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SELF-SIMILAR BEHAVIOR OF CPI HEADLINE INFLATION AND THE ROLE
OF HURST EXPONENT IN DETERMINING CPI CORE INFLATION

THANDU VAMSHI KRISHNA1 AND D. MALLIKARJUNA REDDY

ABSTRACT. This paper aims to study the self-similarity behavior of inflation
using the Hurst index. Previous studies reported the presence of long-range de-
pendence (LRD) behavior in the inflation of some countries. Inspired by these
facts, we examined the monthly consumer price index (CPI) headline inflation
of India to check the self-similarity or LRD behavior. The current study to com-
pute the Hurst index is based on different approaches methods like the R/S
method, Variance-time method, Higuchi’s method and Average periodogram
method. This Hurst parameter estimate gives an idea about the strength of the
self-similar nature in CPI headline inflation of India. A necessary condition for
the core inflation indicator is stated in terms of the Hurst index value. The
Hurst index value of conventional exclusion based measures of CPI headline in-
flation are compared for the possibility of being a core inflation indicator. The
present study plays a prominent role in the determination of core inflation in
the Indian context.

1. INTRODUCTION

Core inflation has a major role in monetary policy decisions. Core inflation
is determined by removing the temporary price changes and retaining perma-
nent (core) price changes of the commodity basket of the headline inflation.
Forecasting inflation is of key interest to policymakers. Different methodologies
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are constructed for measuring core inflation like exclusion based method, sym-
metric trim method, asymmetric trim method, weighted median method, and
moving average method.The inflation, a time series was estimated by applying
the ARIMA model (Iqbal et al., 2016; Habibah et al., 2017). Long memory
properties of inflation are studied at the global level and ARFIMA models are
suggested (Hassler & Wolters, 1995; Baillie & Morano, 2012). The present pa-
per is aimed at studying the self-similar behavior of CPI headline inflation by
using several estimates of the Hurst exponent. Then core inflation indicators
for CPI inflation are selected based on the exclusion rule and compared their
Hurst exponents along with other properties of core inflation. The paper states
a necessary condition for core inflation measures in terms of Hurst exponent.

The concept of core inflation is first defined by Eckstein in 1981 as “the trend
increase in the cost of factors of production that originates in the long-term expec-
tations of inflation in the minds of households and businesses.” With the experi-
ence gained from high inflation of the 1970s, several economists like (Bryan &
Ceechetti, 1994) and (Blender, 1997) proposed core inflation for decisions re-
garding monitory policies as it tracks the main trend of inflation for long term
forecasting.

At the global level, economists like (Bryan & Cecchetti, 1994) (Blender, 1997)
(Clark, 2001) (Robalo Marques et al., 2003) (Rich and Steindel, 2005) (Mishkin,
2007) and (Gamber et al., 2015) contributed majorly for theoretical and empir-
ical developments for core inflation. In the early stage of understanding core
inflation, economists used exclusion based core measures and later on statistical-
based cored measures were developed. Exclusion based core measures are con-
structed by removing highly volatile components of the commodity baskets used
to determine headline inflation. Economists, however question about the infor-
mation contained in removed volatile components, and thus many economists
started using statistical-based core indicators like symmetric and asymmetric
trimming based method, moving average method, weighted median method,
ARIMA method, VAR method, and HP filter method.

Bryan and Cechetti (1994) sought attention to the weighted median approach
which is a statistical-based measure of core inflation, while Clark (2001) chose
trimmed mean for estimating core inflation. They explained the importance
of these methods in dealing with temporary supply shocks. Quah and Vahey
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(1995) opted for the VAR method to identify the important components of infla-
tion that doesn’t have much impact on headline inflation. Gamber et al. (2015)
implemented a bivariate VAR model to identify the complicated relation be-
tween core and headline inflation. Hassler et al. (1995) identified long memory
property in inflation rates. Iqbal et al. (2016) and Habibah et al. (2017) used
ARIMA models for forecasting inflation. Baillie et al. (2012) stated modified
ARFIMA models for inflation modeling.

In India economists like (Samanta, 1999) (Mohanty et al., 2000) (Durai & Ra-
machandran, 2007) (Kar, 2009) (Raj & Mishra, 2011) (Bicchal et al., 2013) and
(Sharma & Bicchal, 2015) have a major contribution in the area of core inflation.
Samanta (1999) determined exclusion based core measures for India. Mohanty
et al (2000) determined exclusion based and trimmed mean based core inflation
measures considering the WPI data (April 1983 - March 1999) and concluded
20% trimmed mean as the best core measure. Durai and Ramachandran (2007)
compared core inflations computed using a multivariate model, trimmed mean
method, and exclusion based method during April 1994-March 2005. The study
stated the importance of core inflation based on trend model in forecasting in-
flation whereas the exclusion methods are confusing in nature.

Kar (2009) considered WPI data from Feb 1989 to Dec 2005 and constructed
core inflation measures using an exponential smoothing method and compared
it with other statistical methods. The study stated that exponential smoothing
and weighted percentile-based models outperformed others in inflation iden-
tification. Raj and Misra (2011) from RBI examined various exclusion based
indicators for WPI data considering the period: April 2005 to July 2011 and
stated that only non-food manufacturing exclusion indicator satisfies the impor-
tant properties required for core measure. Sharma and Bicchal (2015) opted
asymmetric trimmed mean method to compute core inflation measure for WPI
data (April 1994 - April 2009) and stated that 29.5% left side trimming and
20.5% right side trimming resulted in the optimal estimator of core inflation
measure. Krishna et al. (2020) constructed new exclusion based core indicator
for CPI inflation that perform better than conventional exclusion measures by
excluding sub-group level components of CPI basket.

In this study, we concentrate on characteristics of the headline and core in-
flation rather than the methods to determine the core inflation. Marques et al
(2003) set three conditions for the core inflation indicators. Besides that, we try
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to identify whether the headline inflation series belong to SRD or LRD. We cat-
egorize the inflation series by computing the Hurst exponent. Then we state a
necessary condition for core inflation measure based on Hurst exponent. Lastly,
we compare the conventional exclusion based measures of CPI inflation using
the condition for the possibility of being a core inflation measure. The remain-
ing work of the paper have been structured as follows: Section 2 presents about
headline inflation, self-similarity and methods to determine it. Section 3 pro-
vides the description of the data and tools used for analysis. Section 4 presents
the computation of Hurst exponent using various methods and derives a criteria
for core inflation indicator based on Hurst exponent. Finally, Section 5 presents
the conclusions of the study.

2. THEORY AND METHODS

This section is split into three sub-sections. Section 2.1 explains about the
CPI data and the computation of CPI headline inflation. Section 2.2 presents
the definition of the self-similarity and then method to classify a series as either
short-range dependent or long-range dependent. Section 2.3 summarize some
methods to determine the Hurst index of a series.

2.1. Headline Inflation. The CPI cross-sectional price distribution consists of a
monthly price index of 23 individual commodities over the period of time. For
each commodity of the CPI data, inflation is determined as the rate of change
of its price index. To minimize the seasonal effect on inflation, we determine
year-on-year inflation rates.

For an individual commodity (c) in the CPI basket, Pct represent the price
index of period (t) and wcb is the base year weight such that

∑23
p=1wcb = 1. Then

price level in period (t), Pt is defined as

Pt =
23∑
p=1

Pctwcb .

The Y-o-Y rate of inflation for each commodity (c) for the period (t) is determined
as

πc,t =

(
Pc,t − Pc,t−12

Pc,t−12

)
.
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Similarly, Y-o-Y rate of inflation for all commodities in the CPI basket for the
period (t) is given as

πt =

(
Pt − Pt−12
Pt−12

)
.

Thus the headline inflation rate is given as

(2.1) πt =
23∑
p=1

πc,twc,t,

where, wc,t = wcb

(
Pc,t−12

Pt−12

)
can be treated as the time-varying weight of the

commodity (c) for the period or month (t). Thus the headline inflation for period
(t), πt is the weighted average of the Y-o-Y rate of inflation of all 23 commodities.

2.2. Self-Similarity and Hurst Index. The pioneer of the Self Similar process,
Mandelbrot defined it as a stochastic process whose behavior is the same at
different scales on a dimension (time or space). Let X = {Xt : t = 1, 2, ..} be the
second-order stochastic process with mean µ (constant ∀t), variance σ2(constant
∀t) and ACF γ(s) with lag s, i.e.,

γ(s) =
Cov(Xt, Xt+s)

V ar(Xt)
, s ≥ 0.

Then the aggregating process, X(p)
t is computed using the initial process Xt as

X
(p)
t =

1

p

p∑
i=1

X(t−1)p+i, t = 1, 2, . . . ,

where p is an integer (≥ 1) representing the size of blocks for the averaging
process. The ACF of X(p)

t can be given as γ(p)(s) as it is also a second order
stationary process.

Definition 2.1. The stochastic process ‘X ’ is defined to be exactly second-order
self-similar with variance σ2 and Hurst exponent H if

(2.2) γ(s) =
σ2

2
[(s+ 1)2H − 2sH + (s− 1)2H ], ∀s ≥ 1.

Definition 2.2. The stochastic process ‘X ’ is defined to be asymptotically second-
order self-similar with variance σ2 and Hurst exponent H if∑

m→∞

γ(p)(s) =
σ2

2
[(s+ 1)2H − 2sH + (s− 1)2H ], ∀s ≥ 1.
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Definition 2.3. In the variance-time analysis, the process ‘X ’ is defined to be ex-
actly second-order self-similar with variance σ2 and Hurst exponent H = 1 − β

2

if

V ar(X(p)) = σ2p−β, ∀p ≥ 1.

For H 6= 0.5, we can observe from (2.2) that

γ(s) = H(2H − 1)p2H−2as s→∞.

Thus, ∑
p

γ(p) ∼ c
∑
p

s−β, c = H(2H − 1).

The series c
∑

p s
−β is divergent if 0.5 < H < 1 or 0 < β < 1 otherwise they

are convergent, being a series of positive terms. The other series
∑

p γ(p) can be
interpreted accordingly. Thus, for 0.5 < H < 1, the ACF decays hyperbolically
and the stochastic process ‘X ’ is classified as LRD (long-range dependent) and
for 0 < H < 0.5,

∑
p γ(p) is finite and the stochastic process X is classified as

SRD (short-range dependent).

2.3. Different Measures of Hurst Index. The Hurst exponent or index enables
us to determine the strength of self-similar behavior in a time series. H.E. Hurst,
hydrologist investigated the water storage problems and level patters regarding
the Nile River for several years, and thus the index H had emerged. Even though
Hurst exponent is mathematically well defined, it’s very difficult to determine for
a given time series. To compute Hurst exponent for a small size time series, the
observations must be taken at high lags. The range of the index H is 0.5<H<1.
Many methods are developed in the literature for determining H index for a
time series. Here, we discussed the four widely used methods: R/S method,
Variance-time method, Higuchi’s method, and Average periodogram method.
Finally, we determined the Hurst index H for the CPI inflation time series using
the above methods and compared them.

2.3.1. Rescaled adjusted range statistics (R/S method). For a self-similar process,
the statistical characteristics are invariant with the partition of data. This idea
is the sole of this method, where we determine the Hurst exponent by com-
puting the rescaled range over sub parts of the main data (Mitko Gospodinov
and Evgeniya Gospodinova, 2005). Initially, the rescaled range is computed for
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the main time series data ( RSave0 = RS0). Then the time series data is parti-
tioned into two equal parts and rescaled range is computed giving rise to RS0

and RS1. The partitioning of a section continues as in Figure 1 unless its sub
sections have less than 8 data values. For each level, the rescaled range values
are averaged and Hurst exponent is estimated. The adjusted partial sums for
the data X1, X2, . . . , Xn is defined as:

Wj = (X1 +X2 + . . . +Xn)− jX(n), j = 1, 2, 3, . . . , n,

where X(n) is the sample mean. The range R(n) and standard deviation S(n)
are defined by

R(n) = max(0,W1,W2, . . . ,Wn)−min(0,W1,W2, . . . ,Wn),

S(n) =
√
E(X − µ)2.

The rescaled adjusted range is defined by

(2.3)
(
R

S

)
statistics =

R(n)

S(n)
.

According to the power-law relation of R(n)/S(n), we have

E

[
R(n)

S(n)

]
→ cnH , as n→∞,

where c is a positive finite constant and H is Hurst exponent. The robustness of
this method is discussed in (Mandelbrot-Wallis, 1969).

FIGURE 1. Estimating Hurst parameter by R/S method

2.3.2. Variance-time method. This method is developed based on gradually de-
caying variance features of the self-similar process and its aggregated process.
The p-aggregate process of (X1, X2, . . . ) is given byX(p) = (X

(p)
1 , X

(p)
2 , . . .) where

X
(p)
j =

1

p

p∑
t=(j−1)p+1

Xt, j = 1, 2, . . . ,
N

p
p, j ∈ Z+.
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The variance of the aggregate process (Xp) is defined as:

(2.4) V ar(X(p)) =
1

N/p

p∑
i=1

(X
(p)
i −X

(p)
)2.

For large values of p, V ar(X(p)) decrease linearly. Thus we get

V ar(X(p)) = V ar(X)p−β.

The value of β can be found by estimating a regression line to the plot of
log(V ar(X(p))) against log(p). This plot is defined as a variance-time plot. Small
values of p should be ignored for regression fitting to increase accuracy. Finally,
Hurst exponent can be computed using the relation H = 1− β

2
.

2.3.3. Higuchi’s method. A technique suggested by T. Higuchi (1988) uses

(2.5) L(p) =
n− 1

p3

p∑
i=1

[
n− 1

p

]−1 [(n−1)/p]∑
k=1

∣∣∣∣∣∣
i+kp∑

j=i+(k−1)p+1

X(p)

∣∣∣∣∣∣ .
Here p represents block size, n represents the size of time series and [ ] stand
for the greatest integer function. For a time series with self-similarity or LRD,
we have E(L(p)) ∼ cp(H−2). Being computationally rigorous, the results of this
method are more accurate especially in case of smaller time series like CPI head-
line inflation we considered. The more details of this method are discussed in
(Taqqu et al. 1995)

2.3.4. Averaged periodogram method. In this method, the spectral representa-
tion is used for a stationary process. The averaged periodogram of the process
{Xi, i = 1, 2, 3, ...} with Fourier frequency λ is given by

(2.6) F (λ) =

∫ λ

0

I(θ)dθ, 0 < λ ≤ π,

where

(2.7) I(λ) = |w(λ)|2, w(λ) =
1√
2πn

n∑
t=1

(xt − µ)eitλ.

In this method, F (λ) is estimated using the Robinson integration technique
(Robinson, 1994; Lobato and Robinson, 1996). The first step to determine Hurst
exponent is to calculate periodogram and use the relation I(λ) ∝ |λ|(1−2H). By
plotting periodogram against frequency on a log scale and fitting regression, one
can obtain the slope 1-2H.
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3. DATA AND TOOLS

The empirical investigation has been conducted using data of monthly Com-
bined CPI time series considering the period: Jan 2012-April 2019 (base year:
2011–2012). The secondary data is obtained from the Database of Reserve bank
of India (RBI). The CPI headline Y-o-Y inflation is computed and checked for the
self-similarity behavior by computing Hurst exponent. R programming and MS
Excel tools are used for performing the analysis. The ‘fractal’ package in R pro-
gramming is used for computing the Hurst exponent by various methods.

FIGURE 2. Plot of H index(R/S method) vs Length of series

4. RESULTS AND DISCUSSION

In this section, we first determined the CPI headline inflation mentioned in
section 2.1 and using the (2.1). Now, we compute the Hurst index value of
CPI headline inflation using the methods discussed. Applying the R/S approach,
Hurst parameter value of the CPI inflation series is computed using the rescaled
range over sub-parts of the data which is defined in (2.3) and finally using the
relation E[R(n)

S(n)
)] → cnH , as n → ∞. The Hurst index value obtained by this

method is 0.9354. To further confirm the self-similarity behavior of the CPI
inflation series, in Figure 2 we drew the plot for H value against the length of
series considered. The range of H values in the plot concludes the self-similarity
behavior of the CPI inflation series.

In Variance-Time method, the value of H can be found by estimating a regres-
sion equation to the plot of log(V ar(Xp)) against log(p) and using the relations
V ar(Xp) = V ar(X)p−β and H = 1 − β

2
where V ar(Xp) is defined in (2.4).
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The computed values of Variance-time are presented in Table 1 and from Fig-
ure 3(a) of Variance-time plot, the Hurst index value is obtained as 0.9578. In
Figure 3(b), we present the H index values computed using the Variance-Time
technique against the length of the series. The range of the plot concludes the
presence of self-similar behavior in the CPI inflation series.

TABLE 1. Variance-Time values

p V ar(Xp) log(p) log(V ar(Xp))

2 7.0819 0.3010 0.8502
4 6.8767 0.6021 0.8374
8 6.6454 0.9031 0.8226
16 5.5625 1.2041 0.7453
32 5.0262 1.5052 0.7012

FIGURE 3. Variance-Time plot for calculating H value(Left) and
plot of H index (Variance-Time method) vs Length of series(Right)

In the Higuchi method, we compute L(p) which is defined in (2.5), and use the
relation E(L(p)) ∼ cp(H−2) to obtain the Hurst index value. The initial com-
puted values of Higuchi-time are presented in Table 2 and then log(L(p)) is
plotted against log(p) in Figure 4(a) Higuchi-time plot. Thus, from the graph,
the Hurst index value is obtained as 0.9857. In Figure 4(b), we present the H
index values computed using the Higuchi method vs the length of the series.
The range of the plot concludes the existence of self-similar behavior in the CPI
inflation series.

In the averaged periodogram method, spectral representation defined in (2.6)
and (2.7) are used in estimating the Hurst index value. Using the relation
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TABLE 2. Higuchi-Time values

p L(p) log(p) log(L(p))

2 261.45 0.301 2.4174
4 131.08 0.6021 2.1175
8 65.628 0.9031 1.8171
16 32.441 1.2041 1.5111
32 15.627 1.5052 1.1939

FIGURE 4. Higuchi-Time plot for calculating H value(Left) and
plot of H index (Higuchi method) vs Length of series(Right)

I(λ) ∝ |λ|(1−2H) Hurst index value of CPI headline inflation is obtained as
0.9844. In Figure 5, we present the H index values computed using the Robin-
son Periodogram method vs the length of the series. The plot range suggests
that the CPI inflation series has self-similarity nature.

FIGURE 5. Plot of H index(R/S method) vs Length of series

All the four widely used methods: R/S method, Variance-time method, Higuchi’s
method, and Average periodogram method result in Hurst index value which
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lies in (0.5, 1). All the Hurst index estimates are near to each other and greater
than 0.9. This states that the CPI headline inflation time series satisfies the
self-similarity or LRD property.

The intensity of LRD of a series is measured by the Hurst index value i.e.,
the larger the Hurst index value the larger the LRD nature. The range of Hurst
index value for long-range dependence series lies in (0.5, 1). The above results
state that the CPI headline inflation series has LRD property. We also know that
the CPI core inflation indicator is identified by eliminating the transient price
changes from the headline inflation, specifying that the Hurst index value of the
core inflation indicator should be at least that of headline inflation.

Exclusion based indicators are determined by eliminating certain volatile com-
modities from the headline inflation. The conventional exclusion based indi-
cators widely used in India for CPI inflation are excluding food commodities,
excluding energy commodities and excluding food and energy commodities.
CPI excluding food eliminates all the commodities under the food group which
weighs 45.85% of the total CPI basket. CPI excluding energy eliminates the
energy group commodities which weighs only 6.84% of the total CPI basket.
Whereas CPI excluding food and energy eliminates both food and energy group
commodities whose combined weight is 52.7% of the total CPI basket. Table 3
presents the other descriptive statistics of CPI exclusion based indicators. While
the mean of CPI excluding energy is very close to the CPI headline inflation, the
standard deviation and coefficient of variation of CPI excluding food and energy
are less compared to other indicators. Figure 6 presents the time-series graph
of CPI exclusion based indicators and CPI headline inflation. One can see that
there is no much difference between the graphs of CPI headline inflation and
CPI excluding energy, which question the core inflation behavior of the later.

Generally, the core inflation measure is expected to have the same mean as
of the headline inflation. This property is usually known as unbiasedness and
tested using the t-test. Table 4 presents the p-value results of the t-test and from
which we can say that all the conventional CPI exclusion indicators obey the un-
biasedness property of core inflation measure. Further, it is expected that errors
should be stationary. So, the differenced series formed by CPI headline infla-
tion and CPI exclusion indicators are examined for stationarity performing PP
and ADF tests. The results of both the tests convey that only CPI excluding en-
ergy satisfies the stationarity criteria. So, CPI excluding food and CPI excluding
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TABLE 3. Descriptive statistics of exclusion based indicators

S.No Inflation (CPI) Mean Standard
Deviation

Coefficient of
Variation

Weight

1 Headline 5.994 2.701 0.451 100
2 Excluding food 6.071 1.821 0.299 54.14
3 Excluding energy 5.983 2.781 0.465 93.16
4 Excluding food

and energy
6.058 1.767 0.292 47.30

TABLE 4. Characteristics of exclusion based indicators

S.No Core Inflation
Indicator (CPI)

Unbiasedness Stationarity LRD

T-Test
(P-value)

PP Test
(P-value)

ADP Test
(P-value)

Hurst
Index

1 Excluding food 0.821 0.061 0.133 0.982
2 Excluding energy 0.984 0.043* 0.021* 0.946
3 Excluding food and

energy
0.851 0.078 0.154 0.989

FIGURE 6. Time series plot to compare CPI exclusion based indicators

food and energy cannot be core inflation measures. As we stated that CPI head-
line inflation has LRD property, we expect the same from the CPI core measure.
Also, the Hurst index value of CPI core measure is expected to be at least that
of CPI headline inflation. Next, we computed the Hurst index value using the
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Variance-Time method for the three CPI exclusion indicators. The CPI excluding
energy has the Hurst index value of 0.946 which is lesser than the Hurst index
value of CPI headline inflation which is 0.958 and thus it cannot be CPI core
inflation measure. Even though the other two indicators satisfy the Hurst index
criteria, they already failed in Stationarity criteria. Apart from these, core mea-
sures are also expected to satisfy attractor and exogenous property. Thus LRD
or self-similar property of CPI headline inflation has simplified the screening for
the core measures. All three conventional CPI exclusion based indicators can-
not be treated as CPI core measures and a need to develop new CPI exclusion
indicators is identified.

5. CONCLUSIONS

In this paper, CPI headline inflation is studied for self-similarity behavior by
computing the Hurst index. Various methods of estimating the Hurst parameter
have been discussed and applied to CPI headline inflation. The Hurst parameter
estimates from various methods confirm the existence of self-similar or LRD
nature in CPI headline inflation. This kind of analysis is very useful to CPI
headline inflation especially for computing the CPI core inflation. Especially, the
Hurst index criteria help in identifying the potential core inflation measure from
a pool of indicators. The analysis also suggests to perform ARFIMA modeling in
the computation of CPI core inflation.
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