) is given by

h(t) =
∞∑

k=−∞

ake
iknt

where ak =
1

T0

∫
h(t)e−ikntdt

where n = 2π
T0

is the non zero oscillating frequency.
The coefficients {ak} are Fourier series coefficients or the spectral coefficients

of h(t). The boundary and initial conditions show that the motion is a summa-
tion of a helical and translatory motion with the velocity profile being

(2.5) u = −Ωy + f(z, t), v = Ωx+ g(z, t)

Using equation (2.2), the uniform porous disk is of the form

(2.6) w = −w0

where (w0 > 0 is the suction velocity and w0 < 0 is the corresponding blowing
velocity) From the above equation (2.5),

f(z, t) = u+ Ωy & g(z, t) = v − Ωx.
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Using equations (2.1), (2.3), (2.5) and (2.6), an equation can be written as

(2.7) v
∂3F

∂z3
+ w0

∂2F

∂z2
− ∂2F

∂t∂z
−
(
iΩ +

σ

ρ
B2

0

)
∂F

∂z
= 0

(2.8) in which F = f + ig.

Using the above equation, the boundary and initial conditions are

F (0, t) = f(0, t) + ig(0, t)

= (u+ Ωy) + i(v − Ωx)

= −Ωy + Ωy + Uh(t) + i(Ωx− Ωx)

= Uh(t) for all t > 0,(2.9)

F (∞, t) = f(∞, t) + ig(∞, t) = (u+ Ωy) + i(v − Ωx)

= −Ω(y − 1) + Ωy + i(Ωx− Ωx)

= Ω1(2.10)

and

F (z, 0) = f(z, 0) + ig(z, 0)

= (u+ Ωy) + i(v − Ωx)

= −Ω(y − 1) + Ωy + i(Ωx− Ωx)

= Ω1.

In order to find the solution of equation (2.7) subject to equations (2.9) and
(2.10) the Laplace transform pair can be defined as

H(z, s) =

∞∫
0

F (z, t)e−stdt

(2.11) F (z, t) =
1

2πi

λ+i∞∫
λ−i∞

H(z, s)estdt

(2.12) Taking M = iΩ +
σ

ρ
B2

0
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and using the Laplace parameters, the equations (2.7) becomes

v
∂3F

∂z3
+ w0

∂2F

∂z2
− ∂2F

∂t∂z
−M∂F

∂z
= 0

∂3F

∂z3
+
w0

v

∂2F

∂z2
− 1

v

∂2F

∂t∂z
− M

v

∂F

∂z
= 0

∂3

∂z3
+
w0

v

∂2

∂z2
− ∂

∂z

(
M

v
+

1

v

∂

∂t

)
F = 0.

Now, let ∂
∂t

= s. Then [
d3

dz3
+
w0

v

d2

dz2
− d

dz

(
M + s

v

)]
F = 0

⇒
[
d3

dz3
+
w0

v

d2

dz2
− d

dz

(
M + s

v

)]
H(z, s) = 0(2.13)

Also,

H(0, s) =

∞∫
0

F (0, t)e−stdt =

∞∫
0

Uh(t)e−stdt

=

∞∫
0

∞∑
k=∞

ake
iknte−stdt = U

∞∑
k=−∞

ak

∞∫
0

e[ikn−s]tdt = U
∞∑

k=−∞

ak

∞∫
0

e[ikn−s]tdt

= U
∞∑

k=−∞

ak

∞∫
0

e−[s−ikn]tdt = U
∞∑

k=−∞

ak

[
−e−[s−ikn]t

s− ikn

]∞
0

= U

∞∑
k=−∞

ak
s− ikn

[
−e−[s−ikn]t

]∞
0

= U

∞∑
k=−∞

.
ak

s− ikn
[
−e−∞ − [−e0]

]
.

Therefore

H(0, s) = U

∞∑
k=−∞

ak
s− ikn

=

∞∫
0

F (z, t)e−stdt

H(z, s) =

∞∫
0

Ω1e−stdt = Ω1

∞∫
0

e−stdt

and

(2.14) H(z, s) =
Ω1

s
as z →∞.
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The auxiliary equation of (2.11) is

m3 +
w0

v
m2 −

(
M + s

v

)
m = 0

m

(
m2 +

w0

v
m−

(
M + s

v

))
= 0

⇒ m =
−w0

2v
±

√(w0

2v

)2

+

(
M + s

v

)
.

Therefore the roots are

m1 = 0,m2 =
w0

2v
+

√(w0

2v

)2

+

(
M + s

v

)

m3 =
w0

2v
−

√(w0

2v

)2

+

(
M + s

v

)
,

and the general solution of the ordinary differential equation (2.11) is

H(z, s) = C1e
0.z + C2e

−
[
w0
2v

+
√

(w0
2v )

2
+(M+s

v )
]

+ C3e
−
[
w0
2v
−
√

(w0
2v )

2
+(M+s

v )
]
z
,

where C1, C2 and C3 arbitrary constants.
Using equation (2.12) and (2.13) and taking z = 0 in (2.14),

H(z, s) = C1 + C2 + C3.

Substituting z =∞ in (2.14) follows C1 = Ω1
s

, H(z, s) = C1. Since w0 < 0, C3 =

0, H(z, s) = C1 + C2 we have

U
∞∑

k=−∞

ak
s− ikn

=
Ω1

s
+ C2,

C2 = U
∞∑

k=−∞

ak
s− ikn

− Ω1

s

and hence

C1 =
Ω1

s
, C2 = U

∞∑
k=−∞

ak
s− ikn

− Ω1

s
, C3 = 0.
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Now substituting C1, C2 and C3 in (2.14), and taking the Laplace transform for
the above result, the velocity field is of the form

H(z, s) =
Ωl

s


1− e

−
{
w0
2v

+
√

(w0
2v )

2
+(M+s

v )
}
z
+

U
∑∞

k=−∞
ak

s−ikn

(
1− e

−
{
w0
2v

√
(w0

2v )
2
+(M+s

v )
}
z

)


(2.15)

F (z, t) = Ω1

[
1−e

−w0
2v z

2

{
e
−z
√
w2

0
4v

+
σB2

0
ρ

+ iΩ
v erfc

[
z

2
√
vt
−

√(
w2

0

4v
+
σB2

0

ρ
+
iΩ

v

)
t

]
+

e
z

√
w2

0
4v

+
σB2

0
ρ

+ iΩ
v erfc

[
z

2
√
vt
−

√(
w2

0

4v
+
σB2

0

ρ
+
iΩ

v

)
t

]}
+

U
∞∑

k=−∞

ake
−w0z

2v L−1

e−z
√(

w0

2v

)2
+
(
M+s
v

)
s− ikn

],
where L−1 indicates the inverse Laplace transform and it is known that

L−1

e−z
√(

w0

2v

)2
+ s

v

s− ikn

 =
z

2
√
πvt3

e
−
{
(w0

2v )
2
+ s
v

}
vt− s2

4vt

L−1

[
1

s− ikn

]
= eiknt.(2.16)

Using convolution theorem of Laplace transform,

L−1

e−z
√(

w0

2v

)2
+ s

v

s− ikn

 = eiknt ∗ z

2
√
πvt3

e
−
{
(w0

2v )
2
+ s
v

}
vt− s2

4vt .

Here, "*" in the above equation is indicated for the convolution and

L−1

e−z
√(

w0

2v

)2
+ s

v

s− ikn



=
eiknt

2


e
z

√
w2

0
4v

+
σB2

0
ρ

+ iΩ
v erfc

[
z

2
√
vt
−
√

w2
0

4v
+

σB2
0

ρ
+ iΩ

v

]
vt+

e
z

√
w2

0
4v

+
σB2

0
ρ

+ iΩ
v erfc

[
z

2
√
vt
−
√

w2
0

4v
+

σB2
0

ρ
+ iΩ

v

]
vt

 .

(2.17)
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Applying (2.17) in (2.16), and using (2.8) then

f

Ω1
+

g

Ω1

=1− e
−w0
2v

z

2

(
e
z

√
w2

0
4v

+
σB2

0
ρ

+ iΩ
v erfc

 z

2
√
vt
−

√
w2

0

4v
+
σB2

0

ρ
+
iΩ

v

 t
+e

z

√
w2

0
4v

+
σB2

0
ρ

+ iΩ
v erfc

 z

2
√
vt

+

√
w2

0

4v
+
σB2

0

ρ
+
iΩ

v

 t)

+
Ue

−w0t
2v

2Ω1

−∞∑
k=−∞

ake
ikw0tX

·

(
e
z

√
w2

0
4v

+
σB2

0
ρ

+
i(Ω+kn)t

v erfc

[
z

2
√
vt
−

√
w2

0

4v
+
σB2

0

ρ
+ i

(
Ω + kn

v

)]
t

+e
z

√
w2

0
4v

+
σB2

0
ρ

+
i(Ω+kn)t

v erfc

[
z

2
√
vt
−

√
w2

0

4v
+
σB2

0

ρ
+ i

(
Ω + kn

v

)]
t

)

(2.18)

where erfc(x) is the complementary error function and is defined by

erfc(x) = 1− erf(x) =

∞∫
z

e−τ
2
1 dτ1.

Clearly the real and imaginary parts of equation (2.17) is f
Ω1

and g
Ω1

respectively.
Substituting √

w2
0

4v
+
σB2

0

ρv
+
iΩ

v
= x1 + iy1,(2.19) √

w2
0

4v
+
σB2

0

ρv
+ i

(
Ω + kn

v

)
= rk + iδk,(2.20)

the equation (2.18) becomes

(2.21)
f

Ω1
+

g

Ω1
= H∗ +

Ue−
w0
2v

2Ωi

∞∑
k=−∞

ake
iknt

(
e
−z(rk+iδk)√

v erfc

[
z

2
√
vt
− (rk + iδk)

√
t

]
+ e

z(rk+iδk)√
v erfc

[
z

2
√
vt

+ (rk + iδk)
√
t

])
,
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in which

H∗ = 1− e−
w0z
2v

2(
e
−z√
v

(x1+iy1)
erfc

[
z

2
√
vt
− (x1 + iy1)

√
t

]
+ e

z√
v

(x1+iy1)
erfc

[
z

2
√
vt

+ (x1 + iy1)
√
t

])
.

Using equations (2.19) and (2.20),

x1 =

1

2


√(

w2
0

4v
+
σB2

0

ρ

)2

+ Ω2 +

(
w2

0

4v
+
σB2

0

ρ

)
 1

2

y1 =

1

2


√(

w2
0

4v
+
σB2

0

ρ

)2

+ Ω2 −
(
w2

0

4v
+
σB2

0

ρ

)
 1

2

rk =

1

2


√(

w2
0

4v
+
σB2

0

ρ

)2

+ (Ω + nk)
2 +

(
w2

0

4v
+
σB2

0

ρ

)
 1

2

δk =

1

2


√(

w2
0

4v
+
σB2

0

ρ

)2

+ (Ω + nk)
2 −

(
w2

0

4v
+
σB2

0

ρ

)
 1

2

.

The solution obtained in the equation (2.21) is the complete analytic solution
for the velocity field due to an arbitrary periodic oscillation in its own plane.

FIGURE 2. The effect of magnetic field on f
Ωl

and f
Ωl

in the pres-
ence of suction at α = 1; t = 1; U = 0.08; n = 1; B0 = 0; ρ =

2.5; Ω = 1
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FIGURE 3. The effect of magnetic field on f
Ωl

and f
Ωl

in the pres-
ence of suction at α = 1; t = 1; U = 0.08; n = 1; B0 = 0; ρ =

2.5; Ω = 1

FIGURE 4. The effect of magnetic field on f
Ωl

and f
Ωl

in the pres-
ence of suction at α = 1; t = 1; U = 0.08; n = 1; B0 = 0; ρ =

2.5; Ω = 1

3. RESULTS AND DISCUSSIONS

In this section figures 3.2 to 3.17 are drawn for the various parameters on the
velocity profiles. Figures 3.2 to 3.5 show that the transverse waves occur in both
the suction and blowing cases for f

Ωl
and g

Ωl
. Figures 3.6 to 3.9 show that the

boundary layer thickness decreases with an increase of the suction / blowing
parameter for both f

Ωl
and g

Ωl
. In hydromagnetic situation, figures 3.10 to 3.15
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FIGURE 5. The effect of magnetic field on f
Ωl

and f
Ωl

in the pres-
ence of suction at α = 1; t = 1; U = 0.08; n = 1; B0 = 0; ρ =

2.5; Ω = 1

FIGURE 6. The effect of magnetic field on f
Ωl

and f
Ωl

in the pres-
ence of suction at α = 1; t = 1; U = 0.08; n = 1; B0 = 0; ρ =

2.5; Ω = 1

are drawn for various disk oscillations and it is noted that f
Ωl

and g
Ωl

decreases
with the increase of magnetic field. Figures 3.16 to 3.17 are drawn for various
disk oscillations to describe the steady state after the large time.

CONCLUSION

(1) The solutions for suction and blowing cases are derived for all values of
frequencies including at resonant frequency.
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FIGURE 7. The effect of magnetic field on f
Ωl

and f
Ωl

in the pres-
ence of suction at α = 1; t = 1; U = 0.08; n = 1; B0 = 0; ρ =

2.5; Ω = 1

FIGURE 8. The effect of magnetic field on f
Ωl

and f
Ωl

in the pres-
ence of suction at α = 1; t = 1; U = 0.08; n = 1; B0 = 0; ρ =

2.5; Ω = 1

(2) The effects of the magnetic parameter and suction/blowing parameters
on the velocity are seen, from where it is observed that an increase in the
magnetic parameter leads to a decrease in the boundary layer thickness.

(3) The effect of suction parameter on the velocity is similar to that of mag-
netic parameter.

(4) It is further noted that diffusive waves occur in the hydromagnetic sys-
tem.
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FIGURE 9. The effect of magnetic field when w0 = [1 2 3 4 5]; α =

1; t = 1; U = 0.08; n = 1; B0 = 0; ρ = 2.5; Ω = 1

(5) It is confirmed that for large times the starting solution tends to the
steady state solution.
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